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Abstract It is widely hoped that quantum gravity will shed light on the question of the
origin of time in physics. The currently dominant approaches to a candidate quantum
theory of gravity have naturally evolved from general relativity, on the one hand,
and from particle physics, on the other hand. A third important branch of twentieth
century ‘fundamental’ physics, condensed-matter physics, also offers an interesting
perspective on quantum gravity, and thereby on the problem of time. The bottomline
might sound disappointing: to understand the origin of time, much more experimental
input is needed than what is available today. Moreover it is far from obvious that we
will ever find out the true origin of physical time, even if we become able to directly
probe physics at the Planck scale. But we might learn some interesting lessons about
time and the structure of our universe in the process. A first lesson is that there are
probably several characteristic scales associated with “quantum gravity” effects, rather
than the single Planck scale usually considered. These can differ by several orders
of magnitude, and thereby conspire to hide certain effects expected from quantum
gravity, rendering them undetectable even with Planck-scale experiments. A more
tentative conclusion is that the hierarchy between general relativity, special relativity
and Newtonian physics, usually taken for granted, might have to be interpreted with
caution.
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1 Introduction

The pursuit of a quantum theory of gravity is often presented as a quest for the unifica-
tion of quantum mechanics and general relativity. The approaches to quantum gravity
that are currently most popular, string theory and canonical (loop or spin foam) quan-
tum gravity, reflect those two starting points: string theory is a natural extension of par-
ticle physics, with its roots in quantum mechanics and quantum field theory, whereas
canonical quantum gravity is an attempt to formulate a quantum theory of gravity
which is diffeomorphism invariant by construction. When looking back at the revolu-
tion brought about by quantum mechanics, however, particle physics represents only
part of the package: it has also been crucial for the development of condensed-matter
physics.

An increasingly popular approach to quantum gravity rests on ideas related to
low-temperature condensed-matter physics. The basic idea is that gravity (and maybe
electromagnetism and the other gauge fields) might be an “emergent phenomenon”,
in the sense of representing a collective macroscopic behaviour resulting from a
very different microscopic physics, leading to an effective low-energy description
somehow similar to the emergence of collective excitations in condensed matter sys-
tems. A basic observation in this respect is the following. The fundamental “quantum
gravity” theory is generally assumed to have the Planck level as its characteristic
scale. Expressed as a temperature: TPl ∼ 1032 K. On the other hand, most of the
observable universe has temperatures of the order of the cosmic background radi-
ation: TCMB ∼ 2.7 K. Even the interior of a star such as the sun is more than 20
orders of magnitude colder than the Planck temperature, while the LHC operated at
roughly 16 orders of magnitude below the Planck scale to detect the Higgs boson.
So the degrees of freedom of the quantum vacuum of our universe are effectively
frozen out, just like in low-temperature condensed matter systems in a laboratory.
The physics that we observe might then well be due to the collective excitations
that result from the—comparatively tiny—thermal (or other) perturbations of this
vacuum.

Another observation with respect to emergent spacetimes is the following. Even
in relatively simple, weakly interacting condensed matter systems, such as Bose–
Einstein condensates in atomic gases, the kinematics of the low-energy excitations
or phonons can be described by a relativistic field theory, in which the curved back-
ground spacetime is provided by the collective behaviour of the condensed part of
the constituent atoms. In more complicated fermionic systems, in particular 3He-A,
gravitational and gauge fields emerge as the low-energy bosonic degrees of freedom
together with fermionic quasi-matter in a similar way. All these emergent components
share surprisingly many characteristics with their counterparts in Einstein gravity and
the standard model of particles.

In what follows, I will try to summarize some of the basic ideas behind this con-
densed matter approach to gravity, based mainly on the work of G. Volovik (the seminal
reference is the book [1]), and discuss some of the possible lessons that it offers us
with respect to the origin of time in our physical universe.
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2 Condensed Matter and Emergent Spacetimes

An intriguing theorem of mathematical physics [2,3] shows that the equation of motion
of acoustic perturbations in a perfect (irrotational, inviscid and barotropic) fluid can
be written as a d’Alembertian equation in curved spacetime:

�φ ≡ 1√−g
∂μ

√−ggμν∂νφ = 0 . (1)

This is essentially the curved-spacetime version of the usual wave equation in flat
Minkowski spacetime:

(
−∂2

t + c2∂2
x + c2∂2

y + c2∂2
z

)
φ = 0 . (2)

So these acoustic perturbations or phonons in perfect fluids travel along the null geo-
desics of the effective metric gμν , with g its determinant. In other words, they behave
as if they were moving in a relativistic spacetime, whose metric gμν is determined
by the bulk of the fluid, i.e., by the collective behaviour of its constituent atoms. In
particular, their experience of time is relativistic in exactly the same sense as the one
we know from special and general relativity, including all the observer-dependence
of simultaneity and associated paradoxes. This is the more curious because the back-
ground system in which this relativistic spacetime emerges can simply be described in
Newtonian terms: it consists of a fluid in a laboratory, where all velocities are extremely
low and thus relativistic corrections irrelevant, and where there is therefore clearly a
preferred time, (imperfectly) indicated by the clocks on the wall of the laboratory.

An interesting sidenote is that, while the effective or acoustic metric

gμν = ρ

c

(
v2 − c2 −vT

−v 1

)
(3)

with v the velocity vector of the background fluid and c its speed of sound (which
is related to the fluid density ρ), does not reproduce all possible general relativistic
metrics, it does provide the possibility to simulate black holes. Indeed, if one has a
normal or subsonic region where v < c, and a supersonic region where v > c, then
the border where v = c (and hence the gtt component of the metric changes sign)
defines an acoustic horizon in exactly the same sense as event horizons are defined in
general relativistic black holes.

Building on these observations, the idea developed to study certain aspects of gen-
eral relativity and quantum field theory by analogy with such perfect fluid systems [4].
To take maximal advantage of the analogy, the microscopic physics of the fluid system
should be well understood, theoretically and experimentally, even in regimes where the
relativistic description breaks down. Then, full calculations based on firmly verified
and controlled physics are (at least in principle) possible, even beyond the relativistic
regime. Additionally, laboratory experiments become feasible that could shed light
on issues of high-energy physics. The paradigmatic example is that of Bose–Einstein
condensates (BECs). BECs fulfill all the listed conditions, acoustic black holes have
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been realized in BECs [5], and (phononic) Hawking radiation was indeed recently
detected in a BEC black hole analogue [6].

The simple model considered up to now is certainly not a full-fledged model for
quantum gravity. A first reason is the fact mentioned earlier that the metric (1) does not
reproduce all possible general relativistic metrics. However, this shortcoming could
partly be argued away since it is far from obvious that all mathematical solutions of
general relativity represent physically realistic spacetimes. A second and more impor-
tant problem regards the dynamics of the system. If one wants to extend the analogy
with general relativity beyond the kinematical aspects of quantum field theory in a
curved spacetime, there would have to be some way of emulating the Einstein field
equations. However, in a real perfect fluid such as a BEC, the inherent hydrodynamics
of the system dominates and completely obfuscates any possible Einsteinian gravita-
tional dynamics based, e.g., on Sakharov’s idea of induced gravity [7]. This problem
is crucial for the general idea of obtaining a satisfactory model of emergent gravity. It
is also directly related to the question of time, and so I will treat it separately in Sect. 5
below. The bottom line is that, although interesting progress is being made on the
problem of studying the “analogue gravitational dynamics” of condensed-matter-like
systems (see e.g. [8,9], the models studied so far are clearly not sufficiently com-
plex to reproduce the Einstein dynamics of general relativity. However, even if at the
moment not reproducing the Einstein equations, the idea that gravity might emerge
from an underlying microscopic “condensed-matter-like” quantum system has at least
two additional trumps to play.

First, in more complicated fermionic systems with a Fermi-point (or Weyl) topol-
ogy,1 and in particular 3He-A [1], fermionic quasi-matter emerges at low energy
together with effective bosonic gauge and gravitational fields from the quantum vac-
uum. The construction here is slightly more involved than in the simple case of BECs,
but its essence can be understood as follows. The Fermi point is the point in momen-
tum space where the quasi-particle energy is zero. Spatial and temporal perturbations
do not destroy the Fermi point, because of its topological stability. They only lead to
a general deformation of the energy spectrum near the Fermi point, determined by

gμν(pμ − p(0)
μ )(pν − p(0)

ν ) = 0 , (4)

where gμν = ηλσ eμ
σ eν

σ , with eμ
ν the tetrad or vierbein field, and ηλσ the Minkowski

metric. So the dynamical change of slope in the energy spectrum near the Fermi point
simulates an effective gravitational field gμν expressed in terms of the tetrad field eμ

ν .
Note that the effective gravitational field arises as a consequence of a perturbation
of the quantum vacuum, and that this leads to a Lorentzian metric gμν , again: even
if the underlying system is not Lorentz invariant, and can actually be thought of
as Newtonian. The quasi-particles move along the geodesics of the effective metric
gμν . Moreover, the quasi-particles and gauge fields that emerge from such systems
with Fermi-point topology show striking similarities with the ones known from the
standard model of particles, including chiral or Weyl fermions and effective quantum

1 Weyl topologies include Fermi points in 3+1 dimensions, and Dirac points in 2+1 dimensions.
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electrodynamics: an effective electromagnetic field emerges which reflects changes
in the position of the Fermi point as a consequence of a perturbation of the quantum
vacuum, in a similar way to how the gravitational field accounts for a change in the
slope of the energy spectrum near the Fermi point [1] (see also [10]). Thus Volovik has
suggested that the condensed-matter analogy might not be limited to the gravitational
sector, but that by carefully studying the topological properties of quantum vacua, this
might also provide a hint for a “theory of everything” that gives a unified description
of gravity and matter, both emerging in the same process.

Second, apart from the issue of unifying quantum mechanics and the general theory
of relativity, there is arguably at least one empirical motivation for a quantum theory
of gravity: the accelerated expansion of the universe, which seems to imply some
form of repulsive “dark energy” [11]. The first intuition from quantum field theory
to explain this mysterious repulsive force was that dark energy is simply the energy
of the quantum vacuum, which makes its entry in the Einstein field equations in
the guise of the cosmological constant [12]. Infamously, the experimentally obtained
value of the cosmological constant turned out to disagree with theoretical estimates
of the quantum vacuum energy by more than a hundred orders of magnitude, and so
this discrepancy seems to constitute an unsurmountable barrier for such an approach.
However, if one takes the condensed matter analogy seriously, then this intuition might
prove to be right after all [13]. Indeed, the value of the quantum vacuum energy in a
condensed matter system in equilibrium is regulated by macroscopic thermodynamic
principles. The vacuum energy density εvac = Evac/V of a quantum many-body
system relevant for the cosmological constant problem is obtained from the expectation
value Evac =< H − μN >vac, with H the many-body Hamiltonian, μ the chemical
potential and N the number operator. The equation of state relating the energy density
and the pressure of the vacuum of any quantum many-body system is then simply
εvac = −pvac, regardless of whether the vacuum is Lorentz invariant or not. Although
Volovik’s argument should be well-known by now, it is probably worth summarizing it.

For a Lorentz invariant vacuum, ρvac = −Pvac is the only possible equation of
state as a perfect fluid, and so one can immediately see from the thermodynamic
Gibbs–Duhem relation

P = −ε + T s +
∑

i

μi qi , qi = Qi

V
(5)

(with s the specific entropy and the temperature T = 0 in the vacuum) that the relevant
thermodynamic quantity, which plays the role of the vacuum energy is the analog of
grand-canonical energy ρvac = ε(qi ) − ∑

i qi dε/dqi . Any conserved quantity Qi ,
which characterizes the quantum vacuum, should be explicitly taken into account
together with its corresponding Lagrange multiplier μi . And indeed it is demonstrated
that the quantity which enters the cosmological term in Einstein equations is the density
of the grand-canonical energy, ρvac, rather than the energy density ε.

By reversing the above argument, one sees that the vacuum equation of state ρvac =
−Pvac is more generally valid [13,14]. The energy of the vacuum of quantum fields
emerging in a many body condensed matter system is the grand canonical energy
ρvac = ε(n) − ndε/dn, where the particle density N = nV is a conserved quantity
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and the corresponding Lagrange multiplier is the chemical potential μ = dε/dn.
The use of the grand canonical energy here corresponds to the fact that the many-body
Hamiltonian in second quantization is ĤQFT = Ĥ −μN̂ , where Ĥ is obtained from the
Schrödinger many-body Hamiltonian and N̂ is the number operator. The cosmological
equation of state w = P/ρ for the vacuum energy is then again w = −1 due to the
Gibbs–Duhem relation, regardless of the Lorentz invariance or not of the vacuum.

Liquid-like systems can be in a self-sustained equilibrium without external pressure
at T = 0. So the natural value for εvac at T = 0 in such a system in equilibrium is
εvac = 0. At T �= 0, the thermal fluctuations, or quasi-particle excitations, lead to
a matter pressure pM , which is compensated by a non-zero vacuum pressure such
that pvac + pM = 0. The vacuum energy therefore naturally evolves towards the
value εvac = pM in equilibrium [15]. The microscopic constituents of the system
automatically adjust to obey the macroscopic thermodynamic rule, and there is no
need to know the precise microscopic constitution of the system to calculate these
macroscopic equilibrium quantities. The evolution towards this equilibrium, however,
does depend on the microscopic constitution of the system. Still, a lot can be learned
about the cosmological constant at a classical macroscopic level just by making some
basic thermodynamic assumptions about the vacuum (e.g., by assuming that some
generalized thermodynamic quantity must exist which is conserved because of the
observed Lorentz invariance of the quantum vacuum, see [16,17]).

The cosmological constant mystery then becomes a lot less unsurmountable: From
having to explain why the cosmological constant is more than a hundred orders of
magnitude smaller than its theoretically expected value, it is reduced to having to
explain why it is slightly bigger than the equilibrium value which would exactly
cancel the matter contribution: ΩΛ ≈ 0.7 versus ΩM ≈ 0.3. So, the condensed
matter approach offers at least a qualitative framework to understand the problem of
dark energy.

Before explaining what this has to do with time, a few more remarks with respect
to emergent spacetimes and their Lorentzian character might be useful.

3 Emergent Spacetimes and Lorentz Invariance

From a relativistic point of view, the essence of physical time lies, first, (at the level of
special relativity) in the fact that we live in a Lorentzian spacetime, i.e., a spacetime
with a metric of signature (− + ++). Second, general relativity adds to this the
gravitational red- and blueshifts due to inhomogeneities in the gravitational field.
These are caused by the matter/energy distribution, and become particularly acute
near regions of dense distribution, e.g. near a black hole.

We have seen in the previous section that the Lorentzian character of a spacetime
can arise even when the underlying structure in itself is not Lorentzian, but can even
be Newtonian, with an absolute time defined by the “laboratory” setting in which
the atoms composing the microscopic condensed matter system live.2 There are also

2 Mathematically, one could still define Lorentz transformations for such a system. However, the rela-
tivistic “corrections” compared to the Newtonian physics obtained from Galilean transformations would
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other possibilities. Mathematically speaking, it is perhaps not so difficult to obtain an
effective low-energy Lorentzian structure from a global “timeless” one. The following
example illustrates this [19].

A wave equation of the type

(
−∂2

t + c2∂2
x + c2∂2

y + c2∂2
z

)
φ = 0, (6)

(or (1) in the more general case of a curved spacetime) is a hyperbolic partial differential
equation. Changing the sign of the first term would lead to

(
∂2

t + c2∂2
x + c2∂2

y + c2∂2
z

)
φ = 0, (7)

an elliptic partial differential equation. It is also often encountered in physics, for
example in the Poisson equations of electrostatics, but has a totally different behaviour
from the previous type. The mere change of sign of the first term implies that the
temporal character of the coordinate t is completely lost: in (7), t behaves exactly in
the same way as x , y and z. So if the latter are spatial coordinates, then so is t (modulo c
which is now merely a conversion factor between the unit of t and the unit of the other
coordinates, but cannot be interpreted as a velocity in any way). The same would be
true if replacing the second-order partial derivatives ∂2

t , ∂2
x , . . . by fourth-order ones:

∂4
t , ∂4

x . . ..
Now let us write down the following equation:

a
(
∂4

t + c4∂4
x + c4∂4

y + c4∂4
z

)
φ +

(
−∂2

t + c2∂2
x + c2∂2

y + c2∂2
z

)
φ = 0 , (8)

where we assume that the (dimensionful) prefactor a is given by

a = (T/TPlanck)τ
2
ch (9)

with τch some characteristic t-scale. As such, Eq. (8) is of the elliptic type just
described, and so t is a coordinate that behaves exactly as x , y and z do, and c is just
a dimensional constant without any possible interpretation of velocity.3 However, at
low temperatures, when T becomes much lower than the Planck temperature TPlanck,
the prefactor a becomes small, and the second part in (8) can become dominant.4 You

Footnote 2 continued
be irrelevant in practice. One may think, e.g., of a phase transition in a background system where all the
velocities involved are necessarily much smaller than the relativistic speed characteristic of the background
spacetime. This in fact is what happens in most laboratory systems which display effective acoustic gravity,
and where csound � clight . For all practical purposes, the background system may therefore be described as
Newtonian, even though the “internal” physics in the effective gravity is naturally Lorentzian and governed
by csound. Note that it is not required for the emergence of an effective acoustic gravity that the background
system be Newtonian. Analogue gravity also emerges, e.g., in relativistic Bose–Einstein condensates [18].
3 In fact, at this point, τch can best be interpreted as a length scale, i.e. τch = ξch/c with ξch some
characteristic length scale of the system and c a dimensional conversion factor.
4 The fourth-order derivatives of the first part of Eq. (8) imply that the global behaviour will in general be
determined by it, and not by the second part. The conditions for the second part to become dominant in the
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then obtain a Lorentzian structure, and so it is perfectly legitimate to interpret t as a
time coordinate and c as a velocity.

This was of course just a crude mathematical model. However, one often encounters
claims that quantum gravity is or should be timeless, and that “time” is just a property
that arises in the low-energy limit. This claim is in fact usually made in a sense
quite different from the example just given.5 Nevertheless, the above illustrates that
obtaining a universe with a (relativistic) time conception (or more precisely: a metric
with Lorentzian signature) from a timeless “absolute” law is perhaps not as hard as
one might expect at first sight, at least in a mathematical sense. Also, since in the
last example we could have replaced the first part of the equation by basically any
equation preceded by a and still obtain the same low-energy limit, it also illustrates
that a variety of microscopic theories could lead to a low-energy effective Lorentzian
spacetime in the adequate limit. The really hard part of quantum gravity, if the emergent
point of view of condensed matter is relevant, is precisely that there does not exist
any quantisation procedure, not even in principle, leading from the “quasi-particle”
excitations that we experience in our low-energy physics (and the associated gauge
fields) to the microscopic “atoms” of the quantum vacuum.

From the previous example, one might wonder how the transition between the low-
energy Lorentzian effective spacetime and the very different high-energy or micro-
scopic physics takes place. Does the relativistic spacetime suddenly disappear or is
there a smooth transition? Condensed matter models again provide us with some useful
clues.

4 Condensed Matter Models and Lorentz Invariance

In the past few years, intense experimental attention has been paid to the possibility
that Lorentz invariance might be an effective low-energy phenomenon, broken at high
energies [24]. At the moment, no indication has been found that this should be the case,
and actually there exist very stringent bounds on possible Lorentz violations at the
Planck scale [25]. So maybe quantum gravity should include Lorentz invariance from
first principles? In string theory and canonical quantum gravity, it is not really clear
whether Lorentz violations are to be expected at high energies or not. In scenarios of

Footnote 4 continued
limit when a → 0 are actually mathematically quite subtle, but this is just meant as a simple pedagogical
example to illustrate the point of obtaining a hyperbolic structure from an underlying non-hyperbolic one.
More involved examples, including a discussion of the mathematical conditions for the obtention of a
low-energy hyperbolic structure, can be found in [19].
5 General Relativity can be formulated as a gauge theory, and should therefore be invariant under the
transformations of the relevant gauge group, namely the diffeomorphism group. For our discussion, the
relevant issue is that physical states which differ only by a time reparametrization should be physically
equivalent. One can take this as a fundamental point when attempting to quantize GR, which leads to
the idea that time should be absent altogether in a fundamental (“quantum”) description of gravity. The
problem then is how to recover time at the classical, “effective” level, and in particular how the evolution
of the universe comes about. See e.g. [20,21] for broad reviews on the problem of time in quantum gravity,
including a dicussion of timeless models, and [22,23] for introductions to two of the more popular approaches
to timeless (quantum) gravity.
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emergent gravity based on condensed matter analogies, the situation is much clearer:
Lorentz invariance is a low-energy effective symmetry, and so it is expected to break
at some scale, although not necessarily related to (and therefore possibly much higher
than) the Planck scale [26]. The way in which the low-energy relativistic spacetime
gradually makes place for the microstructure can be understood as follows.

Phenomenologically speaking, Lorentz breaking can be described simply by the fol-
lowing power law for the dispersion relation between the energy E and the momentum
p (we consider massless particles and write c for the invariant speed of the theory, be
it a speed of light or a speed of sound):

E2 = c2 p2 + αc2 p4/p2
LV (+higher-order terms) (10)

where the subscript LV indicates the Lorentz violation scale, and α = ±1 (we assume
that uneven powers of p are ruled out to lowest order, since they would lead to parity
violation, i.e., a breaking of the symmetry under spatial reflection, at a much more
fundamental level than the weak violations observed up to now).

4.1 Bose–Einstein Condensates

The Bogoliubov dispersion relation for Bose–Einstein condensates, in terms of the
frequency ω and the wave number k, is

ω2 = c2k2 + 1

4
c2ξ2k4, (11)

where ξ ≡ h̄/mc is the healing length of the condensate (roughly speaking, the
distance needed for the condensate to smoothen out a sharp inhomogeneity in the
atomic density). It is not obvious how to connect the Lorentz violation scale kLV =
2/ξ , or alternatively ELV = h̄c/kLV = 2mc2, with the “Planck scale” of the theory.
A naive reasoning could be the following. The Planck scale is the scale at which
deviations from the classical picture become important. Then one might be tempted
to identify the Lorentz violation scale with the Planck scale kP , and so the stringent
experimental bounds on Lorentz violation at the Planck scale would seemingly rule
out an approach based on a BEC analogy.

However, one should take care with this interpretation for two reasons. First, the
BEC model is a model for the gravitational sector of the quantum vacuum only, and
(as we already pointed out earlier) probably in the first place a toy model, so we cannot
expect it to reproduce all features of the real quantum vacuum. In particular, the bosonic
degrees of freedom included in the BEC model might be formed by effective coupling
between fermionic degrees of freedom (through the formation of Cooper pairs, for
example), or they might co-exist with other (fermionic) degrees of freedom. In both
cases, information about the fermionic sector might be necessary to define and establish
the hierarchy of the precise characteristic scales involved in the system. Second, even
considering only the simple BEC model, already various characteristic scales can be
constructed from the fundamental parameters of the microscopic theory: the Planck
constant h̄, the mass m of the condensate atoms, their density ρ (or the interatomic

123



288 Found Phys (2015) 45:279–294

distance a0 ∼ ρ−1/3), and the interaction potential U (for weakly interacting systems
such as BECs in dilute gases, one has U (r) ≈ Uδ(r), with U ∝ as , the s-wave
scattering length; note that as � a0 due to the weakness of the interaction). One
can for example construct a second characteristic energy scale Ech2 = h̄c/a0, with
c = √

Uρ/m. Ech2 can be interpreted as the energy scale at which the granularity of
the vacuum becomes significant. In Bose gases, in general, mca0/h̄ � 1, and hence
ELV � Ech2, indicating that Lorentz violations are expected at much lower energies
than the energy at which the discreteness of the vacuum becomes apparent.

The main lesson to be drawn from this example is simply that naive dimensional esti-
mates indicating that quantum gravity effects should be expected around “the Planck
scale” EP = √

h̄c5/G, with G the gravitational constant, are indeed naive. Different
types of quantum gravity phenomenology might be characterised by different, mutu-
ally independent energy scales, which are not necessarily accessible to an internal
observer who is limited to the effective low-energy physics.

4.2 Fermionic Vacua

In a condensed-matter scenario where the fundamental degrees of freedom of the
microscopic theory are fermionic, such as the Fermi-point scenario, the gravitational
and gauge bosons are composite or collective excitations based on these fundamental
fermions. In such a scenario, the “Planck scale” could be understood as the energy
scale above which the bosonic content of the low-energy theory starts to dissolve into
its fundamental fermionic components [1], and—as stressed above—this EPl can be
quite different from the Lorentz-violation scale ELV . When calculating the effective
action for the bosonic fields, the result will depend on the hierarchy between ELV and
EPl . In particular, when ELV � EPl (as is the case in 3He-A, and also in BECs when
Ech2 is interpreted as the Planck scale), then fermions with energies above the Lorentz
violation scale contaminate this effective action with non-covariant (“hydrodynamic”)
terms, and the result will be an action which strongly violates diffeomorphism invari-
ance (see [27] for the explicit case of 3He-A, [28] for general considerations on
the mechanism and the role of the different scales involved, and [29] for the dif-
ference between diffeomorphism at the kinematical level—which is obeyed—and
diffeomorphism invariance at the dynamical level—where the challenge lies). There-
fore, to obtain Einstein gravity, the ultraviolet cut-off scale for the fermions must
be (much) lower than the Lorentz violation scale. So a good condensed-matter-like
model for emergent gravity would require a system in which these characteristic scales
are reversed with respect to the case of 3He-A (and BECs): EPl � ELV , in agree-
ment with astrophysical and cosmological observations on (the absence of) Lorentz
violations.

In fact, the previous exercise of assuming that the gauge bosons are collective excita-
tions from fundamental fermions can be done explicitly with respect to the interactions
of the standard model [26], leading to the possibility of obtaining “GUT”-like uni-
fication (in the sense of an approximate merging of the running coupling constants)
without the need to impose additional symmetries. Comparison of the parameters of
the model with the experimental knowledge of these coupling constants also allows
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to estimate the relation between the bosonisation scale for these interactions and the
Lorentz violation scale ELV in such a model.6 Assuming that our gravitational boson-
isation scale corresponds to the usual estimate for the Planck scale (∼1019 GeV), a
conservative estimate gives EPl/ELV � 10−8 (the exact proportion seems to depend
on the number of fermion families NF —for NF = 3, EPl/ELV ∼ 10−25 is obtained),
again in qualitative agreement with current boundaries on Lorentz violations.

In any case, the additional lesson with respect to the case of BECs might well
be that, in a sufficiently complex system, the various characteristic scales could in a
certain sense “conspire” to protect the effective low-energy symmetries such as Lorentz
invariance, and hide the microscopic physics from a low-energy observer. Indeed, if
the compositeness scale of the bosons provides a cut-off for low-energy beings such as
ourselves, while the Lorentz violation scale lies at much higher energies, then the latter
is suppressed from observation by at least the huge factor ELV /EPl . This would then
mean that relativistic spacetimes subsist well above the Planck scale, even though the
“quantum gravity” theory itself (i.e., the theory describing the microscopic constituents
of the spacetime condensate) does not obey Lorentz invariance. What would physics
between the Planck and the Lorentz violation scale look like, then? An intriguing
possibility is that the effective spacetime itself would survive unaltered, but that gravity
would be modified at energies EPl < E < ELV and might even vanish completely
before ELV is reached. One would then be left with a relativistic spacetime in the pure
sense of special relativity [30]: a non-gravitating, but still well-defined Lorentzian
spacetime, where the invariant speed c, which at low energy was the signalling velocity
of the (massless) bosons, is now the limiting velocity of the fermions. One might think
that this would violate all we know about relativistic spacetimes in strong gravitational
fields such as black holes. However, a careful analysis shows that this would only
modify the physics inside the black hole but is otherwise in perfect agreement with all
the observed physics, and could in fact even open up new scenarios for solving some
of the paradoxes associated with black-hole physics, see [28].

Curiously, the lesson from condensed matter seems to show that the order of fun-
damentality of our best theories of spacetime might have to be revised, or at the very
least should be taken with caution. It is usually held that Newtonian space and time is
just a low-velocity/low-energy limiting case of the more fundamental flat Minkowski
spacetime, which in its turn is a low-energy limiting case of the more fundamental
general relativistic curved spacetimes. The scenario just mentioned would imply that
general relativistic curved spacetimes would, at energies above the Planck scale, give
way to a flat Minkowski spacetime. At even higher energies, above the Lorentz vio-
lation scale, the real fundamental theory of the microconstituent atoms of spacetime
might either be timeless, in the sense described in the previous section, but it could
also be simply Newtonian, with an absolute time defined by a clock on the wall of
“God’s laboratory”, as in a real condensed matter system in a real world laboratory.

6 The bosonisation scale for the standard model interactions considered in [26] need not coincide with the
gravitational bosonisation scale. In fact, [26] finds ∼1013 −1015 GeV for the former, i.e. 10−6 −10−4 EPl .
Note that, in a laboratory condensed matter system such as 3He-A, different types of collective bosons also
need not necessarily appear at the same temperature, external magnetic field etc.
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5 Challenges for Emergent Gravity

It is only fair to say that every current approach to quantum or emergent gravity has
its pros and cons, and its important open questions. In the case of condensed-matter-
inspired emergent gravity, the first key challenge lies in obtaining the desired dynamical
equations. If one considers that gravity (and perhaps also the other fundamental gauge
interactions) emerges through a kind of condensation process from a fundamental
fermionic system, then—as mentioned in the previous section—one can in principle
calculate the effective action for the boson fields à la Sakharov [7] (or à la Zel’dovich
for electromagnetism [31]—see also [10]). The central idea in Sakharov’s induced
gravity is that the quantum fluctuations of a classical curved Lorentzian spacetime
automatically lead to an action containing terms that correspond to the cosmological
constant and to the Einstein–Hilbert action, and hence to the Einstein equations, plus
higher-order corrections. However, an essential assumption is that the spacetime has no
prior dynamics [32]. In the condensed matter analogies, on the contrary, the vacuum is
governed by prior dynamics, e.g. the Euler and continuity equation of hydrodynamics.
These cannot just be ignored since they are precisely crucial for the emergence of the
effective metric. This is one of the reasons why implementing Sakharov’s idea is far
from trivial in such a setting.

Another way to see this is the following. Because of the argument discussed in
Sect. 4.2, when ELV � EPl , the Sakharov-style effective action will contain strongly
non-diffeomorphism-invariant terms. However, in all known laboratory condensed
matter systems, the emergence of Lorentz invariance is precisely a phenomenon which
occurs in the low-energy limit within the (already) condensed phase. If the cut-off
scale EPl corresponds to the condensation scale, then it seems impossible to obtain
ELV 
 EPl through a laboratory-style condensation mechanism. To solve this prob-
lem, perhaps one should look for a background system that is already Lorentz invariant
from the start [33]. But this is clearly not in line with the spirit of emergence that has
been presented here. Alternatively, one could look for a different topological mech-
anism, e.g. related to Fermi-point splitting and merging [34]. Or perhaps one should
imagine a multi-step condensation process, in which (from high to low energy) the
first condensation produces the effective Lorentz symmetry (but, at the dynamical
level, retains a memory of the background), while the resulting collective excitations
again condense to produce a diffeomorphism invariant action. If the energy separation
between both processes is sufficiently large, or some screening mechanism arises inbe-
tween, then perhaps this could lead to a decoupling of the final effective theory from
the original background such that the diffeomorphism-breaking terms would vanish,
or at least be small enough as to be in agreement with observations.

But this is so far an open challenge, and in any case would not be the end of the story.
Gravity being a long-range force, the corresponding gauge boson—i.e., the graviton—
should in principle be massless. Moreover, we know from the equivalence principle that
gravity couples not just to rest mass, but to energy (i.e., to the stress-energy tensor), and
this is one of the most well-tested principles in physics. This implies that gravity should
be mediated by a spin-2 field (see e.g. the introduction to [35]), which (as just stated)
should also be massless. Now, according to the Weinberg–Witten theorem [36], in a
perfectly Lorentz invariant setting, such a massless spin-2 field (fundamental or com-
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posite) must necessarily be gauge invariant (in particular: diffeomorphism invariant),
with no spin 0 or spin 1 components. In our case, one could dismiss the Weinberg–
Witten theorem since Lorentz invariance is broken at high energy [37]. But this implies
(according to the argument of the previous paragraph) that diffeomorphism invariance
will also be an emergent, non-exact symmetry. However, even an arbitrarily small
breaking of diffeomorphism invariance leads to the presence of massive spin-0 and/or
spin-1 graviton components, contrarily to what we just stated as fundamental charac-
teristics of gravity. Even if these massive spin-0 and/or spin-1 graviton components
were extremely small, they could still be rather problematic, as they produce so-called
Boulware–Deser ghosts (negative energy states) [38], which in general do not disap-
pear even in the m → 0 limit. Recent work has shown that these ghosts might be absent
in particular settings, leading to a ghost-free “de Rham–Gabadadze–Tolley” massive
gravity theory [39]. Whether the conditions for such massive gravity are realistic is a
subject of active debate. But, interestingly, such ghost-free massive gravity theories
are intimately related to bi-metric gravity theories of which the effective spacetimes
emerging in condensed-matter analogies are a (simplified) example [40].

A basic illustration of some of the aspects just mentioned is again to be found
in 3He-A. The analogue of gravitons in 3He-A (perturbations of the effective qua-
siparticle metric) correspond to so-called clapping modes [41,42], which have been
experimentally detected and studied as of the 1980s ([43] and references therein).
However, the analogy is imperfect, as there are indeed two collective spin-2 modes in
3He-A, but these are massive, and there is also a massive spin-0 component.7 Given
the previous discussion, this should not come as a surprise, since 3He-A is obviously
not a diffeomorphism invariant structure.

The relevance on the discussion of emergent time is that, if diffeomorphism invari-
ance turns out necessarily to be an exact symmetry, as the above problems perhaps
suggest, then this implies that the fundamental theory must also necessarily be invari-
ant (at all scales) under (local) reparametrizations of the time coordinate, and this
would impose strong limits on the character of the fundamental theory. And indeed,
the whole previous discussion might sound like an unsurmountable barrier for emer-
gent gravity as has been described so far. But it is also worth remembering that perfect
symmetries do not seem to be very popular with Mother Nature (CPT-invariance
being, so far, perhaps the only reasonably well-established candidate). So, rather than
assuming one (diffeomorphism invariance) or even two exact symmetries (Lorentz
and diffeomorphism invariance) in a single shot in order to avoid the problems just
mentioned, it might be worth studying whether all these problems are truly a no-
go, or rather a “technical challenge” towards a more complete emergent theory of
gravity in which both Lorentz and diffeomorphism invariance are emergent symme-
tries.

For more extensive analyses of the challenges associated with emergent gravity,
see e.g. [44,45].

7 These analogue graviton masses are curiously related to the value of the analogue cosmological constant
in 3He-A, see [14].
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6 Some Final Comments

Is the spacetime of our universe really composed of a condensed matter system? It
might be completely wrong to think of spacetime as composed of material atoms,
more or less localised in their own Newtonian (or other) inertial frame, even if there
is currently no experiment that excludes such a possibility, since this “absolute” high-
energy inertial frame would be totally unreachable at the low energies at which we
have probed the laws of nature up to now. But it might nevertheless be very instructive
to consider the possibility that, whatever the constitution of the fundamental degrees
of freedom of the quantum vacuum composing the universe, these degrees of freedom
are nearly completely frozen out at the extremely low temperatures (compared to their
characteristic scale) that are present in most of the actual universe. The physics at such
extremely low temperatures might then well be governed by collective excitations and
their emergent symmetries in a way very similar to what occurs in real laboratory
condensed matter systems.

I have therefore briefly described emergent scenarios for gravity based on con-
densed matter models, and focused on two particular cases: Bose–Einstein conden-
sates and 3He-A. A key point is that, in these condensed matter scenarios, Lorentz
invariance is an effective, low-energy symmetry which is expected to break at high
energy. Crucially, in such scenarios for emergent gravity, there is no reason to expect a
single characteristic energy scale for quantum gravity (“the Planck scale”), so various
aspects of quantum gravity phenomenology could be associated to different energy
scales. In particular, the energy scale of Lorentz violation is expected to be many orders
of magnitude higher than the cut-off scale for the effective low-energy physics, which
in a theory with a fermionic vacuum could for example be the bosonic compositeness
scale. Then, the effective low-energy symmetries would be protected by the propor-
tion between these two energy scales. This would mean that any modification of the
continuous effective Lorentzian spacetime at high energies would be extremely hard
to detect experimentally, much harder than in the usual scenarios based on a single
characteristic Planck scale for all quantum gravitational effects. This should of course
not be taken as a defeatist attitude, but on the contrary as an additional stimulation
to further develop ingenuous experiments at high energies, and see which properties
of the microstructure of spacetime we can infer from their results. The bottom-line
might then seem a bit disappointing: we are still very far away from understanding the
true origin of physical time, and many experimental advances will be needed before
we start doing so. But then again, we have only approximately understood less than
5 % of the total energy content of our observable universe. So maybe thinking that we
could already begin to understand the true essence of time was slightly over-optimistic
in any case.
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