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Abstract Bell’s Theorem from Physics 36:1–28 (1964) and the (Strong) Free Will
Theorem of Conway and Kochen from Notices AMS 56:226–232 (2009) both exclude
deterministic hidden variable theories (or, in modern parlance, ‘ontological models’)
that are compatible with some small fragment of quantum mechanics, admit ‘free’
settings of the archetypal Alice and Bob experiment, and satisfy a locality condition
akin to parameter independence. We clarify the relationship between these theorems
by giving reformulations of both that exactly pinpoint their resemblance and their
differences. Our reformulation imposes determinism in what we see as the only con-
sistent way, in which the ‘ontological state’ initially determines both the settings and
the outcome of the experiment. The usual status of the settings as ‘free’ parameters
is subsequently recovered from independence assumptions on the pertinent (random)
variables. Our reformulation also clarifies the role of the settings in Bell’s later gen-
eralization of his theorem to stochastic hidden variable theories.
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1 Introduction

Though not really new,1 the (Strong) Free Will Theorem of Conway and Kochen
[13,14] is one of the sharpest and most interesting results that give constraints on
determinism. It does so by proving that determinism is incompatible with a number
of a priori desirable assumptions, including a small fragment of quantum mechanics
(viz. the theory of two epr-correlated spin-one particles), the free choice of settings
of an epr-style bipartite experiment involving such particles, and a locality condition
called min. The latter has a long pedigree, arguably going back to epr, but it was first
stated quite clearly by Bell:2

‘The vital assumption is that the result B for particle 2 does not depend on the
setting �a of the magnet for particle 1, nor A on �b.’ [3, p. 196].

Also a closer study shows that Bell’s Theorem on deterministic hidden variable theories
[3] and the (Strong) Free Will Theorem appear to achieve a very similar (if not identical)
goal under strikingly similar assumptions, which prompts the question what exactly
their mutual relationship is. Curiously, despite the stellar fame of Bell’s paper [3]
(which according to Google Scholar had about 8,500 citations as of May 2014) and
the considerable attention that also the Free Will Theorem has received (e.g., [16,21]),
as far as we are aware, there has been little research in this precise direction.3

Hence the main aim of this paper is to clarify the relationship between Bell’s The-
orem [3] and the Free Will Theorem. But in doing so, we will en passant attempt to
resolve an issue that has troubled Bell as well as Conway and Kochen, namely the
theoretical status of parameter settings. As pointed out by Conway and Kochen [14]
themselves, it is odd to assume determinism for the physical system under considera-

1 Analogous earlier results were obtained, in chronological order, by Heywood and Redhead [20], Stairs
[34], Brown and Svetlichny [7], and Clifton [11] (of which only [20] was cited by Conway and Kochen).
2 Bell [3] even attributes it to Einstein. See [37] for a detailed analysis of the way this condition is actually
used by Bell in [3,5], and of the way it has been (mis)perceived by others. In particular, one should
distinguish it from the locality condition usually named after Bell [6]. The latter, also called local causality,
is a conjunction of two (probabilistic) notions that are now generally called Parameter Independence (pi)
and Outcome Independence (oi); see [8,22,23,27,31,33]. The latter is automatically satisfied in the type
of deterministic theories studied in [3,13,14], upon which the former reduces to the condition stated in the
main text above, but now conditioned on certain values of the hidden variables. Note that our definition of
the term pi will be different from the literature so far, though in the same spirit.
3 The only significant exception we could find is the small and otherwise interesting book by Hemmick and
Shakur [17], whose scathing treatment of the Free Will Theorem is somewhat undermined by their claim (p.
90) that the assumption of determinism follows from the other assumptions in the Strong Free Will Theorem
(notably pi and perfect correlation). This seems questionable [37]: either Bell’s (later) locality condition
(i.e., pi plus oi) in conjunction with perfect correlation implies determinism, or pi plus determinism implies
oi (and hence Bell Locality). Perhaps our view (which is certainly shared by Conway and Kochen!) that
the assumptions of the Strong Free Will Theorem have been chosen quite carefully is clearer from our
reformulation below than from even their second paper [14] (not to speak of their first [13]). Indeed, if
valid, the objection of Hemmick and Shakur could just as well be raised against Bell’s Theorem [3], where
it would be equally misguided if both results are construed as attempts to put constraints on determinism
in the first place. Our treatment of parameter settings will also be different from [17].
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tion but not for the experimenters, so that the contradiction that proves their theorem
seems almost circular.4

In Bell’s later work, there has been a similar tension between the idea that the
hidden variables (in the pertinent causal past) should on the one hand include all
ontological information relevant to the experiment, but on the other hand should leave
Alice and Bob free to choose any settings they like; see especially [28,32] for a fine
analysis of Bell’s dilemma (by some of his greatest supporters).5 We will show that
in both contexts of Bells’ Theorem (i.e. either deterministic or stochastic) this issue
can be resolved in a straightforward way by initially including the settings among
the random variables describing the experiment, after which they are ‘liberated’ by
suitable independence assumptions.6

The plan of our paper is as follows. In Sect. 2 we present a version of Bell’s original
theorem [3] that addresses the above issues. As a warm-up for what is to come, in Sect. 3
we extend this version to the spin-one case, followed in Sect. 4 by a reformulation of
the Strong Free Will Theorem [14] in the same spirit. Our final Sect. 5 goes beyond
our primary goal of finding constraints on determinism, but has been included in order
to show that our treatment of parameter settings through random variables also applies
to Bell’s later results on stochastic hidden variable theories [6,8,10,15,22,27,31,37].

Our conclusion is that the Strong Free Will Theorem uses fewer assumptions than
Bell’s Theorem [3], as no appeal to probability theory is made. This comes at a price,
though. First, in the absence of an Aspect-type experiment using spin-one particles,
the former so far lacks the experimental backing of the latter. Second, because of its
dependence on the Kochen–Specker Theorem, the Strong Free Will Theorem might
lack finite precision robustness, cf. [1,2,18], though this threat recently seems to have
been obviated [19].

2 Bell’s (1964) Theorem Revisited

The setting of Bell’s Theorem in its simplest form is given by the usual epr-Bohm
experiment (with photons) [8], in which Alice and Bob each choose a setting A =
α ∈ X A and B = β ∈ X B , respectively, where X A and X B are finite sets whose
elements are angles in [0, π). For the theorem, it is even enough to assume X A =
{α1, α2} and X B = {β1, β2}, for suitable αi and β j (see below). Alice and Bob each
receive one photon from an epr-correlated pair, and determine whether or not it passes
through a polarizer whose principal axis is set at an angle α or β relative to some
reference axis in the plane orthogonal to the direction of motion of the photon pair.7

If Alice’s photon passes through she writes down F = 1|A = α, and if not she writes
F = 0|A = α. Likewise, Bob records his result as G = 1|B = β or G = 0|B = β.

4 This even led them to their curious way of paraphrasing their theorem as showing that ‘If we humans
have free will, then elementary particles already have their own small share of this valuable commodity’.
5 See also [6,10] and most recently [26] for the interpretation of hidden variables as ontological states.
6 See also Colbeck and Renner [12] for at least the first step of this strategy in the context of stochastic
hidden variable theories. Using settings as labels, on the other hand, is defended in e.g. [8,10,32].
7 Equivalently, α and β could stand for the corresponding unit vectors �a and �b, defined up to a sign.
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Repeating this experiment, they determine empirical probabilities PE for all possible
outcomes through the frequency interpretation of probabilities, which they denote by
PE (F = λ|A = α) and PE (F = μ|B = β), or, having got together and compared
their results, by PE (F = λ,G = μ|A = α, B = β), where λ,μ ∈ {0, 1}. If the
photon pair is prepared in the epr-correlated state |ψepr〉 = (|0〉|0〉 + |1〉|1〉)/√2
(taking into account helicity only), they find (as confirmed by quantum mechanics):8

PE (F �= G|A = α, B = β) = sin2(α − β). (2.1)

The question, then, is whether these probabilities are ‘intrinsic’ or ‘irreducible’, as
claimed by mainstream quantum mechanics, or instead are just a consequence of our
ignorance. To make this precise, we define the latter case, i.e. determinism, at least
in our present context, adding the other assumptions of Bell’s Theorem [3] along the
way.

Definition 2.1 In the context of the epr-Bohm experiment (with photons):

• Determinism means that there is a state space X with associated functions

A : X → X A, B : X → X B, F : X → {0, 1},G : X → {0, 1}, (2.2)

which completely describe the experiment in the sense that some state x ∈ X
determines both its settings α = A(x), β = B(x) and its outcome λ = F(x), μ =
G(x).

• Probability Theory means that the above set X can be upgraded to a probability
space (X, �, P), carrying the above functions A, B, F,G as random variables,9

so that the empirical probabilities are reproduced as conditional joint probabilities
through10

PE (F = λ,G = μ|A = α, B = β) = P(F = λ,G = μ|A = α, B = β).

(2.3)
Furthermore, in terms of a postulated additional random variable Z : X → X Z :

• Parameter Independence means that F = F(A, Z) and G = G(B, Z), in that
there are measurable functions F̂ : X A × X Z → {0, 1} and Ĝ : X B × X Z →
{0, 1} for which F(x) = F̂(A(x), Z(x)) and G(x) = Ĝ(B(x), Z(x)) (P-almost
everywhere).

• Freedom means that (A, B, Z) are probabilistically independent relative to P .11

8 Here PE (F �= G|A = α, B = β) ≡ PE (F = 0,G = 1|A = α, B = β) + PE (F = 1,G = 0|A =
α, B = β). The complete statistics are: PE (F = 1,G = 1|A = α, B = β) = PE (F = 0,G = 0|A =
α, B = β) = 1

2 cos2(α − β) and PE (F = 0,G = 1|A = α, B = β) = PE (F = 1,G = 0|A = α, B =
β) = 1

2 sin2(α − β).
9 This formulation incorporates the assumption that P is independent of A, B, F,G, and vice versa.
10 Here P(F = λ,G = μ|A = α, B = β) ≡ P(F = λ,G = μ, A = α, B = β)/P(A = α, B = β) and
P(F = λ,G = μ, A = α, B = β) ≡ P({x ∈ X | F(x) = λ,G(x) = μ, A(x) = α, B(x) = β}), etc.
11 On the usual definition, this also implies that the pairs (A, B), (A, Z), and (B, Z) are independent.
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Here Z is the traditional ‘hidden variable’ space that, in the spirit of Bell [6,28,32],
carries exactly the ‘ontological’ information (including e.g. the photon variables) that
is:

(i) Sufficiently complete for the outcome of the experiment to depend on (A, B, Z)
alone;

(ii) Independent of the settings (A, B), in the pertinent probabilistic sense.

These conditions stand (or fall) together: without (ii), i.e., Freedom, one could take
X Z = X and Z = id, whereas without (i), X Z could be a singleton. Parameter
Independence in fact sharpens i), which a priori might have been F = F(A, B, Z)
and G = G(A, B, Z), to the effect that Alice’s outcome is independent of Bob’s,
given A and Z (and vice versa) [3].

Our reformulation of Bell’s Theorem [3], then, is as follows.

Theorem 2.2 Determinism, Probability Theory, Parameter Independence, Freedom,
and Nature (i.e. the outcome (2.1) of the epr-Bohm experiment) are contradictory.

Proof Determinism, Probability Theory, and Parameter Independence imply12

P(F = λ,G = μ|A = α, B = β) = PAB Z (F̂ = λ, Ĝ = μ| Â = α, B̂ = β), (2.4)

where the function Â : X A × X B × X Z → X A is just projection on the first coordi-
nate, likewise the function B̂ : X A × X B × X Z → X B is projection on the second,
and PAB Z is the joint probability on X A×X B ×X Z induced by the triple (A, B, Z) and
the probability measure P . Similarly, let PZ be the probability on X Z defined by Z and
P , and define the following random variables on the probability space (X Z , �Z , PZ ):

F̂α(z) := F̂(α, z); (2.5)

Ĝβ(z) := Ĝ(β, z). (2.6)

Freedom then implies (indeed, is equivalent to the fact) that PAB Z is given by a product
measure on X A × X B × X Z (cf. [24, Lemma 3.10]). A brief computation then yields

PAB Z (F̂ = λ, Ĝ = μ| Â = α, B̂ = β) = PZ (F̂α = λ, Ĝβ = μ), (2.7)

and hence, from (2.4),

P(F = λ,G = μ|A = α, B = β) = PZ (F̂α = λ, Ĝβ = μ). (2.8)

Adding the Nature assumption, i.e. (2.1), then gives the crucial result

PZ (F̂α �= Ĝβ) = sin2(α − β). (2.9)

12 This is true even if F = F(A, B, Z) and G = G(A, B, Z) rather than F = F(A, Z) and G = G(B, Z).
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However, any four {0, 1}-valued random variables must satisfy the (‘Boole’) inequality
[30]

PZ (F̂α1 �= Ĝβ1) ≤ PZ (F̂α1 �= Ĝβ2)+ PZ (F̂α2 �= Ĝβ1)+ PZ (F̂α2 �= Ĝβ2),

(2.10)

which can be proved directly from the axioms of (classical) probability theory. But
for suitable values of (α1, α2, β1, β2) this inequality is violated by (2.9). Take, for
example, α2 = β2 = 3θ , α1 = 0, and β1 = θ . The inequality (2.10) then assumes the
form f (θ) ≥ 0 for f (θ) = sin2(3θ)+ sin2(2θ)− sin2(θ). But this is false for many
values of θ ∈ [0, 2π ]. ��

As already mentioned, in the usual treatment of Bell’s Theorem (either his deter-
ministic version [3,8] or his stochastic version [6,8,10,15,22,27,31,36]), the hidden
variable λ corresponds to our z ∈ X Z rather than x ∈ X . It is the distinction between
X Z and the ‘super-deterministic’ state space X that allowed us to give a consistent
formulation of Determinism without jeopardizing Freedom. As shown above, this
eventually enables one to treat the apparatus settings as parameters rather than as
random variables.

3 Bell’s (1964) Theorem for Spin-one

The Free Will Theorem relies on a variation of the epr-Bohm experiment in which
C

2 is replaced by C
3; specifically, photons with the helicity degree of freedom only

(or electrons with spin only) are replaced by massive spin-one particles. Although
such a ‘Free Will Experiment’ has never been performed (though it might be, one
day), quantum mechanics gives unambiguous predictions that may be used in lieu of
measurement outcomes. Compared to the set-up of the previous section, the following
changes are to be made:

• The settings are now given by A = a and B = b, where a = [�a1, �a2, �a3] and
b = [�b1, �b2, �b3] are frames in R

3, that is, orthonormal bases (�a1, �a2, �a3) etc. in
which each unit vector is defined up to a minus sign so that, e.g., [−�a1, �a2,−�a3] =
[�a1, �a2, �a3].

• The outcomes are now given by F = λ ∈ X F , G = μ ∈ XG , where

X F = XG = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. (3.1)

• If we write F = (F1, F2, F3) and G = (G1,G2,G3), so that e.g. F = (1, 1, 0)
corresponds to F1 = F2 = 1, F3 = 0, the relevant outcome of the experiment in
the epr-state (defined in terms of the usual spin-1 basis (|0〉, | ± 1〉) of C

3)

|ψepr〉 = (| − 1〉| − 1〉 + |0〉|0〉 + |1〉|1〉)/√3, (3.2)
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at least as predicted by quantum mechanics,13 is given by14

PQM (Fi �= G j |A = a, B = b) = 2

3
sin2 θ�ai ,�b j

(i, j = 1, 2, 3). (3.3)

Here θ�a,�b is the angle between �a and �b, so that cos2 θ�a,�b = 〈�a, �b〉2, cf. (2.1). Note

that the right-hand side only depends on (�ai , �b j ) rather than on all six vectors
(a,b).

Along the same lines as Theorem 2.2, and subject to analogous definitions,15 one
proves:

Theorem 3.1 Determinism, Probability Theory, Parameter Independence, Freedom,
and Nature (i.e. the outcome (3.3) of the Free Will Experiment) are contradictory.

For future reference, we also record the following consequence of (3.3):16

PQM (Fi = G j |Ai = B j ) = 1. (3.4)

In other words, if the settings (a,b) have �ai = ±�b j , then with probability one the
measurements Fi and G j have the same outcomes (i.e. either Fi = G j = 0 or
Fi = G j = 1).

4 The Strong Free Will Theorem Revisited

The Strong Free Will Theorem [14] historically arose as a refinement of the Kochen–
Specker Theorem [4,25], in which the assumption of Non-contextuality in a single-
wing experiment on a (massive) spin-one particle was replaced by the assumption
of Parameter Independence in the double-wing experiment described in the previous
section. In turn, the Kochen–Specker Theorem (like Gleason’s Theorem, from which
it follows) freed von Neumann’s no-go result for hidden variable theories [35] from its
controversial linearity assumption (see [9] for a balanced discussion). Thus the Strong
Free Will Theorem of 2009 may be seen as a finishing touch of the development started

13 What is being measured here by say Alice with setting a is the triple (〈�a1, �J 〉2, 〈�a2, �J 〉2, 〈�a3, �J 〉2),
where �J is the angular momentum operator for spin one. Each operator 〈�ai , �J 〉 has spectrum {−1, 0, 1}, so
each square 〈�ai , �J 〉2 can be 0 or 1. Since �J 2 = 2, one has 〈�a1, �J 〉2 +〈�a2, �J 〉2 +〈�a3, �J 〉2 = 2, which gives
(3.1).
14 The complete (theoretical) statistics are: PQM (Fi = 1,G j = 1|A = a, B = b) = 1

3 (1 + 〈�ai , �b j 〉2),

PQM (Fi = 0,G j = 0|A = a, B = b) = 1
3 〈�ai , �b j 〉2, PQM (Fi = 1,G j = 0|A = a, B = b) =

1
3 (1 − 〈�ai , �b j 〉2), and PQM (Fi = 0,G j = 1|A = a, B = b) = 1

3 (1 − 〈�ai , �b j 〉2). See footnote 8 for
notation like P(Fi �= G j |·).
15 See Definition 4.1 below for Determinism, and Definition 2.1 for the others, mutatis mutandis.
16 Here PQM (Fi = G j |Ai = B j ) denotes PQM (Fi = 0,G j = 0|Ai = B j ) + PQM (Fi = 1,G j =
1|Ai = B j ), where the setting Ai = B j stands for (A = a, B = b) subject to �ai = ±�b j . It follows from

(3.3) or the previous footnote that PQM (Fi = G j |Ai = B j ) = 1
3 (1 + 2 cos2 θ�ai ,�b j

), which for �ai = ±�b j

equals unity.

123



788 Found Phys (2014) 44:781–791

by von Neumann in 1932. Ironically, we are now going to place the Strong Free Will
Theorem in the Bell tradition, which emphatically arose in opposition (if not hostility)
to the work of von Neumann!

Roughly speaking, the Strong Free Will Theorem removes the assumption of Prob-
ability Theory from Bell’s Theorem [3] (in our spin-one version, i.e., Theorem 3.1),
but in order to achieve this, some of the assumptions now acquire a somewhat different
meaning.

Definition 4.1 In the context of the Free Will Experiment of the previous section:

• Determinism means that there is a state space X with associated functions

A : X → X A, B : X → X B, F : X → X F ,G : X → XG,

where X A = X B is the set of all frames in R
3, and X F = XG is given by (3.1),

which completely describe the experiment in the sense that each state x ∈ X
determines both its settings a = A(x),b = B(x) and its outcome λ = F(x), μ =
G(x).
Furthermore, in terms of a postulated additional random variable Z : X → X Z :

• Parameter Independence means that F = F(A, Z) and G = G(B, Z), i.e., for
all x ∈ X one has F(x) = F̂(A(x), Z(x)) and G(x) = Ĝ(B(x), Z(x)) for certain
functions F̂ : X A × X Z → X F , Ĝ : X B × X Z → XG .

• Freedom means that (A, B, Z) are independent in the sense that for each
(a,b, z) ∈ X A × X B × X Z there is an x ∈ X for which A(x) = a, B(x) = b, and
Z(x) = z.

Thus the main change lies in the Freedom assumption, which simply says that the
function A × B × Z : X → X A × X B × X Z , x �→ (A(x), B(x), Z(x)), is surjective.
The goal of this assumption is to remove any potential dependencies between (or
constraints on) the variables (a,b, z), and hence between the physical system Alice and
Bob perform their measurements on, and the devices they perform their measurements
with.

Also, rather than the probabilistic outcome (3.3) of the Free Will Experiment, we use
its corollary (3.4), construed non-probabilistically (i.e., probability one is replaced by
deterministic certainty): writing F̂ = (F̂1, F̂2, F̂3) and Ĝ = (Ĝ1, Ĝ2, Ĝ3), analogous
to F and G, so that F̂i : X A × X Z → {0, 1} and Ĝ j : X B × X Z → {0, 1}, Nature
reveals that:17

�ai = �b j ⇒ F̂i (�a1, �a2, �a3, z) = Ĝ j (�b1, �b2, �b3, z). (4.1)

Our reformulation of the Strong Free Will Theorem [7,11,14,20,34], then, is as fol-
lows.

Theorem 4.2 Determinism, Parameter Independence, Freedom, and Nature (here
represented by the outcome (4.1) of the Free Will Experiment) are contradictory.

17 To keep matters simple, we will not be bothered with the notational difference between frames
[�a1, �a2, �a3] and orthonormal bases (�a1, �a2, �a3), and similarly for b, until the end of the proof.

123



Found Phys (2014) 44:781–791 789

Proof The Freedom assumption allows us to treat (a,b, z) as free variables, a fact
that will tacitly be used all the time. First, take i = j in (4.1). This shows that
F̂i (�a1, �a2, �a3, z) only depends on (�ai , z), whilst Ĝ j (�b1, �b2, �b3, z) only depends on
(�b j , z). Hence we write F̂i (�a1, �a2, �a3, z) = F̃i (�ai , z), etc. Next, taking i �= j in
(4.1) shows that F̃1(�a, z) = F̃2(�a, z) = F̃3(�a, z). Consequently, the function F̂ :
X A × X Z → X F is given by

F̂(�a1, �a2, �a3, z) = (F̃(�a1, z), F̃(�a2, z), F̃(�a3, z)), (4.2)

Combined with its value set (3.1), this shows that for each fixed z, F̂ is a frame function:
to each frame a it assigns one of the triples in (3.1), in such a way that if two different
frames a and a′ overlap in that �a′

i = �a j for some i, j , then F̂i (�a′
i , z) = F̂j (�a j , z).

However, such a function does not exist by the Kochen–Specker Theorem [25,29]. ��
Through the proof of the Kochen–Specker Theorem, this proof shows that a suitable

finite set of frames will do for X A = X B , a simplification that is not available in
Theorem 3.1!

5 Bell’s Theorem Revisited

To close, we show that what is usually called Bell’s Theorem [6,8,10,15,22,27,31,36],
in which Determinism is not assumed, may also be reformulated using our treatment of
apparatus settings as random variables. We restrict ourselves to generalizing Theorem
2.2; Theorem 3.1 may be adapted to stochastic hidden variables in an analogous way.

Definition 5.1 In the context of the epr-Bohm experiment (with photons):

• Probability Theory means that there is a probability space (X, �, P), carrying
random variables (2.2), so that the empirical probabilities are reproduced as con-
ditional joint probabilities through (2.3).

• Bell-Locality means that there is a fifth random variable Z : X → X Z for which

P(F = λ,G = μ|A = α, B = β, Z = z) = (5.1)

P(F = λ|A = α, Z = z) · P(G = μ|B = β, Z = z). (5.2)

• Freedom means that, for this fifth variable, P(Z = z|A=α, B =β)= P(Z = z).

Theorem 5.2 Probability Theory, Bell-Locality, Freedom, and Nature are contradic-
tory, where Nature is represented through the outcome (2.1) of the epr-Bohm experi-
ment.

Proof Introduce a new probability space X̃ Z = [0, 1] × [0, 1] × X Z , with elements
(s, t, z), and probability measure d P̃Z (s, t, z) = ds · dt · d PZ (z). On X̃ Z , define
random variables

F̃α(s, t, z) = χ[0,P(F=1|A=α,Z=z)](s); (5.3)

G̃β(s, t, z) = χ[0,P(G=1|B=β,Z=z)](t), (5.4)
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a move inspired by [36]. Using all assumptions of the theorem, one then finds

P(F = λ,G = μ|A = α, B = β) = P̃Z (F̃α = λ, G̃β = μ), (5.5)

cf. (2.8), so that the proof may be completed exactly as in the case of Theorem 2.2. ��
Acknowledgments The authors are indebted to Jeff Bub, Jeremy Butterfield, Dennis Dieks, Richard Gill,
Hans Maassen, and Matt Leifer for various comments on this work (including predecessors).
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