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Abstract The aim of the paper is to relate Bell’s notion of local causality to the Causal
Markov Condition. To this end, first a framework, called local physical theory, will
be introduced integrating spatiotemporal and probabilistic entities and the notions of
local causality and Markovity will be defined. Then, illustrated in a simple stochastic
model, it will be shown how a discrete local physical theory transforms into a Bayesian
network and how the Causal Markov Condition arises as a special case of Bell’s local
causality and Markovity.
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1 Introduction

Local causality is a concept introduced by John Stewart Bell into the foundations of
quantum theory. A physical theory is said to be locally causal if, fixing its past, any
event happening in a given spacetime region will be probabilistically independent of
any other event localized in a spatially separated region.

Causal Markov Condition is the central notion of the theory of Bayesian networks.
Here events are represented both as random variables in a probability space and also
as vertices in a causal graph. A set of events is said to satisfy the Causal Markov
Condition relative to the graph, if, conditioned on its causal parents, any event will be
probabilistically independent of any of its causal non-descendants.

The similarity between the logical schema of both principles is conspicuous even
at first blush: if events are localized in the spacetime/causal graph in a certain way,
then they are to satisfy certain probabilistic independencies. In this paper I will argue
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that this intuition is correct: Bell’s local causality, read in an appropriate way, is
a Causal Markov Condition. Causal Markov Condition relates random variables to
causal structures, local causality relates them to a net of spacetime regions. We will
show that the causal graph generated by the net structure of a local physical theory
transforms the theory into aBayesian network and yields theCausalMarkovCondition
as a kind of composition of Bell’s local causality plus a similar screening-off condition,
called Markovity.

To treat physical events both as probabilistic and also as spatiotemporal/causal
entities in a unified framework and to be able to infer from spatiotemporal/causal rela-
tions to probabilistic independencies one needs to have a common conceptual schema
integrating both spatiotemporal/causal and probabilistic concepts. This formalism is
thoroughly worked out in the theory of Bayesian networks. Here Causal Markov Con-
dition is functioning as a ’bridge law’ connecting the causal and the probabilistic side
of the theory. In the foundations of quantum physics, however, local causality is used in
a much more intuitive way. Here one simply “reads off” probabilistic independencies
from the spatiotemporal localization of the events in question. Hence our first task is
to introduce a mathematically well-defined and physically well-motivated framework
which treats probabilistic and spatiotemporal entities in a common mathematical for-
malism.Wewill call such a theory a local phys ical theory.Wewill borrowa lot from the
most elaborate physical theory offering such a general framework, namely algebraic
quantum field theory (AQFT). Having such a framework integrating spatiotemporal
and probabilistic aspects, we will be able to provide a clear-cut formulation of Bell’s
notion of local causality.

To relate Bell’s local causality to the Causal Markov Condition, we will introduce
a simple stochastic local classical theory on a discretized two dimensional spacetime.
This toy theory will display all the features previously defined in an abstract way, and
provide us a useful tool to study the properties of local causality in a more manageable
way, and to trace its connections to the Causal Markov Condition.

In the paper we will proceed as follows. In Sect. 2 we make a historical detour and
take a closer look atBell’s different definitions of local causality. InSect. 3we introduce
the concept of a local physical theory and give a precise mathematical definition of
Bell’s notion of local causality together with Markovity within this framework. In
Sect. 4 our stochastic local classical theory will be introduced. In Sect. 5 we define
the Causal Markov Condition and show how a local physical theory gives rise to
a Bayesian network and how local causality plus Markovity go over to the Causal
Markov Condition. We will conclude in Sect. 6.

There is a huge literature available relating the CausalMarkovCondition to the EPR
scenario and to the Bell inequalities. The standard way to derive the Bell inequalities
is to start with Reichenbach’s Common Cause Principle together with some local-
ity conditions. Since Reichenbach’s Common Cause Principle is a special case of
the Causal Markov Condition, many authors start the derivation directly from this
latter. [2] shows that the EPR case has no causal explanation compatible with the
Causal Markov Condition. [15] systematically apply the Causal Markov Condition to
the EPR scenario and make a connection to the robustness condition, a probabilistic
causality condition thoroughly discussed in the early 1990s. On the other hand, [5]
argue that the Causal Markov Condition is inapplicable to the EPR scenario since
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the non-separability of the quantum state renders interventions, a necessary criterion
for applicability, unavailable. As a reply to their claim see [16]. Hofer-Szabó and
co-workers [7] connect the Causal Markov Condition both to the so-called common-
common-causal and also to the separate-common-causal explanation of the EPR case.
They show that hidden locality, an assumption of the standard derivation of the Bell
inequalities, can be justified by the Causal Markov Condition only in case of common
common causes but not in case of separate common causes.

Despite the rich literature on the topic I am unaware of any work relating the Causal
Markov Condition directly to Bell’s notion of local causality. This paper intends to fill
this gap.

2 Bell’s Three Definitions of Local Causality

Local causality is the idea that causal processes propagate though space continuously
andwith velocity less than the speed of light. JohnStewartBell formulates this intuition
in a 1988 interview as follows:

[Local causality] is the idea that what you do has consequences only nearby,
and that any consequences at a distant place will be weaker and will arrive there
only after the time permitted by the velocity of light. Locality is the idea that
consequences propagate continuously, that they don’t leap over distances. [11]

Bell has returned to this intuitive idea of local causality from time to time and provided
a more and more elaborate formulation of it. First he addressed the notion of local
causality in his “The theory of local beables” delivered at the Sixth GIFT Seminar in
1975; later in a footnote added to his 1986 paper “EPR correlations and EPW distrib-
utions” intending to clean up the first version; and finally in the most elaborate form
in his “La nouvelle cuisine” posthumously published in 1990. Below I will overview
the different versions briefly commenting on each of them.

Version 1 Bell’s first definition of local causality reads as follows:

Consider a theory in which the assignment of values to some beables � implies,
not necessarily a particular value, but a probability distribution, for another
beable A. Let p(A|�) denote1 the probability of a particular value A given
particular values �. Let A be localized in a space-time region A. Let B be a
second beable localized in a second region B separated from A in a spacelike
way. (Fig. 1). Nowmy intuitive notion of local causality is that events in B should
not be ‘causes’ of events in A, and vice versa. But this does not mean that the two
sets of events should be uncorrelated, for they could have common causes in the
overlap of their backward light cones. It is perfectly intelligible then that if � in
(1) does not contain a complete record of events in that overlap, it can be usefully
supplemented by information from region B. So in general it is expected that

1 For the sake of uniformity throughout the paper I slightly changed Bell’s notation and figures.
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A B

Λ

Fig. 1 Bell’s first figure illustrating local causality (1975)

A B

CC1 2

Fig. 2 Bell’s second figure illustrating local causality (1975)

p(A|�, B) �= p(A|�) (1)

However, in the particular case that � contains already a complete specification
of beables in the overlap of the light cones, supplementary information from
region B could reasonably be expected to be redundant.
LetC2 denote a specification ofall beables, of some theory, belonging to the over-
lap of the backward light cones of spacelike regions A and B. LetC1 be a specifi-
cation of some beables from the remainder of the backward light cone of A, and
B of some beables in the region B. (See Fig. 2.) Then in a locally causal theory

p(A|C1,C2, B) = p(A|C1,C2) (2)

whenever both probabilities are given by the theory. (Bell 1975/2004 [1, p. 54])

First, let us comment briefly on the terminology Bell is using in his first version of
local causality.

The term “beable” has been introduced into the literature by Bell himself. It is
intended to be opposed to the term ”observable” used in quantum theory and to refer
to something that ”really” exists. “The word ’beable’ will also be used to carry another
distinction already in classical theory between ’physical’ and ’non-physical’ quanti-
ties. InMaxwell’s electromagnetic theory, for example, the fieldsE andH are physical
(beables, we will say) but potentials A and φ are non-physical.” (Bell 1975/2004 [1,
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p. 52]) Without the clarification of what the “beables” of a given theory really are, one
cannot even formulate local theory.

”Beables” are to be local. “We will be particularly concerned with local beables,
those which (unlike for example the total energy) can be assigned to some bounded
space-time region. For example, inMaxwell’s theory the beables local to a given region
are just the fields E and H, in that region, and all functionals thereof.” (Bell 1975/2004
[1, p. 53])

Finally, the beables localized in the region C1 are to provide a ”completely speci-
fication” of the region in question. We will come back to this point later on.

Although the beables are to be local, in his screening-off condition (2)Bell takes into
account thewhole causal past of the events in question. He does not assume some kind
of Markovity rendering superfluous the remote past regions below a certain Cauchy
surface. The second version of his formulation of local causality can be regarded as a
step towards this Markovian direction.

Version 2

The notion of local causality presented in this reference [namely in (Bell
1975/2004) [1]] involves complete specification of the beables in an infinite
space-time region. The following conception is more attractive in this respect:
In a locally-causal theory, probabilities attached to values of local beables in one
space-time region, when values are specified for all local beables in a second
space-time region fully obstructing the backward light cone of the first, are unal-
tered by specification of values of local beables in a third region with spacelike
separation from the first two. (Bell 1986/2004 [1, p. 200])

Bell’s second version is in a footnote; it is very succinct and contains no figure. The
new element is the phrasing “space-time region fully obstructing the backward light
cone of the first”. This idea gets a more precise exposition in Bell’s third, final version
of local causality.

Version 3

A theory will be said to be locally causal if the probabilities attached to values
of local beables in a space-time region A are unaltered by specification of values
of local beables in a space-like separated region B, when what happens in the
backward light cone of A is already sufficiently specified, for example by a full

A B

C

Fig. 3 Bell’s figure illustrating local causality (1990)
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specification of local beables in a space-time region C (Fig. 3). (Bell 1990/2004
[1, pp. 239–240])

The localization of region C is of crucial importance. It is not enough that C
completely cuts across the causal past of region A; it also has to ”obstruct the backward
lightcone of the first”. Bell explicitly stresses this point: “It is important that region
C completely shields off from A the overlap of the backward light cones of A and
B.” (Bell, 1990/2004 [1, p. 240]) This requirement will play a central role in our
investigation on the relation of local causality to the Causal Markov Condition. We
will come back to that having defined local causality in the next section.

3 Local Causality in Local Physical Theories

The framework integrating probabilistic and spatiotemporal entities can be defined as
follows. (For the details and motivations of the definition see [8,9].)

Definition 1 A PK-covariant local physical theory is a net {A(V ), V ∈ K} associ-
ating algebras of events to spacetime regions which satisfies isotony, microcausality
and covariance defined as follows [4]:

Isotony LetM be a globally hyperbolic spacetime and letK be a covering collec-
tion of bounded, globally hyperbolic subspacetime regions ofM such that (K,⊆)

is a directed poset under inclusion ⊆. The net of local observables is given by the
isotone map K � V �→ A(V ) to unital C∗-algebras, that is V1 ⊆ V2 implies that
A(V1) is a unital C∗-subalgebra ofA(V2). The quasilocal algebraA is defined to
be the inductive limit C∗-algebra of the net {A(V ), V ∈ K} of local C∗-algebras.
Microcausality (also called as Einstein causality) is the requirement thatA(V ′)′ ∩
A ⊇ A(V ), V ∈ K, where primes denote spacelike complement and algebra
commutant, respectively.
Spacetime Covariance Let PK be the subgroup of the group P of geometric
symmetries of M leaving the collection K invariant. A group homomorphism
α : PK → AutA is given such that the automorphisms αg, g ∈ PK of A act
covariantly on the observable net: αg(A(V )) = A(g · V ), V ∈ K.

If the quasilocal algebraA of the local physical theory is commutative, we speak about
a local classical theory; if it is noncommutative, we speak about a local quantum
theory. For local classical theories microcausality fulfills trivially.

A state φ in a local physical theory is defined as a normalized positive linear
functional on the quasilocal observable algebraA. The corresponding GNS represen-
tation πφ : A → B(Hφ) converts the net of C∗-algebras into a net of C∗-subalgebras
of B(Hφ). Closing these subalgebras in the weak topology one arrives at a net of
local von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K. Von Neu-
mann algebras are generated by their projections representing quantum events. The net
{N (V ), V ∈ K} of local von Neumann algebras also obeys isotony, microcausality,
and PK-covariance, hence one can also refer to a net {N (V ), V ∈ K} of local von
Neumann algebras as a local physical theory.

Why von Neumann algebras?
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VA B

C

V

V

Fig. 4 A region VC satisfying Requirements (i)–(iii)

Classical field theories are characterized by their sets of field configurations. Taking
the equivalence classes of those field configurations which have the same field values
on a given spacetime region one can generate local (cylindrical) σ -algebras. One
can translate σ -algebras into the language of abelian von Neumann algebras and then
generalize this framework also for non-abelian von Neumann algebras. We come back
to the details of this procedure in the next section when we introduce our stochastic
local classical theory. Thus, we translate Bell’s term “local beables” into the language
of local physical theories simply as “elements of a local von Neumann algebra”. Now,
how to translate the term “a complete specification of beables”? We are of the opinion
that the natural translation of this term is simply “an atomic event of a local von
Neumann algebra” [6]. Here it is assumed that the local algebras of the net are atomic,
which is not t he case, for example, in Poincaré covariant algebraic quantum field
theory. (For a more general definition of local causality see [8].) With these notions in
hand now one can formulate Bell’s notion of local causality in a local physical theory
as follows:

Definition 2 A local physical theory represented by a net {N (V ), V ∈ K} of von
Neumann algebras is called locally causal, if for any pair A ∈ N (VA) and B ∈ N (VB)

of projections supported in spacelike separated regions VA, VB ∈ K and for every
locally normal and faithful state φ establishing a correlation φ(AB) �= φ(A)φ(B)

between A and B, and for any spacetime region VC such that

(i) VC ⊂ J−(VA),
(ii) VA ⊂ V ′′

C ,
(iii) J−(VA) ∩ J−(VB) ∩ (

J+(VC ) \ VC
) = ∅,

(see Fig. 4) and for any atomic event Ck of A(VC ) (k ∈ K ), the following holds:

φ(Ck ABCk)

φ(Ck)
= φ(Ck ACk)

φ(Ck)

φ(Ck BCk)

φ(Ck)
(3)

In case of local classical theories a locally faithful state φ determines uniquely a
locally nonzero probability measure p by p(A) := φ(A), A ∈ P(N (V )). By means
of this (3) can be written both in the symmetric form

p(AB|Ck) = p(A|Ck)p(B|Ck) (4)
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VA B

C

V

V

Fig. 5 A region VC for which Requirement (iii) does not hold

and also in the equivalent asymmetric form

p(A|BCk) = p(A|Ck) (5)

featuring in Bell’s first version of local causality.
Now, the localization of region VC by Requirements (i)–(iii) is a bit more liberal

than that required in Bell’s second version. Although VC ”completely shields off”
region VA from the common past of VA and VB , it is not spacelike separated from
VB (as is, for example, region VC in Fig. 3). But why not to be more liberal? Why
Requirement (iii) is needed at all? Why does a region VC such as the one depicted in
Fig. 5 not suffice? The brief answer to this question is that the region above VC (lighter
shaded in Fig. 5) can contain stochastic events which, though completely specified by
the region VC , still, being stochastic, could establish a correlation between A and B
in a classical stochastic theory [10,12,14]. Indeed, exactly this will be the case in our
model introduced in the next section.

In order to relate Bell’s local causality to the Causal Markov Condition we need to
introduce a screening-off condition similar to local causality, namely Markovity:

Definition 3 A local physical theory represented by a net {N (V ), V ∈ K} of von
Neumann algebras is called Markov, if for any pair A ∈ N (VA) and B ∈ N (VB) of
projections supported in regions VA, VB ∈ Kwith VB ⊂ I−(VA) and for every locally
normal and locally faithful state φ establishing a correlation φ(AB) �= φ(A)φ(B)

between A and B, and for any spacetime region VC such that

(i) VC ⊂ J−(VA),
(ii) VA ⊂ V ′′

C ,
(iii’) VB ⊂ J−(VC ),

(see Fig. 6) and for any atomic event Ck of A(VC ) (k ∈ K ) (3) holds.

The relation between local causality andMarkovity is straightforward. In both cases
events localized in regionVA andVB , respectively are screened-off by the atomic events
in region VC . If VA and VB are spacelike separated and VC is localized according to
Requirements (i)–(iii), then (3) expresses local causality. If VA and VB are timelike
separated and VC is localized according to Requirements (i)–(iii’), then (3) expresses
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Fig. 6 A region VC satisfying
Requirements (i)–(iii’) of
Markovity A

C
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V

Fig. 7 A simple stochastic local
classical theory
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Markovity. As we will see later Causal Markov Condition will be a special case of the
composition of local causality and Markovity.

4 A Simple Stochastic Local Classical Theory

In this section we will develop a simple stochastic local classical theory. Before intro-
ducing it in a full-fledged form, let us sketch it in brief. The spacetime of the theory
will be a 1+1 dimensional discretized Minkowski spacetime covered by minimal dou-
ble cones. (See Fig. 7.) The field configurations of the theory are given by mappings
assigning a + or a − to each minimal double cone. The dynamics of the theory is gen-
erated by the following transition probabilities: The value + or − in a given minimal
double cone is probabilistically fixed by the product of the values in the three minimal
double cones adjacent to it from below, irrespectively of the value in other minimal
double cones, like earlier or spatially separated ones. The probabilistic dependence is
this: If the product of the values in the three adjacent minimal double cones is +, then
the value in the upper minimal double cone will be + with probability p and − with
probability 1 − p; if the product is −, the value will be − with probability p and +
with probability 1 − p. The process is deterministic, if p ∈ {0, 1} and stochastic, if
p ∈ (0, 1). Now, let us see the theory in a more detailed way.

Consider a discretized version of the two dimensional Minkowski spacetime M2

which is composed ofminimal double cones Vm(t, i) of unit diameter with their center

123



Found Phys (2015) 45:1110–1136 1119

Fig. 8 Two dimensional
discrete Minkowski spacetime
with a ‘thickened’ Cauchy
surface

V
V

V
V

m m
m mm 0
1/2

1Vm

3/2
−1
V−1/2

in (t, i) for t, i ∈ Z or t, i ∈ Z + 1/2. The set {Vm(t, i), i ∈ 1
2Z} of such minimal

double cones with t = 0,−1/2 defines a ‘thickened’ Cauchy surface in this spacetime,
denoted by S0. For double cones sitting on S0 we will drop the time coordinate and
simply write Vm

i . (See Fig. 8.)
A double cone V (t, i; s, j) is defined to be the smallest double cone containing both

Vm(t, i) and Vm(s, j), that is generated by them: V (t, i; s, j) := Vm(t, i)∨Vm(s, j).
The directed poset of such double cones is denoted by Km and the directed poset of
double cones generated by minimal double cones sticked to the Cauchy surface S0 is
denoted byKm

0 . Obviously,Km
0 will be left invariant by integer space translations and

Km will be left invariant by integer space and time translations. By shifting the time
coordinates of the minimal double cones by t one can similarly define the Cauchy
surface St and the net Km

t .
Let Sm denote the set ofminimal double cones ofM2 and letZ2 be themultiplicative

group of the integers {1,−1}. Define the set C of configurations of the theory as:
C := {c : Sm → Z2}. The maximal σ -algebra of classical events (C,P(C)) is given by
the power set P(C) of the set of configurations. But one can also obtain a narrower σ -
algebra in tunewith the net structureKm . This is done by taking the equivalence classes
of those configurations which have the same field values on a given region inKm . The
sets CV of local equivalence classes (the ‘cylindrical subsets’ of C concentrated on V )
are obtained by the equivalence relation: c ∼V c′ if c|V = c′|V . Clearly, CV contains

2|V | elements, where |V | is the number of minimal double cones in V . One can get
the power set P(CV ) of CV by definin g the following map ZV for V ∈ Km :

ZV : P(C) → P(C), C �→ {c′ ∈ C |∃c ∈ C : c|V = c′|V } (6)

For a given V ∈ Km the image sets of ZV define a unital σ -subalgebra �(V ) of
P(C), which is isomorphic to the power set P(CV ) of CV . By ranging over V ∈ Km

one obtains an isotone net structure {(C, �(V )), V ∈ Km}. The 2|V | dimensional
abelian local von Neumann algebraN (V ) corresponding to the local σ -algebra�(V )

is spanned by the orthogonal set of minimal projections Pc
V , c ∈ CV corresponding to

characteristic functions χc
V : C → C which are 1 on the cylindrical subset c ∈ CV of
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C and 0 otherwise. Clearly, {N (V ), V ∈ Km} is an isotone net of finite dimensional
abelian von Neumann algebras, hence it defines a local classical theory.

The quasilocal C∗-algebra A is given by the inductive limit of the local von Neu-
mann algebras N (V ), V ∈ Km , and similarly the unital C∗-subalgebras A0 of A is
given by the inductive limit of the local von Neumann algebrasN (V ), V ∈ Km

0 . Now,
a stochastic theory can be regarded as a state extension procedure from the subalgebra
A0 (or from any At ) to the quasilocal algebra A by means of so-called transition
probabilities. This is done in the following way.

Let V
(
t + 1

2

)
be a finite set of minimal double cones on the time slice

t + 1
2 . Define the nearest past of V

(
t + 1

2

)
as follows: Pt

(
V

(
t + 1

2

)) ≡ St ∩
(St \ J−

(
V

(
t + 1

2

)))′
. Specifically, the nearest past Pt

(
Vm

(
t + 1

2 , i
))

of the mini-
mal double cone Vm

(
t + 1

2 , i
)
contains the three minimal double cones adjacent to

Vm
(
t + 1

2 , i
)
from below, namely Vm

(
t, i − 1

2

)
, Vm

(
t − 1

2 , i
)
and Vm

(
t, i + 1

2

)
.

For a given configuration c ∈ C define the generating transition probabilities from
the equivalence class cPt (Vm (t+ 1

2 ,i)) to the equivalence class cVm (t+ 1
2 ,i) as follows:

p
(
cVm (t+ 1

2 ,i)|cPt (Vm (t+ 1
2 ,i))

)

:=
⎧
⎨

⎩

p, if c
(
t + 1

2 , i
) = c

(
t, i − 1

2

)
c
(
t − 1

2 , i
)
c
(
t, i + 1

2

)

1 − p, if c
(
t + 1

2 , i
) = −c

(
t, i − 1

2

)
c
(
t − 1

2 , i
)
c
(
t, i + 1

2

) (7)

where c(t, i) is short for c(Vm(t, i)), the value of the configuration c at the minimal
double cone Vm(t, i). Assuming that the generating transition probabilities are inde-
pendentwith respect to spacelike separation, one can define the transition probabilities
from the Cauchy surface St to the time slice t + 1

2 as:

p
(
cV (t+ 1

2 )|cPt (V (t+ 1
2 ))

)
:=

∏

Vm (t+ 1
2 ,i)∈V (t+ 1

2 )

p
(
cVm (t+ 1

2 ,i)|cPt (Vm (t+ 1
2 ,i))

)
(8)

Intuitively, these transition probabilities do the following: The value + or − in
a given minimal double cone is probabilistically fixed purely by the product of the
values in the three minimal double cones adjacent to it from below. (See again Fig. 7.)
Negatively speaking, they do not depend on the value of other minimal double cones,
like earlier or spatially separated ones. As we will see, these two independencies are
closely connected to Markovity and local causality, respectively. If the product is +,
then the value is + with probability p and − with probability 1 − p; if the product is
−, the value is − with probability p and + with probability 1 − p.

Finally, let U (t) be a finite set of minimal double cones on the Cauchy surface St .
We define the state on the equivalence class cV (t+ 1

2 ) ∩ cU (t) as follows:

φ
(
cV (t+ 1

2 ) ∩ cU (t)

)
:= p

(
cV (t+ 1

2 )|cPt (V (t+ 1
2 ))

)
φ

(
cPt (V (t+ 1

2 )) ∩ cU (t)

)
(9)

123



Found Phys (2015) 45:1110–1136 1121

Thus, starting from φ0 on A0 one can recursively define the state φ on the whole
A. (For the Cauchy surfaces below S0 we use Bayes theorem for the extension.)

To simplify things, introduce the following denotation. Let i+ and i− denote three
different things at the same time: the two cylindrical subsets of CVm

i
concentrated on

the minimal double cone Vm
i on the Cauchy surface S0; the two corresponding charac-

teristic functions; and also the two corresponding orthogonal projections in N (Vm
i ).

If we are not specifying which of the two sets/characteristic functions/projections we
are speaking about, we simply write i . The nth forward and backward space translates
of i will be denoted by (i + n) and (i − n), respectively (n ∈ 1

2N); the t th forward and
backward time translates will be denoted by it and i−t , respectively (t ∈ N).

Let, furthermore,

i ·
(
i + 1

2

)
. . .

(
j − 1

2

)
· j

denote the product of a sequence of projections localized on the Cauchy surface S0
betweenminimal double cones Vm

i and Vm
j , and let pi ... j denote the probability thereof

in state φ. Since we will deal only with projections of abelian von Neumann algebras,
from now on instead of φ we simply write p. Finally, we will express the condition

c

(
t + 1

2
, i

)
= c

(
t, i − 1

2

)
c

(
t − 1

2
, i

)
c

(
t, i + 1

2

)

in (7) by the Dirac delta symbol

δ
c
(
t+ 1

2 ,i
)
,c

(
t,i− 1

2

)
c
(
t− 1

2 ,i
)
c
(
t,i+ 1

2

)

or in the short form

δ
i1,

(
i− 1

2

)
i
(
i+ 1

2

)

Now, let A = it and B = js be two projections localized in the minimal double
cones Vm(t, i) and Vm(s, j), respectively, with i < j . Suppose that Vm(t, i) and
Vm(s, j) are spatially separated, that is | j−i | > |s− t |. To calculate the probability of
A, B and AB, we need a little geometry. (See Fig. 9.) Consider theminimal double cone
Vm(u, k) (striped horizontally) at the ’top of the common past’ of regions Vm(t, i)
and Vm(s, j). The coordinates of Vm(u, k) are the following:

u = 1

2
(t + s + i − j) k = 1

2
(i + j + t − s) (10)

Consider now the Cauchy surface S�u� fitting Vm(u, k), where the ceiling function
�·� in the subscript is just to round up the u coordinates if half integers. Let the number
of minimal double cones in the causal past of Vm(t, i) above S0 (including Vm(t, i)
but not including double cones on S0) be denoted by n, and the number of minimal
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s

u

t j

k

i

Fig. 9 A little geometry

double cones in the causal past of Vm(t, i) above S�u� (again including Vm(t, i) but
not including double cones on S�u�) by n′. Similarly, the number of minimal double
cones in the causal past of Vm(s, j) above S0 and S�u� be denoted by m and m′,
respectively. Finally, denote the number of minimal double cones in the causal past of
Vm(u, k) above S0 by l. The numbers n, n′, m′, m and l are the following functions
of i, j, t and s:

n =
{−t + 4

∑t
x=1 x, if i ∈ N

t + 4
∑t

x=1(x − 1), if i ∈ 1
2N

(11)

n′ =
{−t + 4

∑t
x=�u� x, if i ∈ N

t + 4
∑t

x=�u�(x − 1), if i ∈ 1
2N

(12)

m =
{−s + 4

∑s
x=1 x, if j ∈ N

s + 4
∑s

x=1(x − 1), if j ∈ 1
2N

(13)

m′ =
{−s + 4

∑s
x=�u� x, if j ∈ N

s + 4
∑s

x=�u�(x − 1), if j ∈ 1
2N

(14)

l =
{

−�u� + 4
∑�u�

x=1 x, if k ∈ N

�u� + 4
∑�u�

x=1(x − 1), if k ∈ 1
2N

(15)

In Fig. 9, for example, n = m = 3, n′ = m′ = 21 and l = 6. With these numbers
one can also calculate the number r of minimal double cones between S�u� and S0
(including double cones on S�u� but not on S0):

r = n − n′ + m − m′ − l (16)
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which is 30 in Fig. 9. Now, using the above numbers (11)–(16) the probability of A,
B and AB will be the following:

p(A) =
∑

(
i−t−

{
i+ 1

2

})
,...,

(
i+t+

{
i+ 1

2

})

[
qnδit ,(i−t+{i})...(i+t−{i})

+ (1 − qn)δ−it ,(i−t+{i})...(i+t−{i})
]
p(

i−t−
{
i+ 1

2

})
...

(
i+t+

{
i+ 1

2

}) (17)

p(B) =
∑

(
j−s−

{
j+ 1

2

})
,...,

(
j+s+

{
j+ 1

2

})

[
qmδ js ,( j−s+{ j})...( j+s−{ j})

+ (1 − qm)δ− js ,( j−s+{ j})...( j+s−{ j})
]
p( j−s−{ j+ 1

2 })...( j+s+{ j+ 1
2 }) (18)

p(AB) =
∑

(i−t+{i}),...,( j+s−{ j})

[
qn′qm′qr δit ,(i−t+{i})...(i+t−{i})δ js ,( j−s+{ j})...( j+s−{ j})

+ qn′(1 − qm′)qr δit ,(i−t+{i})...(i+t−{i})δ− js ,( j−s+{ j})...( j+s−{ j})
+ (1 − qn′)qm′qr δ−it ,(i−t+{i})...(i+t−{i})δ js ,( j−s+{ j})...( j+s−{ j})

+ (1 − qn′)(1 − qm′)qr δ−it ,(i−t+{i})...(i+t−{i})δ− js ,( j−s+{ j})...( j+s−{ j})
]

×p(i−t−{i+ 1
2 })...( j+s+{ j+ 1

2 }) (19)

where the fractional part function {·} in the subscript is again to treat integer and
half integer coordinates together, and qx (x = n, n′,m,m′, r ) is the even part of the
binomial expression:

qx := px +
(
x

2

)
px−2(1 − p)2 +

(
x

4

)
px−4(1 − p)4 + . . . (20)

Obviously, in the general case:
p(AB) �= p(A)p(B) (21)

so there is a superluminal correlation between A and B.

Fig. 10 Superluminally
correlating events i+1 and j+1

ji+1i
i+1/2

i−1 j+1
i−1/2 j−1/2 j+1/2

+ +
11
ji
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Example 1 As an example, let A = i+1 and B = j+1 , where j = i + 2 ∈ N + 1
2 . (See

Fig. 10.) Let the ’prior’ probabilities p(i−1)...( j+1) on S0 be fixed as follows:

p+++++++++ = 1

2
(22)

p+++++++−+ = 1

4
(23)

p+−+++++++ = 1

4
(24)

and all the other combinations be 0. Then the probability of A, B and AB is the
following:

p(A) =
∑

(i−1),...,(i+1)

[
p δi+1 ,(i− 1

2 )i(i+ 1
2 ) + (1 − p)δ−i+1 ,(i− 1

2 )i(i+ 1
2 )

]
p(i−1)...(i+1)

= 1

2

(
1

2
+ p

)
(25)

p(B) =
∑

( j−1),...,( j+1)

[
p δ j+1 ,( j− 1

2 ) j ( j+ 1
2 ) + (1 − p)δ− j+1 ,( j− 1

2 ) j ( j+ 1
2 )

]
p( j−1)...( j+1)

= 1

2

(
1

2
+ p

)
(26)

p(AB) =
∑

(i−1),...,( j+1)

[
p2 δi+1 ,(i− 1

2 )i(i+ 1
2 )δ j+1 ,( j− 1

2 ) j ( j+ 1
2 )

+ (1 − p)p δ−i+1 ,(i− 1
2 )i(i+ 1

2 )δ j+1 ,( j− 1
2 ) j ( j+ 1

2 )

+ (1 − p)2δ−i+1 ,(i− 1
2 )i(i+ 1

2 )δ− j+1 ,( j− 1
2 ) j ( j+ 1

2 )

]
p(i−1)...( j+1) = 1

2
p (27)

thus A and B are correlating whenever p �= 1
2 .

Fig. 11 Superluminally
correlating events i+2 and j+2 .

i−1/2 i+1/2 j−1/2i−3/2 j+3/2
ji−1 i+1
j+1/2

+ +

2+j2−i j+1i

i j2 2
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Example 2 In the second example, let A = i+2 and B = j+2 , where again j = i + 2 ∈
N + 1

2 . (See Fig. 11.) With the ’prior’ probabilities p(i−2)...( j+2):

p+++++++++++++ = 1

2
(28)

p+++++++++++−+ = 1

4
(29)

p+−+++++++++++ = 1

4
(30)

(and the rest is 0) one obtains the probability of A, B and AB as:

p(A) =
∑

(i−2),...,(i+2)

[
q6 δi+2 ,(i− 3

2 )...(i+ 3
2 ) + (1 − q6)δ−i+2 ,(i− 3

2 )...(i+ 3
2 )

]
p(i−2)...(i+2)

= 1

2

(
1

2
+ q6

)
(31)

p(B) =
∑

( j−2),...,( j+2)

[
q6 δ j+2 ,( j− 3

2 )...( j+ 3
2 )

+ (1 − q6)δ− j+2 ,( j− 3
2 )...( j+ 3

2 )

]
p( j−2)...( j+2) = 1

2

(
1

2
+ q6

)
(32)

p(AB) =
∑

(i−2),...,( j+2)

[
p2q9 δi+2 ,(i− 3

2 )...(i+ 3
2 )δ j+2 ,( j− 3

2 )...( j+ 3
2 )

+p (1 − p) q9 δi+2 ,(i− 3
2 )...(i+ 3

2 )δ− j+2 ,( j− 3
2 )...( j+ 3

2 )

+ (1 − p) p q9 δ−i+2 ,(i− 3
2 )...(i+ 3

2 )δ j+2 ,( j− 3
2 )...( j+ 3

2 )

+ (1 − p)2q9 δ−i+2 ,(i− 3
2 )...(i+ 3

2 )δ− j+2 ,( j− 3
2 )...( j+ 3

2 )

]

× p(i−2)...( j+2) = 1

2
pq9 (33)

thus A and B are correlating whenever 1
4 (

1
2 + q6)2 �= 1

2 pq9 which is the typical case.
The difference between Example 1 and 2 is that in Example 1 there is no minimal

double cone above S0 in the common past of A and B, whereas in Example 2 there is
such a minimal double cone, namely Vm(1, i + 1).2 This difference will have crucial
consequences concerning local causality to which we turn now.

First, we prove that the above local classical theory is locally causal. Actually, we
prove a little less: local causality for a specific choice of VA, VB and VC . (For a general
proof see [8].) Let VA = Vm(t, i) and VB = Vm(s, j) be two spatially separated
minimal double cones with i < j , and let VC be generated by the intersection of the
causal past of VA and aCauchy surface ”shielding off” VA from the common past of VA

and VB . AnyCauchy surfaceSv with �u� � v � t will be such a ”shielder-off”Cauchy

2 See also our remark in the last paragraph of Sect. 3.
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surface, where u is defined in (10). (For a ”shielder-off” Cauchy surface see Fig. 9.)
The region VC generated by this intersection will obviously satisfy Requirements
(i)–(iii) in Definition 2 of local causality.

Now, we prove local causality with respect to these regions.

Proposition 1 The stochastic local classical theory {N (V ), V ∈ Km} is locally
causal for any three regions VA, VB and VC specified above.

Proof Let A = it and B = js be two projections localized in VA and VB , respectively,
and correlating in the probability measure p. We are to show that for any atomic event

C =
(
i − t + v −

{
i + 1

2

})

v

. . .

(
i + t − v +

{
i + 1

2

})

v

of VC the following holds:

p(AB|C) = p(A|C)p(B|C) (34)

First, for the sake of convenience, shift the Cauchy surface S0 up to Sv and denote
the new time coordinates by a prime: t ′ := t − v and s′ := s − v. Similarly let q ′

n and
q ′
m denote the appropriate number of minimal double cones with respect to the shifted
Cauchy surface. With this notation the conditional probabilities are the following:

p(A|C) =
[
q ′
nδit ′ ,(i−t ′+{i})...(i+t ′−{i}) + (1 − q ′

n)δ−it ′ ,(i−t ′+{i})...(i+t ′−{i})
]

(35)

p(B|C) =
∑

(
j−s′−

{
j+ 1

2

})
,...,

(
j+s′+

{
j+ 1

2

})

[
q ′
mδ js′ ,( j−s′+{ j})...( j+s′−{ j})

+ (1 − q ′
m)δ− js′ ,( j−s′+{ j})...( j+s′−{ j})

]
p
C
(
j−s′−

{
j+ 1

2

})
...
(
j+s′+

{
j+ 1

2

}) (36)

p(AB|C) =
∑

(
j−s′−

{
j+ 1

2

})
,...,

(
j+s′+

{
j+ 1

2

})

[
q ′
nq

′
m δit ′ ,(i−t ′+{i})...(i+t ′−{i})δ js′ ,( j−s′+{ j})...( j+s′−{ j})

+ q ′
n(1 − q ′

m) δit ′ ,(i−t ′+{i})...(i+t ′−{i})δ− js′ ,( j−s′+{ j})...( j+s′−{ j})
+ (1 − q ′

n)q
′
m δ−it ′ ,(i−t ′+{i})...(i+t ′−{i})δ js′ ,( j−s′+{ j})...( j+s′−{ j})

+ (1 − q ′
n)(1 − q ′

m) δ−it ′ ,(i−t ′+{i})...(i+t ′−{i})δ− js′ ,( j−s′+{ j})...( j+s′−{ j})
]

× p
C
(
j−s′−

{
j+ 1

2

})
...
(
j+s′+

{
j+ 1

2

}) (37)

where p
C
(
j−s′−

{
j+ 1

2

})
...
(
j+s′+

{
j+ 1

2

}) is a short for

p(
i−t ′−

{
i+ 1

2

}
...
(
i+t ′+

{
i+ 1

2

})(
j−s′−

{
j+ 1

2

})
...
(
j+s′+

{
j+ 1

2

})

From (35)–(37) the screening-off (34) follows immediately. ��
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One can see from the proof that if VC is a segment of Cauchy surface satisfying
Requirements (i)–(iii) in Definition 2, that is a segment of Cauchy surface located at
or above the top of the common causal past of the correlating events A and B, then
from (19) the qr terms will drop out leaving no correlation between the conditional
probabilities. Note that VC need not necessarily be above the common past of A and B,
it can also intersect with the top of it (see again Fig. 5). All is needed is that there is no
region above VC in the common past. Such a region, namely, can contain stochastic
events which could establish a correlation between A and B. Mathematically this
means that from (19) the qr terms would not drop out and hence the correlation would
not be screened off by the atomic events of VC . Requirement (iii) in the definition of
local causality is just to exclude this case. The next proposition shows thatRequirement
(iii) also is a necessary condition in the localization of VC .

Proposition 2 The local classical theory {N (V ), V ∈ Km} would not be locally
causal if Requirement (iii) was dropped from Definition 2.

Proof Consider Example 2 of the previous Section that is let A = i+2 and B = (i+2)+2
and the prior probabilities those fixed in (28)–(30). Let C be the minimal projection

(i − 2)+
(
i − 3

2

)+
(i − 1)+

(
i − 1

2

)+
i+

(
i + 1

2

)+
(i + 1)+

(
i + 3

2

)+
(i + 2)+

localized in region VC . (See Fig. 12.) For the region VC Requirement (iii) does not hold
since there is a minimal double cone, Vm(1, i + 1) (the one with horizontal stripes)
above region VC in the common past of VA and VB .

A

C

B

V

V V

Fig. 12 A region VC for which Requirement (iii) does not hold.
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Using the identity

∑

(
i+ 5

2

)
,(i+3),

(
i+ 7

2

)
,(i+4)

(
i + 5

2

)
(i + 3)

(
i + 7

2

)
(i + 4) = 1 (38)

it is easy to see that C does not screen off the correlation between A and B since

p(A|C) = q6 (39)
p(B|C)

=
∑

(i+ 5
2 ),(i+3),(i+ 7

2 ),(i+4) p
(
B

∣
∣C(i+ 5

2 ), (i+3), (i + 7
2 ), (i+4)

)
pC(i+ 5

2 ),(i+3),(i+ 7
2 ),(i+4)

p(C)

= 1

3
(1 + q6) (40)

p(AB|C)

=
∑

(i+ 5
2 ),(i+3),(i+ 7

2 ),(i+4) p
(
AB

∣
∣C(i+ 5

2 ), (i + 3), (i+ 7
2 ), (i+4)

)
pC(i+ 5

2 ),(i+3),(i+ 7
2 ),(i+4)

p(C)

= 1

3
(1 + p)pq9 (41)

for any C of non-zero measure. But typically

1

3
q6(1 + q6) �= 1

3
(1 + p)pq9 (42)

since the left and right hand side are of different ordo in p. ��
Nextweprove that the above local classical theory is alsoMarkov. Again,we prove a

little less: local causality for a minimal double cone VA = Vm(t, i), another minimal
double cone VB = Vm(s, j) lying in the causal past of VA, and a third region VC
generated by the intersection of the causal past of VA and a Cauchy surface ”shielding
off” VA from VB . (See Fig. 13.) VC will obviously satisfy Requirements (i)–(iii’) in
Definition 3 of Markovity. ��
Proposition 3 The stochastic local classical theory {N (V ), V ∈ Km} is Markov for
any three regions VA, VB and VC specified above.

Proof Let A = it and B = js be two projections localized in VA and VB , respectively,
and correlating in the probability measure p. We are to show that for any atomic event

C =
(
i − t + v −

{
i + 1

2

})

v

. . .

(
i + t − v +

{
i + 1

2

})

v

of VC with s < v < t the following holds:

p(A|C) = p(A|CB) (43)
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A

C

B

V

V

V

Fig. 13 The regions VA , VB and VC for which Markovity holds

But it does, since both sides of (43) are simply

q ′
nδit ′ ,(i−t ′+{i})...(i+t ′−{i}) + (1 − q ′

n)δ−it ′ ,(i−t ′+{i})...(i+t ′−{i})

where again t ′ := t − v and q ′
n denotes the appropriate number of minimal double

cones with respect to the shifted Cauchy surface. ��

5 Local Causality, Causal Markov Condition and d-Separation

Now, I connect local causality and Markovity to the Causal Markov Condition used in
the theory of Bayesian networks (see [13] and Spirtes and co-workers [3]). Consider
a directed acyclic graph G and a set of random variables V on a classical probability
space (�, p) such that the elements X,Y . . . of V are represented by the vertices of
G and the arrows X → Y on the graph represent that X is causally relevant for Y . For
any X ∈ V let Par(X), the parents of X , be the set of vertices that have directed edges
in X ; let Anc(X), the ancestors of X , be the set of vertices fromwhich a directed paths
is leading to X ; and finally let Des(X), the descendants of X , be the set of vertices
that are endpoints of a directed paths from X . The set V is said to satisfy the Causal
Markov Condition Causal Markov Condition relative to the graph G if for any X ∈ V
and any Y /∈ Des(X) the following is true:

p(X |Par(X) ∧ Y ) = p(X |Par(X)) (44)

In other words, conditioning on its parents the random variable X will be proba-
bilistically independent from any of its non-descendant. Non-descendants of X can be
of two types: either ancestors or non-relatives (non-descendants and non-ancestors).
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Fig. 14 The causal graph G(V ) associated to V

As we will see, being independent of ancestors is related to the Markovity, whereas
being independent of non-relatives is related to local causality.

We say that the set V is faithful relative to the graph G if all probabilistic inde-
pendencies between the random variables of V are implied by the Causal Markov
Condition. This implication can neatly be depicted graphically by the so-called d-
separation criterion. Let P be a path in G. A variable C on P is a collider if there are
arrows to C from both its neighbors on P . Now, let X , Y and Z be three disjoint sets
of vertices in G.X and Y are said to be d-connected byZ in G iff there exists a pathP
between some vertex in X and some vertex in Y such that for every collider C on P ,
either C or a descendant of C is in Z , and no non-collider on P is in Z . X an d Y are
said to be d-separated by Z in G iff they are not d-connected by Z in G. Specifically,
the Causal Markov Condition entails that the variables X and Y are probabilistically
independent conditional upon the subset Z just in case Z d-separates X and Y in G.

Now, consider the stochastic local classical theory {N (V ), V ∈ Km} introduced in
the previous Section. A local von Neumann algebraN (V ) of the theory gives rise to a
graph G(V ) and a set of random variables V(V ) on a classical probability space (�, p)
in the following way. Consider a region V inKm with the set {Vm} of minimal double
cones contained in V . Let the minimal double cones be the vertices of a causal graph
and draw an arrow to every minimal double cone Vm(t, i) from the three minimal
double cones adjacent to it from below, that is from Vm(t − 1

2 , i − 1
2 ), V

m(t − 1, i)
and Vm(t − 1

2 , i + 1
2 ), if all contained in V . (See Fig. 14.) The set of vertices and

arrows will uniquely determine a causal graph G(V ) associated to V .
As for the set of random variables V(V ), to each minimal double cone Vm(t, i) in

V assign simply the two cylindrical subsets of CV (t,i), denoted by c
+
Vm (t,i) and c

−
Vm (t,i),
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or equivalently the projections i+t and i+t , respectively. Thus, the parents of a given
random variable will be the projections in the three past timelike related adjacent
minimal double cones, the descendants of a random variable will be the projections
in the future timelike related minimal double cones, etc. The pair

(G(V ),V(V )
)
will

form a Bayesian network.
The translation manual between the vocabulary of the theory of Bayesian networks

and that of the stochastic local classical theory {N (V ), V ∈ Km} is shown in the
following table:

Theory of Bayesian networks Stochastic local classical theory

Bayesian network
(G(V ),V(V )

)
Associated to every V ∈ Km

Causal graph G(V ) Local von Neumann algebraN (V )

with V ∈ Km

Vertices Minimal double cones in V
Arrows Pointing to future timelike related

adjacent minimal double cones
Random variables V(V ) Projections localized in the

minimal double cones contained in V
Parents Projections in past timelike related

adjacent minimal double cones
Ancestors Projections in past timelike related

minimal double cones
Descendants Projections in future timelike related

minimal double cones
Causal Markov condition Bell’s local causality plus Markovity

The last line of the table contains the central point of our discussion, namely:

1. The Causal Markov Condition is a consequence of Bell’s local causality and
Markovity when applied to the parents of a random variable.

2. Bell’s local causality/Markovity are consequences of the Causal Markov Condi-
tion, since the set of randomvariables localized in a region satisfyingRequirements
(i)–(iii)/(iii’) is d-separating.

We prove the first claim in the following proposition and illustrate the second in
the subsequent examples.

Proposition 4 Let {N (V ), V ∈ Km} be the stochastic local classical theory intro-
duced above satisfying local causality andMarkovity. Then for any pair

(G(V ),V(V )
)

associated to any V ∈ Km the Causal Markov Condition holds.

Proof First we prove Causal Markov Condition for non-relatives which follows from
the theory being locally causal. Let V ∈ Km and let Vm(t, i) and Vm(s, j) be two
minimal double cones in V such that i < j . Suppose that Vm(t, i) and Vm(s, j) are
spatially separated (non-relatives), that is | j − i | > |s − t |. Without loss of generality
we also can assume that t = 1

2 and s � t , as depicted in Fig. 15. We are to show
that the Causal Markov Condition (44) holds for X = i1 and Y = js in the Bayesian
network

(G(V ),V(V )
)
associated to V .
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1

s

i

j

Fig. 15 Causal Markov Condition follows from Bell’s local causality relative to the parents

First, observe the parents of the variable i1 are (i − 1
2 ), i and (i + 1

2 ). Thus, the
Causal Markov Condition (44) reads as follows:

p

(
i1

∣∣
∣∣

(
i − 1

2

)
i

(
i + 1

2

)
js

)
= p

(
i1

∣∣
∣∣

(
i − 1

2

)
i

(
i + 1

2

))
(45)

or equivalently

p

(
i1 js

∣∣∣∣

(
i− 1

2

)
i

(
i+ 1

2

))
= p

(
i1

∣∣∣∣

(
i − 1

2

)
i

(
i+ 1

2

))
p

(
js

∣∣∣∣

(
i− 1

2

)
i

(
i+ 1

2

))

(46)

Or in other words, the atomic events (i − 1
2 )i(i + 1

2 ) screen off the correlation between
i1 and js . But (46) does hold, since from (35)–(37) it follows that

p

(
i1

∣∣∣∣

(
i − 1

2

)
i

(
i + 1

2

))
=

[
pδi1,(i− 1

2 )i(i+ 1
2 ) + (1 − p)δ−i1,(i− 1

2 )i(i+ 1
2 )

]
(47)

p

(
js

∣∣∣
∣

(
i − 1

2

)
i

(
i + 1

2

))
=

∑

(i− 1
2 ),...,( j+s+{ j+ 1

2 })

[
qmδ js ,( j−s+{ j})...( j+s−{ j})

+ (1 − qm)δ− js ,( j−s+{ j})...( j+s−{ j})
]
p(i− 1

2 )i(i+ 1
2 )( j−s+{ j})...( j+s−{ j}) (48)

p

(
i1 js

∣∣
∣∣

(
i − 1

2

)
i

(
i + 1

2

))

=
[
pδi1,(i− 1

2 )i(i+ 1
2 ) + (1 − p)δ−i1,(i− 1

2 )i(i+ 1
2 )

]

×
∑

(i− 1
2 ),...,( j+s+{ j+ 1

2 })

[
qmδ js ,( j−s+{ j})...( j+s−{ j})

+ (1 − qm)δ− js ,( j−s+{ j})...( j+s−{ j})
]
p(i− 1

2 )i(i+ 1
2 )( j−s+{ j})...( j+s−{ j}) (49)
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1

s

i

j

Fig. 16 Causal Markov Condition follows from Markovity relative to the parents

Next we prove Causal Markov Condition for ancestors which follows from the
theory beingMarkov. Let again V ∈ Km and let Vm(t, i) and Vm(s, j) be twominimal
double cones in V such that Vm(s, j) is in the causal past (is an ancestor) of Vm(t, i),
that is | j − i | � |s − t |. Again, we can assume that t = 1

2 and s � t , as depicted in
Fig. 16. To prove (45) just observe that both sides equal to

pδi1,(i− 1
2 )i(i+ 1

2 ) + (1 − p)δ−i1,(i− 1
2 )i(i+ 1

2 )

This completes the proof. ��
Thus, the Causal Markov Condition is a special case of Bell’s local causality and

Markovity in the stochastic local classical theory {N (V ), V ∈ Km}, namely when VC
is a special spacetime region: the union of the three parental minimal double cones,
that is minimal double cones adjacent to a given minimal double cone from below.
We stress again that Causal Markov Condition is a composition of two screening-off
conditions: one for the ancestors and the other for the non-relatives. The first is the
consequence of Markovity, the second is the consequence of local causality.

Now, we go over to our inverse claim, namely that Bell’s local causality/Markovity
are consequences of the Causal Markov Condition, since the set of random variables
localized in a region VC satisfying Requirements (i)–(iii)/(iii’) is d-separating. Here
we do not prove this claim generally, but only illustrate the connection of Require-
ments (i)–(iii) in the definition of local causality to d-separation on our previous two
examples.

Example 1 Consider the smallest region V ∈ Km in our Example 1 (in Sect. 4)
containing the superluminally correlating events i+1 and j+1 with j = i + 2 ∈ N + 1

2
and a region VC satisfying Requirements (i)–(iii) in the definition of local causality.
(See Fig. 17.)

Now, consider the Bayesian network
(G(V ),V(V )

)
associated to this V . The causal

graph of the network is illustrated in Fig. 18. Let the variables be X = i1, Y = j1 and
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Fig. 17 The smallest region
containing the scenario of
Example 1

ji+1i
i+1/2

i−1 j+1
i−1/2 j−1/2 j+1/2

+ +
11
ji

i−1 i i+1

i j

j j+1

i−1/2 i+1/2 j−1/2 j+1/2

11

Fig. 18 A d-separating scenario

the subset Z be defined as:

Z :=
{
(i − 1),

(
i − 1

2

)
, i,

(
i + 1

2

)
, (i + 1)

}

In other words, Z contains the random variables associated to the minimal double
cones of VC .

Now, Z d-separates i1 and j1 in G(V ), since for every path P connecting i1 and
j1 in G(V ) there is a non-collider in Z , namely, (i + 1). Therefore, i1 and j1 are
probabilistically independent conditional upon any atomic event

(i − 1)±
(
i − 1

2

)±
i±

(
i + 1

2

)±
(i + 1)±

This fact is the Bayesian network analogon of the situation illustrated in Fig. 10
where VC is such that there is no minimal double cone above VC in the intersection
of the causal past of the correlating events. As said before, this is due to the fact that
VC satisfies Requirement (iii) in the definition of local causality. If Requirement (iii)
does not fulfil, region VC turns into d-connecting, as is shown in the next example.

Example 2 Consider the smallest region V ∈ Km in our Example 2 containing the
superluminally correlating events i+2 and j+2 with j = i + 2 ∈ N+ 1

2 and a region VC
still in the causal past of i+2 but not satisfying Requirement (iii). (See Fig. 19.)

Let the variables be X = i2, Y = j2 and let

Z :=
{(

i − 3

2

)
, (i − 1),

(
i − 1

2

)
, i,

(
i + 1

2

)
, (i + 1),

(
i + 3

2

)
=

(
j − 1

2

)}
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Fig. 19 The smallest region
containing the scenario of
Example 2

i−1/2 i+1/2 j−1/2i−3/2 j+3/2
ji−1 i+1
j+1/2

+ +

2+j2−i j+1i

i j2 2

ji 22

ii−1 i+1 j j+1 j+2

i−3/2

i−2

i+1/2i−1/2 j−1/2 j+1/2 j+3/2

Fig. 20 A d-connecting scenario

again a subset containing the random variables associated to the minimal double cones
within VC .

Now, Z does not d-separate i2 and j2 in G, since the path

P :=
{
i2,

(
i + 1

2

)

1
, (i + 1)1,

(
j − 1

2

)

1
, j2

}

(denoted by a broken line in Fig. 20) connecting i2 and j2 in G(V ) contains only non-
colliders which are outside Z . Therefore, the probabilistic independence of i1 and j1
conditional upon the atomic events

(i − 3

2
)±(i − 1)±

(
i − 1

2

)±
i±

(
i + 1

2

)±
(i + 1)±

(
i + 3

2

)±

is not ensured by the Causal Markov Condition (and if the graph is faithful, it is even
excluded). This fact is the Bayesian network analogon of the situation illustrated in
Fig. 11 where VC does not satisfy Requirement (iii) in the definition of local causality.

The causal graph G of the network is illustrated in Fig. 20.
These examples point in the same direction: the Causal Markov Condition and

the d-separation together ensure that Bell’s local causality will hold for the atomic
projections localized in a region satisfying Requirements (i)–(iii). Moreover, they also
show that Requirements (iii) is a necessary condition.
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6 Conclusions

In the paper I was arguing, based on a simple stochastic local classical model, that
Bell’s local causality, read in an appropriate way, is a Causal Markov Condition. I
have not though provided a general proof. This would amount to solve the following

Open problem Let {N (V ), V ∈ K} be a discrete local physical theory, discrete
in the sense that every V ∈ K contains only a finite number of elements of K and
the local von Neumann algebras N (V ) are finite. Construct the Bayesian network(G(V ),V(V )

)
associated to a region V inK. Prove (or falsify) that {N (V ), V ∈ K} is

Markov and locally causal in Bell’s sense iff
(G(V ),V(V )

)
fulfils the Causal Markov

Condition for every V ∈ K.
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