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Abstract In quantum mechanics, the selfadjoint Hilbert space operators play a triple
role as observables, generators of the dynamical groups and statistical operators defin-
ing the mixed states. One might expect that this is typical of Hilbert space quantum
mechanics, but it is not. The same triple role occurs for the elements of a certain
ordered Banach space in a much more general theory based upon quantum logics and
a conditional probability calculus (which is a quantum logical model of the Lüders-
von Neumann measurement process). It is shown how positive groups, automorphism
groups, Lie algebras and statistical operators emerge from one major postulate—the
non-existence of third-order interference [third-order interference and its impossibil-
ity in quantum mechanics were discovered by Sorkin (Mod Phys Lett A 9:3119–3127,
1994)]. This again underlines the power of the combination of the conditional proba-
bility calculus with the postulate that there is no third-order interference. In two earlier
papers, its impact on contextuality and nonlocality had already been revealed.

Keywords Foundations of quantum mechanics · Dynamical groups ·
Positive groups · Lie algebras · Operator algebras

1 Introduction

In quantum mechanics, the selfadjoint Hilbert space operators play a triple role. First
of all, they represent the observables which are the physically measurable quantities of
the system under consideration. Second, the normalized positive trace-class operators
are called statistical operators; they define the mixed states of the system. Third, the
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selfadjoint operators are generators of one-parameter dynamical groups describing
reversible time evolutions of the system.

One might expect that this triple role is typical of Hilbert space quantum mechanics.
In the present paper, it will be shown that this is not true. Such a triple role occurs in
a much more general theory based upon quantum logics and a conditional probability
calculus which is a quantum logical model of the Lüders-von Neumann measurement
process. This theory has been elaborated by the author in some recent papers [9–14].

A further major assumption is required; this is the absence of third-order inter-
ference. The concept of third-order interference was introduced by Sorkin who also
recognized that third-order interference is ruled out by quantum mechanics [15]. His
concept was adapted to conditional probabilities by Ududec et al. [16].

This paper does not consider the role of the observables in the generalized quantum
theory, since it was already sufficiently studied in [10]. The statistical operators are
addressed briefly. The paper focuses on the group generators, using the theory of order
derivations introduced by Connes [5].

In Sects. 2 and 3, the conditional probability calculus and Sorkin’s concept of
third-order interference are recapped as far as needed in this paper. First new results
concerning the statistical operators and trace states are presented in Sect. 4. Order
derivations are briefly sketched in Sect. 5, and positive semigroups are considered in
Sect. 6, before then turning to the major new results. These are the dynamical groups
and Lie algebras emerging when third-order interference is ruled out (Sects. 7, 8 and
9). Section 10 is dedicated to equivalent reformulations of some of the mathematical
conditions used so far by means of the conditional probabilities; this makes them
accessible to physical interpretation. In the last two sections, it is shown how Jordan
algebras and von Neumann algebras fit in the generalized theory.

2 The Conditional Probability Calculus

In quantum mechanics, the measurable quantities of a physical system are represented
by observables. Most simple are those observables where only the two discrete values
0 and 1 are possible as measurement outcome; these observables are called events (or
propositions) and are elements of a mathematical structure called quantum logic.

A quantum logic E contains two specific elements 0 and I and possesses an orthog-
onality relation ⊥, an orthocomplementation E � e → e′ ∈ E and a partial sum oper-
ation + which is defined only for orthogonal events. Moreover, e′⊥e and e+e′ = I for
e ∈ E . The interpretation of this mathematical terminology is as follows: orthogonal
events are exclusive, e′ is the negation of e, and e+ f is the conjunction or and-function
of the two exclusive events e and f .

The states on a quantum logic are the analogue of the probability measures in
classical probability theory, and conditional probabilities can be defined similar to
their classical prototype [9–11]. A state μ allocates the probability μ( f ) ∈ [0, 1]
to each event f , is additive for orthogonal events, and μ(I) = 1. The conditional
probability of an event f under another event e is the updated probability for f after
the outcome of a first measurement has been the event e; it is denoted by μ( f |e).
Mathematically, it is defined by the conditions that the map E � f → μ( f |e) is a

123



1218 Found Phys (2014) 44:1216–1229

state on E and that the identity μ( f |e) = μ( f )/μ(e) holds for all events f ∈ E with
f ⊥e′. It must be assumed that μ(e) �= 0.

However, among the abstractly defined quantum logics, there are many where no
states or no conditional probabilities exist, or where the conditional probabilities are
ambiguous. Therefore, only those quantum logics where sufficiently many states and
unique conditional probabilities exist can be considered a satisfying framework for a
probabilistic theory.

In [10,12], it has been shown that such a quantum logic E generates an
order-unit space A (partially ordered real linear space with a specific norm; see
[1]) and can be embedded in its unit interval [0, I] := {a ∈ A : 0 ≤ a ≤ I} =
{a ∈ A : 0 ≤ a and ‖a‖ ≤ 1}; I becomes the order-unit, and e′ = I − e for e ∈ E .
Each state μ on E has a unique positive linear extension on A which is again denoted
by μ.

Let K denote the state space consisting of all states of the quantum logic E , and let
V be the real-linear space generated by K . A norm can be defined on V such that V
becomes a base-norm space. The order-unit space A is the dual of V , and the unit ball
of A is compact with regard to the weak topology w(A, V ). A is the weakly closed
linear hull of E .

Note below that an operator S : A → A on the order-unit space A is called positive
if S(a) ≥ 0 for all a in A with a ≥ 0. Most interesting are the positive operators S with
S(I) = I; the reason is that, in this case, the map E � e → μ(S(e)) defines a state
μS on E for any state μ on E , and the map S∗ : μ → μS becomes a transformation
of the state space K .

As shown in [10,12], for each event e in E , there is a weakly continuous positive
linear operator Ue : A → A with the following properties: μ( f |e) μ(e) = μ(Ue f )

for all f ∈ E and all states μ, μ(Uex) = μ(x) for all x ∈ A and any state μ with
μ(e) = 1, μ(Uex) = 0 for all x ∈ A and any state μ with μ(e) = 0, U 2

e = Ue,
e = Uee = UeI, 0 = Ue f as well as UeU f = 0 for f ∈ E with e⊥ f , and f = Ue f
for e′⊥ f .

These positive projections Ue have many similarities with the compressions consid-
ered by Alfsen and Shultz [2] and called P-projections in their earlier papers. However,
the two concepts differ; Uex = 0 with an event e and a positive element x in A does
not imply Ue′ x = x and, therefore, Ue is not a compression (P-projection). More-
over, Alfsen and Shultz’s major interest are the spectral convex sets, but the results
of this paper will show that a rich theory might also be possible without assuming
spectrality.

Further weakly continuous linear operators Te and Se can now be defined for each
e ∈ E by Te(x) := 1

2 (x +Uex −Ue′ x) and Se(x) := 2Ue(x)+2Ue′ x − x , x ∈ A. The
properties of the operators Ue above imply the following properties for these operators:
μ(Tex) = μ(x) for all x ∈ A and any state μ with μ(e) = 1, and μ(Tex) = 0 for all
x ∈ A and any state μ with μ(e) = 0. Moreover, e = Tee = TeI, 0 = Te f for f ∈ E
with e⊥ f , S2

e x = x for any x in A, Te + SeTe = 2Ue and Ue = 2T 2
e − Te (e ∈ E).

In the remaining part of this paper, it shall always be assumed that E is a quan-
tum logic with the conditional probability calculus as described in this section. An
interesting link between the linear operators Te and Sorkin’s concept of third-order
interference shall be considered in the following section.
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3 Third-order interference

Sorkin [15] introduced the following mathematical term I3 for a triple of pairwise
orthogonal events e1, e2 and e3, a further event f and a state μ:

I3 := μ( f |e1 + e2 + e3) μ(e1 + e2 + e3) − μ( f |e1 + e2) μ(e1 + e2)

−μ( f |e1 + e3) μ(e1 + e3) − μ( f |e2 + e3) μ(e2 + e3)

+μ( f |e1) μ(e1) + μ( f |e2) μ(e2) + μ( f |e3) μ(e3)

He recognized that I3 = 0 is universally valid in quantum mechanics. His original
definition refers to probability measures on ‘sets of histories’. Using conditional pro-
babilities, I3 gets the above shape, which was seen by Ududec et al. [16].

For the three-slit set-up considered by Sorkin, the identity I3 = 0 means that the
interference pattern observed with three open slits is a simple combination of the
patterns observed in the six different cases when only one or two of the three slits are
open. The new type of interference which is present whenever I3 �= 0 holds is called
third-order interference.

In Ref. [12], it has been shown that the quantum logic E rules out third-order
interference (I3 = 0) if and only if the identity Te+ f x = Tex + T f x holds for all
orthogonal event pairs e and f in E and all x in A. Mathematically, this orthogonal
additivity of Te in e is a lot easier to handle than the equivalent identity I3 = 0
with the above definition of the rather intricate term I3 which, however, may be more
meaningful physically.

Quantum logics which do not exhibit third-order interference (i.e., which satisfy
the identity I3 = 0) have been studied in Ref. [12], and it has been shown that there is
a product operation � in the order-unit space A generated by such a quantum logic, if
the ε-Hahn–Jordan decomposition property holds in addition ([12] Lemma 10.2).

The quantum logic E is said to possess the ε-Hahn–Jordan decomposition property
if, for every bounded orthogonally additive real-valued function ρ on E and every
ε > 0, there are two states μ and ν, nonnegative real numbers s and t and an event e
in E such that ρ = sμ − tν and μ(e) < ε as well as ν(e′) < ε. It implies that [0, I]
is the weakly closed convex hull of E [12].

The product a�b is linear and weakly continuous in a as well as in b and satisfies
the inequality ‖a�b‖ ≤ ‖a‖ ‖b‖ (a, b ∈ A), where ‖ ‖ denotes the order-unit norm on
A. For any events e and f in E , the identity Te f = e� f holds. The events e become
idempotent elements in A (i.e., e = e2 = e�e), and e� f = 0 for any orthogonal event
pair e and f . Generally, however, the product is neither commutative nor associative.
Moreover, the square a2 = a�a of an element a in A need not be positive.

4 Statistical Operators

An element μ ∈ K is called a trace state if μ( f ) = μ( f |e)μ(e)+μ( f |e′)μ(e′) holds
for all events e, f in E . This means that all events are compatible under μ [11]. With
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the linear operators Ue, Te and Se defined in section 2, it follows that μ is invariant
under Ue +Ue′ and Se for each event e in E . The identity Te + SeTe = 2Ue then gives
μ(Te f ) = μ(Ue f ) ≥ 0 for any events e, f in E .

Suppose now that the ε-Hahn–Jordan decomposition property and I3 = 0 hold. For
the then existing product and a trace state μ, we get μ(e� f ) = μ(Te f ) ≥ 0 for any
events e and f , and therefore μ(x�y) ≥ 0 for any positive elements x and y in A.
Note that the ε-Hahn–Jordan decomposition property implies that [0, I] is the weakly
closed convex hull of E [12].

With a trace state μ, each positive element x in A with μ(x) = 1 then gives rise
to two further states: e → μ(x�e) and e → μ(e�x). They become identical if the
product is commutative. Via this construction, the positive elements of the order unit
space A define states in the same way as the statistical operators do in Hilbert space
quantum mechanics. An important question then becomes whether a trace state exists;
this shall now be addressed.

Assume that the linear operator Se is positive for every event e in E . Then its inverse
S−1

e = Se is positive, Se(I) = I, and these operators generate a positive group leaving
I invariant. It shall now be seen that the assumed positivity of the Se has an important
consequence: the existence of a trace state - at least in the finite-dimensional case. The
following lemma from [4] will be used.

Lemma 1 Let C be a compact convex set in a finite dimensional real-linear space.
Then the group of all affine homeomorphisms of C onto C has a common fix point.

Theorem 1 Suppose that Se is positive for each event e in E and that the dimension
of the order unit space A is finite. Then a trace state exists on E.

Proof Recall that K is the state space of E , that V is the linear space generated by
K and that A is the dual space of V . Since A has a finite dimension, so does V and
Lemma 1 can be applied to the compact convex set K . Therefore, there is a common
fix point μ of the affine homeomorphisms of K .

Since the operators Se are positive and satisfy Se(I) = I, the transformations S∗
e

(defined in Sect. 2) map states to states and thus define affine homeomorphisms of
K . Therefore, the fix point μ is invariant under each Se: μ(Sex) = μ(x) for any
e ∈ E and x ∈ A. Reconsidering the definition of Se in Sect. 2, this means that
μ(Ue f ) + μ(Ue′ f ) = μ( f ) for any events e and f , and thus μ is a trace state.

Note that Theorem 1 does not require the assumptions that I3 = 0 and the ε-Hahn–
Jordan decomposition property hold.

5 Group Generators

A bounded linear operator D : A → A is called an order dissipation, if et D is positive
for any t ≥ 0, and is called an order derivation, if et D is positive for any real number t .
The order dissipations are generators of positive semigroups; each group element has
an inverse which is a linear operator, but need not be positive. The order derivations are
generators of positive groups; in this case, each group element has a positive inverse.
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As described in Sect. 2, the positive operators which map I to I give rise to trans-
formations of the state space. Therefore, most interesting are those positive groups,
which leave the order-unit invariant for all t ; this holds when the generator D satis-
fies the condition D(I) = 0. Such a derivation D generates a one-parameter group
of automorphisms. It describes the dynamical evolution satisfying the simple linear
differential equation d

dt xt = Dxt (xt ∈ A). Any physical theory with a reversible time
evolution should include such one-parameter automorphism groups and therefore at
least some derivations D with D(I) = 0. Generally, they need not be bounded, but
note that only bounded derivations are considered in this paper.

The following two lemmas provide useful characterizations of the order dissipations
and order derivations; the first one is a result in [6] and implies the second one which
can be found also in [1].

Lemma 2 Let D : A → A be a bounded linear operator. Then the following are
equivalent:

(i) D is an order dissipation.
(ii) If 0 ≤ x ∈ A, μ ∈ K and μ(x) = 0, then μ(Dx) ≥ 0.

Lemma 3 Let D : A → A be a bounded linear operator. Then the following are
equivalent:

(i) D is an order derivation.
(ii) If 0 ≤ x ∈ A, μ ∈ K and μ(x) = 0, then μ(Dx) = 0.

6 Positive Semigroups

Now let P : A → A be a positive linear operator. Then Pn is positive for n =
1, 2, 3, . . . and, with P0 = I and I (x) := x for x in A,

e−t �∞
n=0

tn

n! Pn = e−t et P = et (P−I )

is a convex combination of I and Pn (n = 1, 2, 3, . . .) for any t ≥ 0 and there-
fore positive. This means that P − I is an order dissipation. This also follows from
Lemma 2.

Therefore, with any e ∈ E , D := Ue+Ue′−I is an order dissipation with D(1) = 0.
Since Ue + Ue′ is idempotent, et D is a simple convex combination of I and Ue + Ue′
and this case is rather trivial. More interesting is D := (Ue + Ue′)(U f + U f ′) − I
with a pair of events e and f . If the linear operators Ue and Ue′ commute with U f

and U f ′ , the product (Ue + Ue′)(U f + U f ′) is an idempotent operator again, yielding
the same trivial situation as above. However, if they don’t commute, this results in a
non-trivial positive semigroup which leaves the order-unit invariant. Note that, in the
classical case, Ue + Ue′ = I = U f + U f ′ , D = 0, et D = I for any t , and the above
construction becomes meaningless.

In the following two sections, it will be seen how the more interesting positive
groups, automorphism groups and their Lie algebras emerge from the absence of
third-order interference in the non-classical case.
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7 Positive Groups

In this section, it is assumed that E rules out third-order interference (I3 = 0) and
satisfies the ε-Hahn–Jordan decomposition property. Then there is a product operation
� in A which is neither associative nor commutative in the general case. It will be seen
now that, in many cases, the right-hand side multiplication operators Ra : A → A,
Ra(x) := x�a are order derivations generating positive groups (a ∈ A).

One further assumption is required. Note that an element in a convex set is an
extreme point of this set if it is not any convex combination of two other elements in
this set. Denote by ext[0, I] the set of extreme points of [0, I]. For μ ∈ K and e ∈ E
with μ(e) = 0, we have from section 2 that μ(e�x) = μ(Tex) = 0 for all x ∈ A. It
shall now be assumed that this holds not only for the e ∈ E with μ(e) = 0, but for the
e ∈ ext[0, I] with μ(e) = 0.

Theorem 2 Assume that μ(e�x) = 0 for all x ∈ A, if e ∈ ext[0, I] and μ ∈ K with
μ(e) = 0. Then Ra is an order derivation for any a in A.

Proof Suppose a ∈ A and μ ∈ K . Using Lemma 3, it is sufficient to show that

{x ∈ [0, I] : μ(x) = 0} ⊆ {x ∈ [0, I] : μ(Ra x) = 0} .

Both sets are convex and weakly compact and, by the Krein–Milman theorem, they
are the closed convex hulls of their extreme points. Therefore, it is sufficient to show
that any extreme point of the first set lies in the second one.

For any extreme point e of the first set, suppose that e = sb1 + (1 − s)b2 with
0 < s < 1 and b1, b2 ∈ [0, I]. Then μ(e) = 0 implies μ(b1) = μ(b2) = 0
and both b1 and b2 lie in the first set. Since e is an extreme point of this set, it
follows that e = b1 = b2. Therefore, e is an extreme point of the unit interval, thus
μ(Rae) = μ(e�a) = 0, which means that e lies in the second set.

8 Automorphism Groups

Most interesting are the order derivations D with D(I) = 0, since then the positive
groups they generate leave the order-unit I invariant and give rise to transformation
groups of the state space. This case shall now be studied. Assume again that E rules out
third-order interference (I3 = 0), that E satisfies the ε-Hahn–Jordan decomposition
property and that μ(e�x) = 0 for all x ∈ A, if e ∈ ext[0, I] and μ ∈ K with
μ(e) = 0.

An order derivation D is called skew, if D(I) = 0, and is called selfadjoint, if there
is an element a ∈ A with D = Ra . Of course, Ra(I) = a. This naming (selfadjoint and
skew) is rather unmotivated here, but will become clear later when the von Neumann
algebras will be considered as an example.

Any order derivation D is the sum of a selfadjoint order derivation D1 and a skew
order derivation D2; with a := D(I) choose D1 := Ra and D2 := D − D1. The
commutator D0 := [D1, D2] = D1 D2 − D2 D1 of any two order derivations D1 and
D2 is an order derivation again and the order derivations form a Lie algebra [1].
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It is obvious that the commutator is skew if D1 and D2 are skew. Therefore the
skew order derivations form a Lie subalgebra L which shall be called the Lie algebra
of the quantum logic E . Its elements are generators of one-parameter automorphism
groups which describe reversible dynamical evolutions. With any pair of elements a
and b in the order-unit space A, the operator [Ra, Rb] − Rd with d := b�a − a�b
now lies in the Lie algebra L by Theorem 2. The associativity of the product � would
imply that [Ra, Rb] − Rd = 0; however, it is not associative generally.

9 The Commutative Case

The question whether not only the right-hand side multiplication operators Ra , but
also the left-hand side multiplication operators Ta : A → A, Ta x := a�x are order
derivations for a ∈ A, shall now be addressed; it will turn out that they are so if and
only if the product � is commutative. Note that these Te with e ∈ E coincide with the
linear operators Te considered in Sect. 2.

The following lemma holds under the general assumptions of Sect. 2 and does not
require the further assumptions concerning third-order interference, the Hahn–Jordan
decomposition property and the extreme points of [0, I].

Lemma 4 If the operators Te − Te′ and T f − T f ′ are order derivations for two events
e, f ∈ E, then the identity Te f = T f e holds.

Proof Assume that De := Te − Te′ = Ue − Ue′ and D f := T f − T f ′ = U f − U f ′
are order derivations for the two events e, f ∈ E , and define the positive operators
Pe := Ue + Ue′ and Pf := U f + U f ′ . Note that D2

e = Pe and D2
f = Pf .

Then μ(U f ′U f x) = 0 for any μ ∈ K and 0 ≤ x ∈ A, since U f ′U f = 0. Applying
Lemma 3 to the derivation De, the positive linear functional μU f ′ and the positive
element U f x in A, it follows that μ(U f ′ DeU f x) = 0 for any μ ∈ K and 0 ≤ x ∈ A.
Therefore U f ′ DeU f = 0. Similarly U f DeU f ′ = 0. An immediate consequence is

(U f − U f ′)(Ue − Ue′)(U f − U f ′) = (U f + U f ′)(Ue − Ue′)(U f + U f ′)

(both sides being equal to U f DeU f + U f ′ DeU f ′ ). Clearly the same equality holds
with exchanged roles of e and f . Thus

D f De D f = Pf De Pf , De D f De = Pe D f Pe and (De D f − D f De)
2
I

= De D f De D f I + D f De D f DeI − De D f
2 DeI − D f De

2 D f I

= De D f De D f I + D f De D f DeI − De Pf DeI − D f Pe D f I

= De D f De D f I + D f De D f DeI − De Pf De Pf I − D f Pe D f PeI

= 0.

In the second but last line, the identities PeI = I = Pf I have been used to replace I by
PeI and Pf I, respectively, and the last line follows from the identity above. Therefore

et(De D f −D f De)I = I + t
(
De D f − D f De

)
I.
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Since the set of order derivations is closed under commutators [1], De D f − D f De is
an order derivation and the left-hand side of the last equation is positive for all t . This
implies

0 = (
De D f − D f De

)
I

= (Te − Te′)( f − f ′) − (T f − T f ′)(e − e′)
= (Te − Te′)(2 f − I) − (T f − T f ′)(2e − I)

= 2Te f − 2Te′ f − e + e′ − 2T f e + 2T f ′e + f − f ′

= 2Te f − 2 f + 2Te f − e + e′ − 2T f e + 2e − 2T f e + f − f ′

= 4Te f − 4T f e.

In the second but last line, the identities Te + Te′ = I = T f + T f ′ have been used.
Therefore Te f = T f e.

Theorem 3 Suppose that I3 = 0 and the ε-Hahn–Jordan decomposition property
hold and that μ(e�x) = 0 for all x ∈ A, if e ∈ ext[0, I] and μ ∈ K with μ(e) = 0.
Then the following are equivalent:

(i) For any a ∈ A, the operator Ta is an order derivation.
(ii) The product � is commutative.

Proof Assume (i). Then particularly the operators Te−e′ = Te − Te′ are order deriva-
tions for the events e in E , and Lemma 4 implies Te f = T f e for any two events e
and f in E . This means e� f = f �e. Since the product is linear and weakly contin-
uous in each component and A is the weakly closed linear hull of E , the product is
commutative.

Now assume (ii). This means that Ta = Ra for a ∈ A, and the Ta become order
derivations by Theorem 2.

If the product � is commutative, the commutator [Ra, Rb] = [Ta, Tb] is a skew
order derivation for any two elements a and b in A and thus lies in the Lie algebra L .
In this case, L = {0} would imply that the operators Ta , a ∈ A, and particularly the
Te, e ∈ e, commute with each other. Then the Ue would commute and it would follow
that, with any e, f ∈ E , Ue f + Ue′ f = UeU f I + Ue′U f I = U f UeI + U f Ue′I =
U f e + U f e′ = U f I = f . This would mean that all events in the quantum logic E
would be compatible [11] and E would be classical. Vice versa, as soon as there are
two events which are not compatible, the Lie algebra L is not trivial.

10 Some Equivalent Reformulations by Means of the Conditional Probabilities

The property that the operators Te − Te′ are order derivations for all events e has been
studied by Iochum and Shultz under the name ellipticity in a more specific setting in
order to characterize the state spaces of the JBW algebras among the spectral convex
sets [2,7]. The proof of Lemma 4 is a simple transfer of the proof of Theorem 9.48 in
[2] to the more general setting of this paper.
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Ellipticity is a mathematical property which has no immediate physical or proba-
bilistic interpretation. The next lemma presents an equivalent property which is more
accessible to interpretations.

Lemma 5 Under the general assumptions of Sect. 2, the following are equi-valent for
any event e in the quantum logic E:

(i) Te − Te′ is an order derivation.
(ii) μ( f ) − μ( f |e)μ(e) − μ( f |e′)μ(e′) ≥ −2

√
μ( f |e)μ(e)μ( f |e′)μ(e′) for all

events f and all states μ.
(iii) μ( f ) − μ( f |e)μ(e) − μ( f |e′)μ(e′) ≤ 2

√
μ( f ′|e)μ(e)μ( f ′|e′)μ(e′) for all

events f and all states μ.

Proof (i) ⇔ (ii): Note that Te − Te′ = Ue − Ue′ , (Ue − Ue′)2 = Ue + Ue′ and
(Ue − Ue′)(Ue + Ue′) = Ue − Ue′ . Therefore, (Ue − Ue′)n = Ue − Ue′ for n =
1, 3, 5, . . ., (Ue − Ue′)n = Ue + Ue′ for n = 2, 4, 6, . . . and

exp (t (Te − Te′)) =
∞∑

n=0

tn

n! (Ue − Ue′)n

= I +
∞∑

n=1

tn

n!Ue +
∞∑

n=1

(−t)n

n! Ue′

= I +
∞∑

n=0

tn

n!Ue +
∞∑

n=0

(−t)n

n! Ue′ − Ue − Ue′

= I + exp(t)Ue + exp(−t)Ue′ − Ue − Ue′

for any real number t . Positivity of this operator means that

0 ≤ μ ( f + exp(t)Ue f + exp(−t)Ue′ f − Ue f − Ue′ f )

for all events f and states μ. That is

0≤μ( f )+exp(t)μ( f |e)μ(e)+exp(−t)μ( f |e′)μ(e′)−μ( f |e)μ(e)−μ( f |e′)μ(e′).

Now note that, with any two nonnegative real numbers α and β, the largest lower
bound for the function t → α exp(t) + β exp(−t) is 2

√
αβ. Therefore, the last

inequality holds for all real t if and only if

0 ≤ μ( f ) + 2
√

μ( f |e)μ(e)μ( f |e′)μ(e′) − μ( f |e)μ(e) − μ( f |e′)μ(e′).

(ii) ⇔ (iii): Replacing f by f ′ in (ii) gives:

1 − μ( f ) − μ(e) + μ( f |e)μ(e) − μ(e′) + μ( f |e′)μ(e′)
≥ −2

√
μ( f ′|e)μ(e)μ( f ′|e′)μ(e′)
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and μ( f ) − μ( f |e)μ(e) − μ( f |e′)μ(e′) ≤ 2
√

μ( f ′|e)μ(e)μ( f ′|e′)μ(e′), which
completes the proof.

With Lemma 5, ellipticity becomes a feature of the conditional probabilities and
imposes important restrictions on the typical quantum interference which is exhibited
by the violation of the classical identity μ( f ) = μ( f |e)μ(e)+μ( f |e′)μ(e′), e, f ∈ E
and μ ∈ K . Lemma 5 (ii) and (iii) provide a lower bound and an upper bound for the
interference term μ( f ) − μ( f |e)μ(e) − μ( f |e′)μ(e′).

The other condition in Lemma 4 can also be equivalently reformulated by means
of the conditional probabilities in the following way.

Lemma 6 Under the general assumptions of Sect. 2, the following are equivalent for
any two events e and f in the quantum logic E:

(i) Te f = T f e.
(ii) μ( f ′|e)μ(e) + μ( f |e′)μ(e′) = μ(e′| f )μ( f ) + μ(e| f ′)μ( f ′) for all states μ.

Proof Condition (ii) means Ue f ′Ue′ f =U f e′ + U f ′e and this is equivalent to Te f =
T f e.

Under the assumptions of Theorem 3, condition (ii) or (iii) of Lemma 5 and condi-
tion (ii) of Lemma 6 become equivalent, since condition (i) of Lemma 5 and condition
(i) of Lemma 6 are equivalent then. The equivalence of these properties of the con-
ditional probabilities will be hard to see directly—without considering the order-unit
space A and the operators Ue and Te on A (e ∈ E). The same holds for the implications
in the following corollary.

Corollary 1 Under the general assumptions of Sect. 2, the quantum logic E rules out
third-order interference, whenever it satisfies one of the following four conditions:

(i) Te − Te′ is an order derivation for each e ∈ E (i.e., the state space K is elliptic).
(ii) μ( f ) − μ( f |e)μ(e) − μ( f |e′)μ(e′) ≥ −2

√
μ( f |e)μ(e)μ( f |e′)μ(e′) for all

events e, f ∈ E and all states μ ∈ K .
(iii) μ( f ) − μ( f |e)μ(e) − μ( f |e′)μ(e′) ≤ 2

√
μ( f ′|e)μ(e)μ( f ′|e′)μ(e′) for all

events e, f ∈ E and all states μ ∈ K .
(iv) μ( f ′|e)μ(e)+μ( f |e′)μ(e′) = μ(e′| f )μ( f )+μ(e| f ′)μ( f ′) for all events e, f ∈

E and all states μ ∈ K .

Proof By Lemma 4, 5 and 6, each one of the conditions (i), (ii), (iii) and (iv) implies
Te f = T f e for any e, f ∈ E . Now suppose e1, e2 ∈ E with e1⊥e2. Then Te1+e2 f =
T f (e1+e2)=T f e1+T f e2 =Te1 f +Te2 f for all f ∈ E and thus Te1+e2 x =Te1 x +Te2 x
for all x ∈ A. This is equivalent to I3 =0 for all states and events (see Sect. 3).

The positivity of the operators Se, e ∈ E , which plays an important role in Sect.
4, shall now be reconsidered. Again there is an equivalent property of the conditional
probabilities.

Lemma 7 Under the general assumptions of Sect. 2, the following are equivalent for
any event e in the quantum logic E:

(i) Se is positive.
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(ii) μ( f ) ≤ 2μ( f |e)μ(e) + 2μ( f |e′)μ(e′) for all events f and states μ.

Proof Condition (ii) means I ≤ 2(Ue + Ue′). That is 0 ≤ Se.

More information concerning the physical interpretation can be found in Refs.
[1,2,12] for condition (ii) of Lemma 6 and in Ref. [12] for condition (ii) of Lemma 7.

11 Jordan Algebras and Lie Algebras

The formally real Jordan algebras were introduced by Jordan et al. [8]. Much later, this
theory was extended to include infinite dimensional algebras; these are the so-called
JB-algebras and JBW-algebras [2].

The idempotent elements of a JBW-algebra A form a quantum logic E . In this case,
E = ext [0, I] holds. If the Jordan algebra does not contain a direct summand of type
I2, E possesses a conditional probability calculus [9]. With the so-called triple product
{x, y, z} := x ◦ (y ◦ z) − y ◦ (z ◦ x) + z ◦ (x ◦ y), then Uea = {e, a, e}, Tea = e ◦ a,
and Sea = {

e − e′, a, e − e′} for any a ∈ A and e ∈ E . The operators Se are positive.
Moreover, third-order interference is ruled out, and the ε-Hahn–Jordan decompo-

sition property is satisfied. The product � coincides with the Jordan product ◦ and is
commutative. The order automorphisms leaving the unit I invariant coincide with the
Jordan automorphisms. Each property of the conditional probabilities considered in
Sect. 10 is satisfied.

There are three classes of simple formally real Jordan algebras with finite dimension
and one further case. These are the hermitian n × n-matrices with real, complex and
quaternion entries, equipped with the usual Jordan product, and the hermitian 3 × 3-
matrices with octonion entries [2]. The Lie algebras of the quantum logics consisting
of the idempotent elements of these Jordan algebras are so(n), su(n), sp(n) and the
exceptional Lie algebra f4.

However, there are four further exceptional simple Lie algebras with finite dimen-
sion (g2, e6, e7 and e8) to which no formally real Jordan algebra can be allocated
[3]. An important question now becomes whether they are the Lie algebras of some
unknown quantum logics. In the case of a positive answer, it would be interesting to
study the characteristics which distinguish them from the quantum logics emerging
from the formally real Jordan algebras. Considering the results in [10,12], it is very
likely that their state spaces are not spectral (in the meaning of Alfsen and Shultz
[2]).

12 Von Neumann Algebras

Quantum mechanics uses a very special type of quantum logic E ; it consists of the
selfadjoint projection operators on a Hilbert space or, more generally, in a von Neu-
mann algebra M . The selfadjoint part of a von Neumann algebra M is a JBW-algebra
A. In this case, Uea = eae, Tea = (ea + ae)/2, Sea = (e − e′)a(e − e′) and more-
over et Rb a = etb/2aetb/2 (a, b ∈ A, e ∈ E). Again each property of the conditional
probabilities considered in Sect. 10 is satisfied.
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Furthermore, Dba := i(ba −ab)/2 (a ∈ A) defines a skew order derivation Db for
any b in A and et Db a = eitb/2ae−i tb/2 (a ∈ A, t ∈ R). This specific relation between
the elements of A and skew order derivations distinguishes those JBW-algebras that
are the selfadjoint part of a von Neumann algebras from the other JBW-algebras. Its
mathematical formalization is the so-called dynamical correspondence [2]. Generally,
in a JBW algebra A, a skew order derivation D can be derived via D := [Ta, Tb] from
a pair a and b in A which does not operator-commute, but not from a single element
in A.

13 Conclusions

Those quantum logics that entail the conditional probability calculus appear to provide
a promising generalized quantum theory. Many of its mathematical properties can be
formulated by means of the conditional probabilities, which makes them accessible
to physical interpretations.

In the present paper, it has been shown how dynamical groups and Lie algebras
emerge when third-order interference is ruled out. This again underlines the power of
the combination of the conditional probability calculus with the postulate that there
is no third-order interference. Its impact on contextuality and nonlocality had already
been revealed in two earlier papers [13,14].

An interesting open question now becomes whether the four finite-dimensional
simple exceptional real Lie algebras that do not arise from the automorphism groups
of the formally really Jordan algebras perhaps arise from the automorphism groups of
some unknown quantum logics.
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