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Abstract We describe a new class of experiments designed to probe the founda-
tions of quantum mechanics. Using quantum controlling devices, we show how to
attain a freedom in temporal ordering of the control and detection of various phe-
nomena. We consider wave–particle duality in the context of quantum-controlled and
the entanglement-assisted delayed-choice experiments. Then we discuss a quantum-
controlled CHSH experiment and measurement of photon’s transversal position and
momentum in a single set-up.

Keywords Quantum control · Wave–particle duality · Complementarity ·
Entanglement

L. C. Céleri · R. M. Gomes
Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil

R. Ionicioiu
Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering,
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1 Introduction

The Bohr–Einstein discussions on the nature of quantum theory [1,2] were respon-
sible for the appearance of the first modern gedanken experiments. These thought
experiments became the weapons of choice in the struggle of our classical intu-
ition with quantum mechanics. In the last decades they developed into common
lab procedures. Former paradoxes of quantum foundations are now resources of
quantum information science [3,4]. This new technological ability allows refining
of now classic experiments [5–8], as well as probing other aspects of quantum
foundations.

Wave–particle duality, superposition and entanglement are just some of the quan-
tum concepts that run afoul of our classical expectations. Hidden-variable (HV) the-
ories are proposed to remove or explain these non-classical features. Moreover, an
additional set of rules (measurement description) draws quantum possibilities into an
irreversible classical record [5,9]. This happens despite measuring devices being built
from quantum constituents.

In the von Neumann’s discussion of measurement [10] a quantum system is used to
observe the preceding one, until the chain of systems is cut by a classical observer (or a
device). Keeping one link in this chain makes quantum controlling devices to perform
the switching between different classical set-ups. The first example of a quantum
control is a radioactive atom in the Schrödinger’s cat gedankenexperiment [11]. By
correlating decayed and undecayed states of an atom with dead and alive states of a
cat, it demonstrated non-classical properties of entanglement. A modern example is a
superposition of motional states of a mirror [12], which in turn spurred a lot of work
on quantum control in nano- and mesoscopic systems [13,14].

Quantum control schemes involve a lot of realization-dependent details. This makes
it hard to disentangle conceptual issues from the hardware problems. In this paper
we show how quantum computational circuits [3,4,15] can help in designing and
analyzing foundational experiments.

2 Complementarity and Control with Quantum Circuits

Familiar concepts—“particle” or “wave”—represent only one aspect of quantum
objects. Although we observe single-photon interference (a definite wave-like behav-
iour), the pattern is produced click-by-click, in a discrete, particle-like manner
[7,16,17]. Hence we adopt, as operational definitions, the notions of ‘wave/particle’ to
stand for ability/inability to produce interference [15,18]. As illustrated in Fig.1a, these
properties are observed using two mutually exclusive set-ups of the Mach–Zehnder
interferometer (MZI).

Bohr’s complementarity principle [19] ascribes a fundamental significance to this
situation. “The information provided by different experimental procedures that in
principle cannot . . . be performed simultaneously, cannot be represented by any math-
ematically allowed quantum state of the system” [20].
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Fig. 1 Schematics of the delayed-choice experiments (adapted from [15]). a MZI. A quantum random
number generator (QRNG) [16] determines weather BS2 is inserted (the output is 1) or not (the output is 0).
b The equivalent quantum network. An ancilla (red line), initially prepared in the state |+〉 = (|0〉+|1〉)/√2
then measured, acts as QRNG. c Delayed-choice with a quantum beamsplitter. A quantum device plays the
role of the QRNG controling the Hadamard gate; this makes possible to delay the measurement revealing its
output after the application of the H gate. d Biasing the QRNG by preparing the ancilla in an arbitrary state
cosα|0〉 + sin α|1〉 is crucial in interpreting the experimental results as supporting wave–particle duality
(Color figure online)

Wheeler’s delayed-choice experiment1 [21,22] is designed to eliminate this possi-
bility. As shown in Fig.1a one randomly chooses whether or not to insert the second
beamsplitter only when the photon is already inside the interferometer and before it
reaches BS2.

The rationale behind the delayed-choice is to avoid a possible causal link between
the experimental setup and photon’s behaviour: the photon should not “know” before-
hand how to behave. The choice of inserting or removing BS2 is controlled by a random
number generator.

A quantum circuit model [3,4] enables us to analyze the gedanken experiment at a
higher level of abstraction and to understand the information flow between different
subsystems. The delayed-choice experiment [15,24–26] is equivalent to the quantum
network in Fig. 1b, where Hadamard gates H play the role of beamsplitters; we call
the top (black) line the photon and the bottom (red) line the ancilla. The quantum
random number generator (QRNG) is modelled by an ancilla prepared in the equal-
superposition state |+〉 = 1√

2
(|0〉+|1〉), then measured; the result of this measurement

(0 or 1) controls if BS2 is inserted or not. Classical control after the measurement of
the ancilla in Fig. 1b is equivalent to quantum control before the measurement of the
ancilla, Fig. 1c.

This seemingly innocuous transformation radically changes the setup and has two
profound implications. First, since now we have a quantum beamsplitter in a super-

1 It was first discussed by von Weizsäcker [23] and briefly mentioned by Bohr in his review of the Einstein–
Bohr discussions [19].
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position of being present or absent, the interferometer is in a superposition of being
closed or open. Second, quantum control allows us to reverse the temporal order of the
measurements. We can now detect the photon before the ancilla, i.e., before finding
out the interferometer is open or closed. This implies that the selection if the photon
behaves as a particle or as a wave is made after it has been already detected.

Quantum control thus allows us to explore a regime outside the classical realm:
in any classically-controlled experiment the choice of inserting or not the second
beamsplitter has to be made before the photon is detected. Since the photon and the
ancilla interact at the C(H) gate, the ancilla is always prepared before the photon
reaches BS2.

In Fig. 1d, the photon–ancilla system starts in the state |�〉 = cosα|0〉 + sin α|1〉;
the final state is

|� ′〉 = cosα|p〉|0〉 + sin α|w〉|1〉, (1)

where the wavefunctions |p〉 = 1√
2
(|0〉 + eiϕ |1〉) and |w〉 = eiϕ/2(cos ϕ2 |0〉 −

i sin ϕ
2 |1〉) describe particle and wave behaviour, respectively. The two states are in

general not orthogonal 〈p|w〉 = 1√
2

cosϕ. Equation (1) implies that if the ancilla is
measured to be |0〉 (|1〉), the interferometer is open (closed) and the photon behaves
like a particle (wave).

The interference pattern measured by the photon detector D is I1(ϕ) =
tr (ρ1|1〉〈1|), with ρ1 = tr 2|ψ〉〈ψ | = 1

2 (|p〉〈p|+|w〉〈w|) the reduced density matrix
of the photon. The visibility of the interference pattern is V = (Imax − Imin)/(Imax +
Imin), where the min/max values are calculated with respect to ϕ. If the interferometer
is closed, the photon shows a wavelike behaviour with Iw(ϕ) = sin2 ϕ

2 and visibility
V = 1. For an open interferometer the photon behaves like a particle and Ip(ϕ) = 1

2 ,
resulting in V = 0. For the entangled state (1) the result is

I1(ϕ, α) = Ip(ϕ) cos2 α + Iw(ϕ) sin2 α. (2)

Without correlating the photon data with the ancilla we observe an interference pattern
with reduced visibility V = sin2 α: the photon has a mixed behaviour between a
particle and a wave. On the other hand, if we do correlate the photon with the ancilla
we observe either a perfect wave-like behaviour (ancilla |1〉) or a particle-like one
(ancilla |0〉). By varying α we have the ability to modify continuously the interference
pattern, morphing from wave to particle patterns (Fig. 2).

Before discussing the interpretation of this experiment we note that unlike its
classically-controlled counterpart, no spacelike separation between the ancilla (taking
on the role of a QRNG) and the photon is possible. We will discuss the consequences
of this failure in Sect. 4.

3 Hidden Variable Models

How do we know that, for example, the delayed-choice experiment rules out the
wave–particle dichotomy? Hidden variables help to obtain an answer. To this end we
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introduce a binary hidden variable λ = p,w that represents randomly created photons
that are “really” particles or waves. A more sophisticated construction is discussed in
[27].

In dealing with HV theories we assume the standard conditions for probability distri-
butions; for all variables i, j we have: p(i) = ∑

j p(i, j) and p(i, j) = p(i | j)p( j) =
p( j |i)p(i). A hidden variable theory should be

(i) adequate, i.e predict the correct quantum probabilities,

q(a, b, . . . |A, B, . . .) =
∑

λ

p(a, b, . . . |A, B, . . . , λ)p(λ|A, B, . . .), (3)

where A, B, . . . are measurement set-ups and a, b, . . . the respective measure-
ment results. For the experiments of Fig. 1 it means

q(a, b) ≡ p(a, b) =
∑

λ

p(a|b, λ) p(b|λ) p(λ). (4)

Typically a number of additional assumptions of various strength are made (see
[30] for their discussion and interrelations). While determinism is one of the
key assumptions in the analysis of [27], it is not required in dealing with the
experiments of Fig. 1. However, we assume that

(ii) a HV model satisfies λ-independence if for all A, A′, B, B ′, . . .

p(λ|A, B, . . .) = p(λ|A′, B ′, . . .), (5)

where A and A′ are two different set-ups of the same measurement. This asserts
that the process determining the value of the hidden variable is independent of
which measurements are chosen. A spacelike separation in Bell-type or delayed-
choice experiments, together with an assumption of absence of superluminal
propagation, are the rationale for considering this property enforced.
We consider the requirements of “being a wave” and “being a particle” as
“real objective properties”. This is a specific example of constraining proba-
bility distributions of a HV model to satisfy particular classical expectations
of a system’s behaviour. In this case the HV λ determines the behaviour: par-
ticle in an open interferometer (b = 0) and wave in a closed MZI (b = 1).
Hence

(iii) wave–particle objectivity (or realism) constrains the conditional distributions
as

p(a|b=0, λ=p)=
(

1

2
,

1

2

)

, p(a|b=1, λ=w)=
(

cos2 ϕ

2
, sin2 ϕ

2

)
, (6)

respectively. Note that it is a weaker requirement than determinism, where the
knowledge of HV determines the outcomes.
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4 Analysis of the Delayed-Choice Experiments

4.1 Assignment of Probabilities

The behaviour of a wave (λ = w) in an open (b = 0) and of a particle (λ = p)
in a closed (b = 1) interferometer are unconstrained by (iii). We denote these two
unknown distributions by x and y, respectively

p(a|b = 0, λ = w) = (x, 1 − x), p(a|b = 1, λ = p) = (y, 1 − y). (7)

As we find below, potentially awkward questions about the meaning of x and y do
not arise.

We assume that the source randomly and independently emits particle- or wave-like
photons with probability p(p) = f and p(w) = 1 − f . The probability p(a, b, λ)
assignments are completed by using the conditional probability distributions of the
ancilla b and the hidden variable λ:

p(b|λ = p) = (z, 1 − z), p(b|λ = w) = (v, 1 − v) (8)

satisfying the consistency condition p(b) = ∑
λ p(b|λ)p(λ).

4.2 Contradiction

The observed (marginal) probability distribution of the ancilla/QRNG q(b) is

q(b) = p(b) = (cos2 α, sin2 α). (9)

Writing explicitly the adequacy conditions Eq. (4) and manipulating the resulting
equations we obtain [15]:

v(1 − f )(x − 1

2
) = 0, (10)

f (1 − z)(y − cos2 ϕ

2
) = 0, (11)

z f + v(1 − f )− cos2 α = 0. (12)

Five of the non-trivial solutions of this system essentially restore wave–particle
duality, making behaviour of the photon indpendent of λ. The last solution is:

v = 0, z = 1, f = cos2 α (13)

with x, y undetermined. In other words, the source randomly emits particles and waves
with a distribution p(λ) = (cos2 α, sin2 α) identical to the probability distribution q(b)
of the ancilla, being thus perfectly correlated with MZI being open or closed.
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4.3 Implications

In a classically-controlled delayed-choice experiment spacelike separation (and the
subluminal propagation of signals) enforces p(b, λ) = p(b)p(λ), i.e., v ≡ z and
the last solution is impossible. In this case the conclusion is either a wave–particle
duality or deeper conspiratorial correlations (e.g. between λ and the settings of
QRNG).

In the quantum delayed-choice experiment if the ancilla B is considered as
part of the measuring device then a formal conclusion is that objectivity and λ-
independence are incompatible. On the one hand, it can be argued that our result
is stronger than the one obtained with a classically-controlled device, since the
required correlation is not with the experimental settings (the beam splitter is present
or absent), but with the set-up of the random number generator driving it. On the
other hand, having a quantum ancilla allows for its hidden variables to somehow
possibly compromise the conclusion. Our analysis [27] demonstrates that this is
not the case and provides experimental signatures for the refutation of possible HV
theories.

5 Further Applications of Quantum Control

5.1 Entanglement-Controlled Experiment

One way to ensure the quantumness of the controlling device is to use the entangled
ancilla [26], Fig. 3b. Replacing the ancilla by one qubit of a maximally entangled pair,
and introducing the bias α into the second half of the pair before it is measured, allows
for the ancilla qubit (loosely speaking) to “not have a state” before the interaction.

The HV description was extended to this set-up in [27]. It was shown that the
intuitive ideas of determinism, wave–particle objectivity and locality are mutually
inconsistent.

5.2 Bell-type Inequalities

A quantum control can be used in other experiments as well. For example, a modifi-
cation of the CHSH experiment [1,5,28] to include quantum control is rather simple
(Fig. 4). The gate X creates a desired pair, prepared in a maximally entangled (or
perhaps some other) state. On both Alice’s and Bob’s side the measurement direction
(A or A′ A, B or B ′ B) is chosen not by a random number generator, as in [6], but by
a quantum-controlled gate. Similar to the delayed-choice experiment, the entangled
photons are measured before the choices of the directions are made.

On the one hand such a design makes it impossible to talk about the measurement
settings determining HV. On the other hand, the entire system including two qubits
that Alice and Bob measure and the two ancillas, may be treated as a single entity thus
possibly allowing for a consistent HV theory [9,29].
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Fig. 2 Wave–particle morphing as described by Eq. (2). The dots represent experimental data adapted
from [25]. The values α = ±π

2 correspond to the wave, and α = 0 to the particle set-ups of the MZI. The
measurements were made in steps of π/8 in the bias α
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Fig. 3 Entanglement-controlled QDC. a We bias the QRNG by preparing the ancilla in an arbitrary state
cosα|0〉 + sin α|1〉. b A pair of maximally entangled qubits replaces a single ancilla. The first qubit serves
as a control for the Hadamard gate, while the bias α is introduced to the second

5.3 Position and momentum

Quantum controlled devices can be used in the paradigmatic case of position and
momentum observables [19]. Consider the specific case of the transversal degrees
of freedom of a paraxial and monochromatic light beam [31,32]. The study of the
electromagnetic field in the quantum regime is based on the quantization of the Fourier
components of the classical field, which are analogous to the position and momentum
operators of the harmonic oscillator. Regarding the spatial degrees of freedom of
the field, a similar quantization of the transversal position (x⊥) and momentum (q⊥)
variables can be accomplished [8,33]. The idea here is to get the information about
these complementary observables in a single setup by means of a quantum control,
similar to the development of Fig. 2. This can be done through the circuit shown in
Fig. 5.
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Fig. 4 Quantum-controlled
CHSH experiment. The gate X
stands for creation of an
entangled pair that is shared
between Alice and Bob. The
controlled A′, B′ gates are used
to select one of the two local
measurement set-ups. Type of
the measurements Alice and Bob
perform is determined only after
they detect their ancilae
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Fig. 5 Optical position/momentum measurement. a Quantum circuit. Two degrees of freedom (transversal
coordinate and polarization) of twin photons are used to prepare the hyperentangled state |�〉. The external
lines represent the spatial degrees of freedom while the internal ones stand for the polarization. b SPDC
can be used to generate |�〉. One of the photons is sent through a MZI. Due to the polarization beamsplitter
(PBS) the Fourier transform F is applied conditioned on polarization. The actual implementation must use
a suitable lens system in order to perform all the necessary operations on the continuous variables [34]

Consider a single photon whose transversal spatial profile is a continuous variable
quantum system and its polarization plays the role of the ancilla. The experiment starts
through the preparation of the ancilla in an equal superposition 1√

2
(|H〉+ |V 〉), while

the system is prepared in an arbitrary continuous variable state |ψ〉S (validity of this
approximation is discussed in [32]). Controlled by the state of the ancilla, a Fourier
transform will or will not be applied to the system, resulting in momentum or position
measurements, respectively. Therefore, focusing on the transversal degrees of freedom
only, the final state (before the measurement) can be described as

|� ′〉 = N
(|ψ〉S|H〉A + |ζ 〉S|V 〉A

)
, (14)

where ζ = F[ψ] is the Fourier transform of ψ(x), N is the normalization constant
and |i〉A (i = H, V ) represents the polarization state of the photon. Therefore, using
the ancilla qubit to switch between both measurements, we can obtain all the infor-
mation about the possible measurements of the complementary observables using the
same experimental apparatus. Note that the time-ordering of the measurements is not
important: we can measure the ancilla before, after or jointly with the photon.

A possible experimental realization of this protocol can be implemented using Spon-
taneous Parametric Down Conversion. In this case, the pump laser is sent through a
nonlinear crystal, generating photons with entanglement in the spatial and polariza-
tion variables of the field of light. A possible state obtained with this process is the
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hyper-entangled state (a state with entanglement in more than one degree of freedom):

|�〉 = N |ψ〉12
[|H〉1|H〉2 + |V 〉1|V 〉2

]
, (15)

where |ψ〉12 is the quantum state entangled on the transversal variables of the photons
and |H〉i (|V 〉i ) is the single photon state of photon i = 1, 2 with horizontal (vertical)
polarization. Photon-1 is then sent to the MZI in which the Fourier transform is imple-
mented in one of the arms (see Fig. 5). Photon-2 is detected and used as a trigger to
guarantee that we have a single photon in each run of the experiment. In this way, the
complete state before the measurement can be written as

|�〉 = N
[|ψ〉12|H〉1|H〉2 + |ζ 〉12|V 〉1|V 〉2

]
. (16)

|ζ 〉12 represents the state of both photons after the implementation of the Fourier
transform on photon-1. If we measure photon-2 in a specific position and scan photon-1
detector over the transversal direction, the result of the coincidence counting will be the
probability distribution of photon-1 in transversal position or transversal momentum,
depending of the polarization of photon-2. Therefore, the correlations between these
measurements contain all the information about both complementary variables, as can
be seen directly from Eq. (16).

6 Summary

The use of quantum control necessitates a reassessment of Bohr complementarity [35].
Partial information about complementary quantities can be obtained in a single exper-
iments [17]. Contrary to Bohr’s opinion, we do not have to change the experimental
setup in order to measure complementary properties [15]—we can measure both prop-
erties in a single experiment, provided that a component of the apparatus is a quantum
object in a superposition state. The behaviour is post-selected by the experimenter
after the photon has been detected, by correlating the data with the appropriate value
of the ancilla.

A quantum control makes impossible the spacelike separation between the device
settings and the system. A spacelike separation can be reintroduced by having an
additional classical device or creating sub-systems at mutually spacelike events [27].
Quantum delayed-choice experiments can force proponents of wave–particle objec-
tivity to accept the same level of conspiracy as their classically-controlled counterpart
experiments do with spacelike separation. Adding spacelike separation between the
photon and the ancilla leads to new results [27]. However, it is still not clear to what
extent its introduction is necessary in other experiments.

One of the consequences of the quantum control is the morphing between wave and
particle statistics, see Eq. (2). The measurements reported in Ref. [25] are in excellent
agreement with the theoretic prediction.

Quantum control showed its usefulness in the delayed-choice experiments. As it
should be clear from our presentation, it can be used in any experiment where several
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alternative set-ups are employed. We expect to see both conceptual surprises and
practical benefits stemming from its use.
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