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Abstract It is shown how the 300 rays associated with the antipodal pairs of vertices of
a 120-cell (a four-dimensional regular polytope) can be used to give numerous “parity
proofs” of the Kochen–Specker theorem ruling out the existence of noncontextual
hidden variables theories. The symmetries of the 120-cell are exploited to give a
simple construction of its Kochen–Specker diagram, which is exhibited in the form
of a “basis table” showing all the orthogonalities between its rays. The basis table
consists of 675 bases (a basis being a set of four mutually orthogonal rays), but all the
bases can be written down from the few listed in this paper using some simple rules.
The basis table is shown to contain a wide variety of parity proofs, ranging from 19
bases (or contexts) at the low end to 41 bases at the high end. Some explicit examples
of these proofs are given, and their implications are discussed.

Keywords Kochen–Specker theorem · Quantum contextuality · parity proofs ·
120-Cell

1 Introduction

In two recent papers [1,2] we showed how two of the exceptional four-dimensional
regular polytopes, the 24-cell and the 600-cell, can be used to give a large number of
“parity proofs” of the Kochen–Specker (KS) theorem [3–5] ruling out the existence
of noncontextual hidden variables theories. In this paper we show how the third and
most complex of these polytopes, the 120-cell, yields still further proofs of the same
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kind. Thus our three papers collectively show how these beautiful geometric objects,
which have been known since the middle of the 19th century, can be enlisted, if a bit
quixotically, in defending the quantum theory against an attack mounted on it by a
personage no less than Einstein.

The parity proofs based on the 24-cell have their origin in the proofs of the KS
theorem given by Peres [6] and Mermin [7,8]. Mermin’s proof was based on sets of
commuting observables for a pair of qubits, while Peres’ proof was based on a set
of 24 states derived from these observables. Kernaghan [9] later showed that Peres’
states contain subsets of 20 that give parity proofs, and Cabello et al [10] showed
that there are subsets of 18 that do likewise. One of us [11] pointed out that the 24-
cell, together with its dual1, is the natural geometric framework for the system of
rays introduced by Peres. The interest of this observation is that it permits a simple
geometrical construction to be given [1] of all the 29 = 512 parity proofs in this
system. An exhaustive study of all the KS sets of vectors in the 24-ray Peres set,
whether they gave rise to parity proofs or not, has been carried out by Pavičić and his
collaborators [12–14].

The fact that the 24-cell, together with its dual, led to parity proofs suggested that
the other four-dimensional regular polytopes might do likewise. The three simpler
polytopes (the simplex, the cross polytope and the measure polytope) are too meager
to lead to anything, but in [2] we found, to our great surprise, that the 600-cell has a
staggeringly large number of parity proofs in it. It should be stressed that while the
600-cell does have twenty five 24-cells in it, none of them is accompanied by its dual,
and so there is no overlap between its parity proofs and those of the Peres set. The
contrast between the parity proofs in these two systems is very striking: whereas the
Peres rays have only six distinct (i.e. unitarily inequivalent) types of parity proofs (and
a total of 512 proofs when all their replicas under symmetry are taken into account),
the 600-cell has over a hundred distinct types of proofs (and over a hundred million
when all replicas under symmetry are taken into account).

We were naturally led to ask whether the 120-cell, the most complex of these
polytopes, might have any parity proofs in it. The 120-cell is remarkable in having
copies of all the smaller polytopes in it. In particular, it has 10 600-cells and 225
24-cells in it. However none of the 24-cells is accompanied by its dual, and so none of
the parity proofs of the Peres set is contained in the 120-cell. But all the parity proofs
of the 600-cell are contained in the 120-cell (in 10 different incarnations, in fact). The
question, then, is whether the 120-cell has any new parity proofs in it, i.e., ones that
span two or more of its 600-cells. It was far from obvious to us that it should have any
proofs of this kind. However we have discovered that it does, and it is the purpose of
this paper to report that discovery.

The parity proofs provided by the four-dimensional regular polytopes all involve
rays in a real four-dimensional space (which is, in fact, the simplest setting in which
parity proofs can arise). Let us recall the other types of spaces in which parity proofs
have been found. Kernaghan and Peres [14] found a 36-ray 11-basis proof in a real

1 The dual of a 24-cell is another 24-cell rotated relative to the first (about their common center), with the
vertices of the dual being along the same directions as the cell centers of the original, and vice-versa.
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8-dimensional space which, together with the proofs in the Peres set [9,10], were
the only parity proofs known for many years. Then, a few years back, there was an
explosion in our knowledge. It was shown [15–17] that there exist parity proofs in
every complex space Cd of dimension d = 2N (for N ≥ 2) that can be derived from
suitable subsets of observables of the N -qubit Pauli group. This showed that parity
proofs are not singular phenomena but occur systematically in the state space of any
number of qubits, with the variety and quantity of such proofs increasing sharply with
the number of qubits. Very recently, a completely unexpected discovery was made:
Lisonek et al [18] found a 21-ray 7-basis proof in a complex 6-dimensional space
that is remarkable because it involves the smallest number of bases (seven) known
for a parity proof in any dimension and also because it is the first parity proof to be
discovered in a dimension not of the form 2N . This discovery seems to hint at the fact
that there may still be things about parity proofs that we do not know.

The parity proofs of this paper, like the others that have preceded them, are of interest
for a variety of reasons: they can be used to derive state-independent inequalities for
ruling out noncontextuality [19–24] and Bell inequalities for identifying fully nonlocal
correlations [25]; they have applications to quantum games [26], quantum zero-error
communication [27], quantum error correction [28,29] and the design of relational
databases [31]; and they can be used to witness the dimension of quantum systems
[30].

The plan of this paper is as follows. In Sec.2 we give a simple construction of the
rays and bases of the 120-cell based on its symmetries. In Sec.3 we review the notion
of a parity proof and identify substructures within the 120-cell that are more easily
searched for such proofs. We then list the various types of proofs we have found, in
terms of their symbols (defined below), and give explicit examples of a few of the
proofs. Finally, in Sec.4, we make some concluding remarks.

2 Geometry of the 120-Cell: Rays and Bases

The 120-cell [32] has 600 vertices distributed symmetrically on the surface of a sphere
in four-dimensional Euclidean space. The vertices come in antipodal pairs, and the
lines through antipodal pairs of vertices define the 300 rays of the 120-cell. We will
term any set of four mutually orthogonal rays (or directions) a basis. The 300 rays form
675 bases, with each ray occurring in 9 bases and being orthogonal to its 27 distinct
companions in these bases and to no other rays. We will use the symbol 3009–6754
to denote this system of rays and bases, with the left half of the symbol indicating the
number of rays (with their multiplicities2 as subscripts) and the right half the number
of bases (with the number of rays in each basis as a subscript). We will use a similar
notation for the other ray-bases systems that will be encountered below. For example,
6021806–3004 denotes a system of 240 rays and 300 bases, with 60 rays of multiplicity
2 and 180 rays of multiplicity 6. We will only deal with bases of four rays in this paper,
so the subscript in the right half of the symbol will always be 4 (and will sometimes
be dropped, for brevity).

2 The multiplicity of a ray is the number of bases it occurs in.
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The 120-cell has the property that all the orthogonalities between its rays are rep-
resented among its bases. Thus its basis table (i.e., the list of all its bases) contains the
same information as its Kochen–Specker diagram3. The basis table of the 120-cell is
an object of great interest, because it is the structure within which all its parity proofs
are embedded. In fact, any parity proof is just some subset of these bases, as we will
see in Sect.3.

A listing of the full basis table of the 120-cell would take up too much space and
is also unnecessary. We will explain how all the bases can be built up by applying
suitable symmetry operations of the 120-cell to the computational basis, and then give
a simple prescription that will allow the reader to write down all the bases from the
few we actually list.

Let rays 1–4 of the 120-cell be represented by the vectors 1 = (1, 0, 0, 0), 2 =
(0, 1, 0, 0), 3 = (0, 0, 1, 0) and 4 = (0, 0, 0, 1). These rays are mutually orthogonal
and form a basis (the “computational” basis) that we will denote 1 2 3 4. Let U, V and
W be the orthogonal matrices
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where τ = (1+√
5)/2 is the golden ratio. These matrices represent four-dimensional

rotations of period 3, 5 and 5, respectively, so that U 3 = V 5 = W 5 = I , where I
is the 4 × 4 identity matrix4. The other 296 rays of the 120-cell can be obtained by
applying products of powers of U , V and W to rays 1-4 in the manner described by
the equation

|60n + 12m + 4l + i〉 = W n V mUl |i〉 (4)

3 The Kochen–Specker diagram of a set of rays is a graph whose vertices are the rays and whose edges
connect vertices corresponding to orthogonal rays.
4 Since V and W are symmetry operations of the 120-cell, they can be described by the permutations they
perform on its vertices: V replaces the ray i by the ray (i + 60) mod 300, while W replaces ray i by i + 12
if 60n < i ≤ 60n + 48 for n = 0, 1, 2, 3, 4, or by i − 48 otherwise. The operator U also performs a
permutation, but it cannot be described simply.
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Table 1 The 300 rays of the 120-cell, grouped together in blocks of 12 rays each. Each block defines a
24-cell, with each row of four rays within a block defining a basis. Each row or column of blocks defines a
600-cell, with the 600-cells defined by the columns being labeled A, · · · , E and those defined by the rows

being labeled A
′
, · · · , E

′
. Each 24-cell in this table can be labeled by a pair of letters, one unprimed and

the other primed, of the two 600-cells to which it belongs

A B C D E

A´
1 2 3 4 61 62 63 64 121 122 123 124 181 182 183 184 241 242 243 244
5 6 7 8 65 66 67 68 125 126 127 128 185 186 187 188 245 246 247 248
9 10 11 12 69 70 71 72 129 130 131 132 189 190 191 192 249 250 251 252

B´
13 14 15 16 73 74 75 76 133 134 135 136 193 194 195 196 253 254 255 256
17 18 19 20 77 78 79 80 137 138 139 140 197 198 199 200 257 258 259 260
21 22 23 24 81 82 83 84 141 142 143 144 201 202 203 204 261 262 263 264

C´
25 26 27 28 85 86 87 88 145 146 147 148 205 206 207 208 265 266 267 268
29 30 31 32 89 90 91 92 149 150 151 152 209 210 211 212 269 270 271 272
33 34 35 36 93 94 95 96 153 154 155 156 213 214 215 216 273 274 275 276

D´
37 38 39 40 97 98 99 100 157 158 159 160 217 218 219 220 277 278 279 280
41 42 43 44 101 102 103 104 161 162 163 164 221 222 223 224 281 282 283 284
45 46 47 48 105 106 107 108 165 166 167 168 225 226 227 228 285 286 287 288

E´
49 50 51 52 109 110 111 112 169 170 171 172 229 230 231 232 289 290 291 292
53 54 55 56 113 114 115 116 173 174 175 176 233 234 235 236 293 294 295 296
57 58 59 60 117 118 119 120 177 178 179 180 237 238 239 240 297 298 299 300

where i = 1, 2, 3, 4, l = 0, 1, 2 and m, n = 0, 1, 2, 3, 4, and | j〉 (with j =
1, · · · , 300) is ray j expressed as a four-component column vector.

The buildup of the rays described by (4) can be understood as follows. The operators
U and U 2 act on the basis 1 2 3 4 to yield the bases 5 6 7 8 and 9 10 11 12, respectively.
These three bases, shown in the top left block of Table 1, define a 24-cell whose vertices
are given by the vectors |1〉–|12〉 and their inverses5. Powers of the operator V acting
on this 24-cell transform it into the other 24-cells shown in the first column of Table 1.
The five 24-cells in the first column of Table 1 define a 600-cell whose vertices are
given by the vectors |1〉–|60〉 and their inverses. Powers of W acting on this 600-cell
then give the four 600-cells represented by the other columns of Table 1. Remarkably,
the rows of Table 1 also represent 600-cells. Thus Table 1 illustrates the interesting
geometrical fact6 that the vertices of the 120-cell can be partitioned into those of five
disjoint 600-cells in two different ways. We label the 600-cells corresponding to the
columns of Table 1 by the unprimed letters A, · · · , E and those corresponding to the
rows by the primed letters A′, · · · , E ′. Also, we label any 24-cell in Table 1 by the
unprimed and primed letters of the 600-cells to which it belongs (thus, for example,
the cell in the top left corner has the label AA′).

Our construction of the 300 rays has also yielded 75 of the bases formed by them,
which are exhibited in Table 1. However these rays also form 600 additional bases,
which we now describe.

Each of the 600-cells in Table 1 has 75 bases associated with it, of which only 15
are shown in Table 1 (as one of its rows or columns). In Table 2 we show all 75 bases
associated with 600-cell A; the bases in the first column are identical to those in the
first column of Table 1, but the other 60 bases are new. The blocks of Table 2 also

5 The 24-cell, 600-cell and 120-cell are all centrally symmetric figures whose vertices come in antipodal
pairs.
6 See Ref. [32], p.270, where it is pointed out that the 600-cells in the rows and columns of Table 1 form a
pair of enantiomorphous sets.
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Table 2 The 600-cell A. Each row or column of blocks shows its decomposition into five disjoint 24-cells,
with the first column being identical to that in Table 1. There are three bases in each 24-cell, and therefore
75 bases in all. The rows of blocks are cycled by the period-5 operation W of Eq. (3), which simply has the
effect of adding 12 to any ray number, modulo 60. The columns are cycled by the period-5 operation X of
Eq. (5) (whose permutation of the 60 rays is easily picked out). Adding 60, 120, 180 or 240 to the numbers
in this table gives the basis tables of the 600-cells B, C, D or E , respectively

600-cell A
1 2 3 4 52 15 48 34 22 60 29 44 32 41 21 59 47 33 50 13
5 6 7 8 57 42 31 23 26 18 55 37 39 54 19 28 24 30 43 58
9 10 11 12 38 20 25 53 51 35 16 45 36 49 46 14 17 40 56 27
13 14 15 16 4 27 60 46 34 12 41 56 44 53 33 11 59 45 2 25
17 18 19 20 9 54 43 35 38 30 7 49 51 6 31 40 36 42 55 10
21 22 23 24 50 32 37 5 3 47 28 57 48 1 58 26 29 52 8 39
25 26 27 28 16 39 12 58 46 24 53 8 56 5 45 23 11 57 14 37
29 30 31 32 21 6 55 47 50 42 19 1 3 18 43 52 48 54 7 22
33 34 35 36 2 44 49 17 15 59 40 9 60 13 10 38 41 4 20 51
37 38 39 40 28 51 24 10 58 36 5 20 8 17 57 35 23 9 26 49
41 42 43 44 33 18 7 59 2 54 31 13 15 30 55 4 60 6 19 34
45 46 47 48 14 56 1 29 27 11 52 21 12 25 22 50 53 16 32 3
49 50 51 52 40 3 36 22 10 48 17 32 20 29 9 47 35 21 38 1
53 54 55 56 45 30 19 11 14 6 43 25 27 42 7 16 12 18 31 46
57 58 59 60 26 8 13 41 39 23 4 33 24 37 34 2 5 28 44 15

represent 24-cells, and this table illustrates the fact that the vertices of a 600-cell can
be partitioned into those of five disjoint 24-cells in ten different ways (represented by
its rows and columns). The columns of Table 2 are cycled by the period-5 rotation V ,
while its rows are cycled by the period-5 rotation
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Unlike V , which is a symmetry operation of the 120-cell, X is a symmetry operation
of the 600-cell A alone. The bases associated with the 600-cells B, C , D or E can be
obtained by adding 60, 120, 180 or 240, respectively, to the numbers in Table 2 (which
is equivalent to acting on the rays of 600-cell A with powers of the operator V ).

The 600-cells associated with the rows of Table 1 have very similar properties. Table
3 shows the bases associated with 600-cell A′; the rows are cycled by the period-5
rotation W and the columns by the period-5 rotation
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Table 3 The 600-cell A
′
. Each row or column of blocks shows its decomposition into five disjoint 24-cells,

with the first row being identical to that in Table 1. There are three bases in each 24-cell, and therefore
75 bases in all. The columns are cycled by the period-5 permutation V of Eq. (2), which has the effect of
adding 60 to any ray number, modulo 300. The rows are cycled by the period-5 operation Y of Eq. (6)
(whose permutation of the 60 rays in this table is easily picked out). Adding 12, 24, 36 or 48 to the numbers
in this table generates the basis tables of the 600-cells B′, C ′, D′ or E ′, respectively

600-cell A
1 2 3 4 61 62 63 64 121 122 123 124 181 182 183 184 241 242 243 244
5 6 7 8 65 66 67 68 125 126 127 128 185 186 187 188 245 246 247 248
9 10 11 12 69 70 71 72 129 130 131 132 189 190 191 192 249 250 251 252

127 242 186 64 187 2 246 124 247 62 6 184 7 122 66 244 67 182 126 4
121 72 251 183 181 132 11 243 241 192 71 3 1 252 131 63 61 12 191 123
245 68 189 130 5 128 249 190 65 188 9 250 125 248 69 10 185 8 129 70
71 182 252 124 131 242 12 184 191 2 72 244 251 62 132 4 11 122 192 64
247 190 129 66 7 250 189 126 67 10 249 186 127 70 9 246 187 130 69 6
61 243 125 188 121 3 185 248 181 63 245 8 241 123 5 68 1 183 65 128
249 122 70 184 9 182 130 244 69 242 190 4 129 2 250 64 189 62 10 124
191 248 65 132 251 8 125 192 11 68 185 252 71 128 245 12 131 188 5 72
187 126 241 63 247 186 1 123 7 246 61 183 67 6 121 243 127 66 181 3
185 62 128 244 245 122 188 4 5 182 248 64 65 242 8 124 125 2 68 184
69 123 181 250 129 183 241 10 189 243 1 70 249 3 61 130 9 63 121 190
131 192 67 246 191 252 127 6 251 12 187 66 11 72 247 126 71 132 7 186

which, similar to X , is a symmetry operation of this 600-cell alone, and not of the
whole 120-cell. Adding 12,24,36 or 48 to the numbers in Table 3 (which is equivalent
to acting on the rays of 600-cell A′ with powers of the operator W ) gives the bases
associated with the 600-cells B ′,C ′,D′ or E ′, respectively.

In summary, the 675 bases formed by the rays of the 120-cell are obtained by adding
60n to the entries in Table 2 and 12n to the entries in Table 3 for n = 0, 1, 2, 3 or 4.
This actually leads to 75 × 10 = 750 bases, but the 75 special bases of Table 1 are
each generated twice in this process (once as part of an unprimed 600-cell and once
as part of a primed one), and so the total number of distinct bases is just 675.

3 Parity Proofs in the 120-Cell

Any subset of the 675 bases of the 120-cell provides a “parity proof” of the KS theorem
if (a) the number of bases in the subset is odd, and (b) each ray occurring in these
bases occurs in an even number of them. Such a set of rays and bases provides a proof
of the KS theorem because it is impossible to assign noncontextual 7 values of 0 or 1
to each of the rays in such a way that each basis has exactly one ray assigned the value
1 in it. The term “parity proof” is used because of the odd-even conflict in conditions
(a) and (b) used to establish the theorem.

The task of finding parity proofs in the 120-cell thus reduces to that of identifying
subsets of its bases satisfying conditions (a) and (b). We have developed a computer
program that does this for any set of rays and bases given a target number of bases
in the parity proof. The program begins from a “seed” basis (which can be chosen
at will) and adds on further bases in a calculated manner until the target number of

7 A noncontextual value assignment to a ray is one in which the ray is assigned the same value in all the
bases in which it occurs.
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Table 4 If all the rays belonging to the 24-cells in the first column are dropped, along with all the bases
in which one or more of these rays occur, the remaining rays and bases form the reduced sets indicated in
the second column. Each of these reduced sets contains a large number of parity proofs that we have found
using a computer program

Canceled 24-cells Remaining Rays-Bases
A A, A B, A C, A D, A E 2406 − 3604
A A, A B, A C, A D, B E 1224831806 − 3124
A A, A B, A C, B D, B E 6021806 − 3004
A A, A B, A C, B D, C E 2429631206 − 2644
A A, A B, B C, B D, C E 7224831206 − 2524
A A, A B, B C, C D, D E 3621443606 − 2164
A A, A B, A C, A D, A E

B B, B C, B D, B E
C B, C C, C D, C E 362485126 − 964
D B, D C, D D, D E

bases is reached and conditions (a) and (b) are either satisfied, in which case one gets
a parity proof, or not satisfied, in which case the search turns up empty. If a proof is
found, the program checks it to see if it is critical, i.e., whether it fails if even a single
basis is dropped. Searches are made for all basis sizes starting at the low end and going
up. However the search can become prohibitively slow for large numbers of bases or
when rays of large multiplicities are involved.

The 675 bases of the 120-cell constitute too large a search space for our program
to operate efficiently in. We therefore had to find ways of whittling down these bases
to smaller subsets that would be large enough to contain a significant store of parity
proofs and at the same time small enough to be searched quickly. We found that we
could generate such subsets simply by picking a certain number of 24-cells in Table
1 and dropping all the bases containing any of the rays in these 24-cells. Table 4 lists
several subsets of the 675 bases generated by this procedure, with the first column
indicating the 24-cells whose rays are dropped and the second column the symbols of
the resulting ray-basis sets. The important point about these reduced sets is that they
all span more than one 600-cell, making it possible for them to contain parity proofs
that also span more than one 600-cell. We found that all the reduced sets in Table 4
do yield proofs of this kind. As one example, Table 5 lists the 102 different types of
parity proofs contained within the last reduced set of Table 4.

Tables 6, 7, and 8 show three explicit examples of the parity proofs listed in Table 5.
Each proof spans a number of distinct 600-cells and each is also critical, as the reader
may verify.

We have not estimated how many different types of parity proofs there are in the
120-cell (that do not lie entirely within a single 600-cell). We know there are no proofs
of less than 19 bases and we have not found any with more than 41 bases, but we can-
not be sure about the upper limit because our searches have been limited to only the
reduced sets in Table 4. However two facts might be mentioned: the first is that a given
ray-basis symbol often has a number of distinct (i.e. unitarily inequivalent) proofs
associated with it, and the second is that each proof generally has hundreds or thou-
sands of replicas under symmetry. Taking both these facts into account, we estimate
that there are probably over a million genuinely new parity proofs in the 120-cell that
are not contained in any of the smaller polytopes in it.
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Table 5 Parity proofs contained within the last reduced set of Table 4. For the number of bases shown
in the first column, the second column shows the ray signatures (with multiplicities as subscripts) of the
various parity proofs that exist. As the number of bases increases, the proofs can come in a variety of types,
beginning with only rays of multiplicity 2 and progressing to proofs with a steadily increasing number of
rays of multiplicity 4 (the dots · · · indicate a range of proofs in which two rays of multiplicity 2 are traded
for one ray of multiplicity 4 as one proceeds from left to right). There are 102 different proofs in this table,
all of which are critical and span more than one 600-cell

Number of bases Parity proofs
19 382
21 422
23 462, 44214, 42224
25 502, 48214, 46224
27 542, 52214, 50224, 48234, 46244
29 582, · · · , 46264
31 622, · · · , 46284
33 662, · · · , 462104
35 702, · · · , 462124
37 742, · · · , 462144
39 782, · · · , 482154
41 822, · · · , 482174

Table 6 A 382-194 parity proof, involving 38 rays that each occur twice among 19 bases. The 600-cell to
which any basis belongs is indicated to its left, with a pair of letters being used for the special bases that
belong to a pair of 600-cells

AB 13 14 15 16 AC 33 34 35 36 AD 45 46 47 48 BE 109 110 111 112
DE 233 234 235 236 A 52 15 48 34 A 51 35 16 45 A 47 33 50 13
A 36 49 46 14 E 49 300 179 111 E 235 50 294 172 E 169 120 299 231
E 169 51 233 296 E 299 110 180 52 E 119 230 300 172 E 53 230 296 112
E 119 180 55 234 E 179 236 53 120 E 55 294 109 231

Table 7 A 46224-254 parity proof. Rays 49 and 50 occur four times among the bases, and all the other
rays occur twice each. The label(s) of the 600-cell(s) to which each basis belongs is indicated to its left

AB 13 14 15 16 AC 33 34 35 36 AD 45 46 47 48 AE 57 58 59 60
BE 109 110 111 112 DE 233 234 235 236 A 52 15 48 34 A 51 35 16 45
A 47 33 50 13 A 36 49 46 14 E 49 300 179 111 E 235 50 294 172
E 289 240 119 51 E 113 236 57 298 E 115 230 174 52 E 109 60 239 171
E 49 231 113 176 E 239 50 120 292 E 119 230 300 172 E 59 120 295 174
E 177 231 289 58 E 233 110 176 292 E 179 240 115 294 E 295 234 49 171
E 171 50 298 112

4 Discussion

This paper has used the symmetries of the 120-cell to give a simple construc-
tion of the 300 rays and 675 bases associated with it (see Tables 1–3); it has
identified several subsets of the 675 bases that are quickly searched for par-
ity proofs (see Table 4); it has given a detailed account of the parity proofs in
one of the subsets (see Table 5); and it has listed three explicit examples of
the parity proofs (see Tables 6–8) so that any reader can see that they work as
advertised. The framework established in this paper can be used by others who
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Table 8 A 80214-414 parity proof. Ray 111 occurs four times among the bases, and all the other rays
occur twice each. The label(s) of the 600-cell(s) to which each basis belongs is indicated to its left

AB 13 14 15 16 AC 33 34 35 36 AD 41 42 43 44 AD 45 46 47 48
BB 73 74 75 76 BC 93 94 95 96 BE 109 110 111 112 CA 121 122 123 124
CC 145 146 147 148 DD 221 222 223 224 EE 293 294 295 296 A 52 15 48 34
A 51 35 16 45 A 47 33 50 13 A 36 49 46 14 B 112 75 108 94
B 111 95 76 105 B 107 93 110 73 B 96 109 106 74 C 124 147 180 166
C 123 167 148 177 C 179 165 122 145 C 168 121 178 146 D 221 44 165 106
D 223 166 105 42 D 107 168 43 222 D 167 224 41 108 E 49 300 179 111
E 173 296 117 58 E 235 50 294 172 E 229 180 59 291 E 289 240 119 51
E 115 230 174 52 E 169 120 299 231 E 235 178 117 54 E 229 111 293 56
E 119 230 300 172 E 59 120 295 174 E 177 231 289 58 E 299 56 173 240
E 115 54 169 291

wish to view carry out a more exhaustive search for parity proofs in the 120-
cell.

As mentioned in the introduction, parity proofs are interesting because they can
be used to devise experimental tests of quantum contextuality and also have a variety
of applications in quantum information processing. The 120-cell is the most com-
plicated member of a family that includes the 600-cell and the 24 Peres rays, but it
abounds in many parity proofs that are distinctly its own and not contained in any
of the smaller polytopes. The 120-cell (like the 600-cell and the Peres rays) can be
realized experimentally using a pair of qubits. From Eq(4) it is clear that all the
rays and bases of the 120-cell can be built up from the computational basis if one
has the ability to implement the gates represented by the operators U, V, W, X, Y
and their powers. This is a considerable experimental challenge, but it is not beyond
the realm of possibility. It would be nice to find other examples of tasks that can
be accomplished within the finite (but fairly large) universe of states and bases
provided by the 120-cell, as that might further spur its experimental realization.
Whether there are any practical applications or not, the proofs of quantum contex-
tuality made possible by the four-dimensional regular polytopes represent a charm-
ing encounter between classical geometry and quantum physics that does credit to
both.
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