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Abstract We study the acceleration and collisions of rigid bodies in special relativity.
After a brief historical review, we give a physical definition of the term ‘rigid body’
in relativistic straight line motion. We show that the definition of ‘rigid body’ in
relativity differs from the usual classical definition, so there is no difficulty in dealing
with rigid bodies in relativistic motion. We then describe

1. The motion of a rigid body undergoing constant acceleration to a given velocity.
2. The acceleration of a rigid body due to an applied impulse.
3. Collisions between rigid bodies.

Keywords Special relativity · Rigid body motion

1 Introduction

How can we write about rigid bodies in special relativity when some authorities deny
their existence in special relativity? For instance, Pauli [1] wrote “the concept of a
rigid body has no place in relativistic mechanics”, while Panofsky and Phillips [2]
state that special relativity “precludes the existence of the ‘ideal rigid body”’. Most
other textbooks do not mention the words ‘rigid body’ in connection with special
relativity. Yet, in his 1905 paper [3], Einstein writes the phrases “Let there be given
a stationary rigid rod. . . ”, and “We envisage a rigid sphere. . . ”, and four years later
Born [4] postulated conditions for rigid body motion in relativity. Thus rigid bodies
are at the heart of special relativity, yet some authorities deny their existence.

Can we resolve these statements? Although the previous quote of Pauli is often
referred to, he went on to add “it is nevertheless useful and natural to introduce the
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concept of a rigid motion of a body”. What does he mean by this? Pauli’s (and others
[5, 6]) objection to use of the term ‘rigid body’ in special relativity was that the
general motion, including rotation, of a rigid body could not be described in relativity.
That seems to be asking too much of it, since special relativity includes only Lorentz
transformations and no (nonstatic) rotational transformations for anything. We shall
thus discuss the motion of a rigid body only in translational motion, and Pauli did
countenance that.

The objection of Panofsky and Phillips to a rigid body is that “its ends would
move simultaneously as observed from any frame”. However, we will show below
that the ends of a relativistic rigid rod do not move simultaneously as observed from
any frame, removing the objection of Panofsky and Phillips.

The problem is also raised that if a truly rigid body were kicked at one end, the
other end would move instantly rather than at a retarded time. This is not only a rel-
ativistic objection. The fact that an electromagnetic signal could not propagate faster
than c was shown long before the advent of relativity. Since a rod is held together by
electromagnetic forces, the simultaneous motion of the right end if the left end were
kicked is ruled out on classical grounds, because of the need to use the retarded time.
Actually, of course, c is an unrealistically fast upper limit to the speed of motion in
a material rod. The actual transmission speed of an impulse is really governed by the
speed of sound in the rod, which is orders of magnitude less than c. Even so, the
physical abstraction of a rigid rod with seemingly infinite speed of transmission of
impulse is a useful and much used concept in classical physics.

Perhaps because of the negative comments on rigid bodies in special relativity,
there have been relatively few publications [7–11] on translational relativistic rigid
body motion in the years since the original Born paper. We [12] have also discussed
the constant acceleration of a rigid body in connection with the motion of Bell’s
spaceships [13]. In this paper, we extend those treatments, and give specific trajec-
tories for constant acceleration, impulsive acceleration, and collisions between rigid
bodies.

2 Definition of a ‘Relativistic Rigid Body’

In classical (prerelativistic) dynamics, the motion of a rigid body is generally defined
as preserving the dimensions of the body during any motion of the body. There are
two problems with this definition. First, any actual physical object will have elastic
properties, so there must be some distortion during accelerated motion. Second, due
to the finite velocity of sound in any real object, one end of a rigid rod will not
move until a short time after the other end is struck. These difficulties are generally
dispensed with by assuming that the body is so rigid that the elastic deformation can
be ignored, and the speed of sound so fast that the initial delay in the motion of the
other end can also be neglected. This leads to the abstraction of an ‘ideal rigid body’
that is used in all the books and papers treating classical rigid body motion.

These two approximations are also necessary in the relativistic treatment of rigid
bodies. The additional approximation of neglecting the time delay due to the finite
velocity of light is no problem since the relativistic time delay is so much shorter
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than the delay due to the speed of sound, already neglected in classical dynamics.
An additional objection is often made that the ‘relativistic length’ of a moving object
changes as its velocity increases. This would violate the classical definition that rigid
body motion preserves the dimensions of a body during any motion of the body. This
is an example of how using a prerelativistic definition for a relativistic phenomenon
leads to confusion.

In fact the proper relativistic definition of a rigid body turns the classical definition
on its head. If an object retained its length while moving, its length would increase
in its rest system. Consequently, we take as our definition of a rigid body that a rigid
body retains its rest frame dimensions while in translational motion. This requires
a moving rigid body to change its ‘relativistic length’ in any frame in which it is
moving.

3 Constant Acceleration

This section is based on the derivation for constant acceleration in Ref. [12]. We
consider the motion of a rigid rod of length L0 that starts from rest in a Lorentz system
S. We assume an acceleration that is constant in time so that we can find explicit
trajectory equations for the motion. Thus each point on the rod undergoes a constant
acceleration in its instantaneous rest system S′. By ‘instantaneous rest system’, we
mean a Lorentz system moving at constant velocity in which that point on the rod is
momentarily at rest. We show below that, in order to keep a constant length in its rest
system, the front and back ends of the rod must have different constant accelerations,
a′
F and a′

B , in the rest system.
As the rod’s velocity increases in the frame S, an acceleration a′ of any point on

the rod in its rest system is related to the acceleration a in frame S where that point
is moving with velocity v by (using units with c = 1)

a′ = γ 3a = (
1 − v2)− 3

2
dv

dt
. (1)

This equation follows from Eq. (14.26) of Ref. [14] for a point at rest in system S′.
Since a′ is constant, we can integrate this equation to get

a′t =
∫ (

1 − v2)− 3
2 dv = v√

1 − v2
. (2)

We solve this for v, getting

v = a′t√
1 + a′2t2

= dx

dt
. (3)

One more integration gives

x = x0 +
∫ t

0

a′ t̄d t̄√
1 + a′2 t̄2

= x0 + (√
1 + a′2t2 − 1

)
/a′. (4)
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The equation of motion of each end of the rod is given by Eq. (4) as

xF = L0 +
(√

1 + a′2
F t2

F − 1
)
/a′

F , (5)

xB =
(√

1 + a′2
B t2

B − 1
)
/a′

B, (6)

where tF and tB are the times at which the front (xF ) and back (xB ) ends of the rod
are measured.

Equations (5) and (6) are well known results that describe what has been called
‘hyperbolic motion’. We now apply them to the special case of rigid body motion.
Rigid body motion for the rod means keeping the distance between the ends of the
rod constant at L0 in their mutual rest system. In order to transform to the rest system
of the rod, we have to know xF , xB , tF , and tB when each end has the same velocity
in S. We can do this by using the relations

t = γ v/a′ and γ =
√

1 + a′2t2, (7)

which follow from Eqs. (2) and (3) above. Then, we have

xF = L0 + (γ − 1)/a′
F ,

xB = (γ − 1)/a′
B

(8)

for the location of each end of the rod when they have the same velocity v. The two
times tF and tB are now different. These times are given by

tF = γ v/a′
F ,

tB = γ v/a′
B.

(9)

The condition that the distance between the ends in the rest system be fixed at L0
can be imposed by Lorentz transforming their difference �x = xF − xB in system
S to the rest system. The space and time differences for the two ends follow from
Eqs. (8) and (9):

�x = L0 + (γ − 1)δ,

�t = γ vδ,
(10)

where

δ = 1

a′
F

− 1

a′
B

. (11)

The Lorentz transformation to the rest frame is

L0 = �x′ = γ (�x − v�t)

= γ
[
L0 + (γ − 1)δ − v2γ δ

]

= γL0 + (1 − γ )δ. (12)
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This equation has the solution

L0 = δ = 1

a′
F

− 1

a′
B

, (13)

so the acceleration of the back end of the rod is related to that of the front end by

a′
B = a′

F

1 − a′
F L0

. (14)

Thus there is a fixed relation between the constant accelerations of the two ends of
the rod in its instantaneous rest system. Maintaining these different rest frame accel-
erations for each end will keep the rest frame distance, L0, between them constant.
The variation in acceleration also holds for any point on the rod, with its rest frame
acceleration given by a′

B in Eq. (14) with a′
F being the acceleration of the front end

and L0 representing the x distance from the front end.
We see that in order to keep a body rigid in its rest frame, the acceleration has to

vary throughout the body in a specific way. Although the acceleration varies, there
will be no strain because this varying acceleration preserves the rest frame dimen-
sions of the body. Any stress in the body will not be appreciably different than the
stress induced by non-relativistic acceleration of a rigid body. Also, it does not matter
where on the rigid body the impetus for acceleration acts. The accelerated motion is a
cooperative process with the acceleration of any part of the rigid body being specified
by Eq. (14)

Although the two times tB and tF are different in the frame S where the rod is
moving, the rest frame times t ′B and t ′F at which the ends of the rod are measured are
equal. This is shown by the Lorentz transformation

t ′F − t ′B = �t ′ = γ (�t − v�x)

= γ
[
γ vδ − vL0 − v(γ − 1)δ

]

= γ vδ − γ vL0 = 0. (15)

The results above give the motion of the ends of a rigid rod undergoing continuous
constant acceleration. We now relate this to a rod that undergoes constant acceleration
from rest that ends when the rod reaches a final velocity V . We see from Eq. (15) that
the acceleration stops at the same time for each end in the rest frame. However, Eq. (9)
shows that, in frame S, the back end will reach the velocity V at a time TB = γV/a′

B ,
which is earlier than the time TF = γV/a′

F at which the front end reaches velocity V .
This means that, starting at TB , the back end will move at constant velocity, while the
front end continues to accelerate until TF , at which time each end will continue with
the same velocity V .

The motion of the rod in frame S is shown as the solid trajectory in Fig. 1. The
figure represents the space-time curve for acceleration in frame S from rest to a final
velocity V = 0.6, for which γ = 1.25. We have chosen the rest frame accelerations
to be a′

F = 1/(2L0) and a′
B = 1/L0, which are consistent with Eq. (13). The accel-

eration continues until each end of the rod reaches velocity V , which occurs at equal
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Fig. 1 Constant acceleration of
a rigid body. The solid curve is
the trajectory for continuous
acceleration. The dashed curve
is for impulsive acceleration.
The time TB on the solid curve
represents the end of
acceleration for the back end of
the rod, and TF for the front end

times in the rest system, but at the unequal times TF and TB shown on the figure.
At the time the acceleration stops in the rest system, the front end of the rod is at a
position XF and the back end is at XB . The difference XF − XB is given by Eq. (10)
to be γL0 = (5/3)L0. This length is at different times in system S, but it would be
the measured length if observers in S made the length measurement when told to by
passengers at the front and back ends of the rod.

After the acceleration stops in the rest frame, the back end of the rod travels in
frame S at constant velocity V from time TB to TF , while the front end will continue
to accelerate until time TF . The length (When we use the word ‘length’ or the symbol
L without a qualifier, we mean the difference xF − xB measured at equal times in
system S.) of the rod decreases to

L = γL0 − V (TF − TB) = γL0 − γV 2L0 = L0/γ, (16)

where we have used Eq. (9) for the time difference (TF − TB ). At time TF , both
ends of the rod will have the same velocity V , and they will continue to move at that
constant velocity. At any time after TF , the rod’s length, measured at equal times in
frame S, remains a constant length L = L0/γ , the usual ‘Lorentz contraction’.

During the accelerated motion, the distance between the ends of the rod measured
at equal times is given until time tB by the difference

L = xF − xB =
√

t2 + 1/a′2
F −

√
t2 + 1/a′2

B , 0 ≤ t ≤ tB, (17)

where we have used Eqs. (5) and (6) for xF and xB . From time tB until time tF , the
distance between the ends is given by the difference of xF as given by Eq. (5) and xB

given by xB = V (t − TB) + XB . After some algebra, this results in

L =
√

t2 + 1/a′2
F − V t, tB ≤ t ≤ tF , (18)
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Fig. 2 Equal time length of an
accelerating rigid rod. The
length decreases from L0 to
L0/γ . The time TB on the solid
curve represents the end of
acceleration for the back end of
the rod, and TF for the front end

Equations (17) and (18) can be shown (using Eq. (13)) to be equivalent to Eqs. (21)
and (23) in Ref. [10], which were derived using a different formalism.

Although the motion described above keeps the rest frame length of the rod con-
stant, we see that the distance between the ends of the rod, measured in system S at
the same time for each end, will decrease. This decrease is shown in Fig. 2, which is
a plot of Eqs. (17) and (18). The equal time length continually decreases from L0 to
L0/γ when each end has the final constant velocity V . We see that while the classical
definition of a rigid body requires it to have a constant length while accelerating, the
relativistic definition requires its length to change.

The motion of a rigid rod of moving length L0/γ undergoing constant deceleration
from an initial velocity −V to come to rest at t = 0 is given by the same equations
(5) and (6) as for acceleration, but with the changes t → −t , v → −v, and the inter-
change of the subscripts F and B . This corresponds to the reverse motion with time
going from −t to 0. This can be depicted on Fig. 1, by just moving down the vertical
time axis (now thought of as −t). The rod moves with velocity −V until time −tB
(located at TF in the figure), at which time the new back end will start to decelerate,
while the front end will continue at constant velocity −V , until it starts to decelerate
at −tF (located at TB in the figure). Each end will come to rest at t = 0, with the
length of the rod now L0.

4 Impulsive Acceleration

Impulsive acceleration occurs when one end of a rod is given an infinite acceleration
in an infinitesimal time �t so that, in the limit �t → 0, the product a�t approaches a
finite change �V in the velocity of one end of the rod. We consider the case of a rigid
rod originally at rest for the which the back end acquires a velocity V , and continues
to move at that constant rate. It does not matter where on the rod the impulse is
exerted. Because of the cooperative nature of rigid body acceleration, it will always
be the back end that acquires the instantaneous velocity V with a′

B → ∞.
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We see from Eq. (13) that, with a′
B → ∞, the front end will have a finite ac-

celeration a′
F = 1/L0. Then, using Eq. (5), the front end of the rod will follow the

trajectory

xF = L0 +
(√

1 + t2
F /L2

0 − 1
)
L0

=
√

L2
0 + t2

F . (19)

This acceleration will continue until the front end reaches the same velocity as the
back end. From Eq. (9), we see that this occurs at a time

TF = V γL0, (20)

after which both ends continue at the constant velocity V . This impulsive motion is
shown as the dashed trajectory in Fig. 1 for the same final velocity V = 0.6 as we
used for continuous acceleration.

5 Rigid Body Collisions

The inelastic collision of a rigid rod with a brick wall so that the rod comes to rest
after impacting the wall corresponds to moving down in time on the dashed trajectory
in Fig. 1. The front end of the rod continues at constant velocity −V until it strikes the
wall. The back end starts to decelerate at the time shown as TF in Fig. 1, and follows

the equation x =
√

t2 + L2
0 with t2 decreasing until it equals zero and the length of

the rod is L0. Viewers in system S may be surprised to see the back end of the rod
start to decelerate before the front end hits the wall. However, in the rest system of
the rod, the onset of deceleration occurs at the same time for each end. Because the
invariant separation of the front and back ends is space-like, the relative time order
can be different in other Lorentz frames, but this has no physical significance. The
early deceleration of the back end seen by viewers in system S is illusory.

An elastic collision of a rigid rod with a wall so that the rod rebounds with the
same velocity as it approached the wall corresponds to the same approach to instanta-
neous rest as above, followed by immediate impulsive acceleration as in the previous
section. The collision will be elastic if the final velocity has the same magnitude as
the approach velocity. A partially inelastic collision would occur with a final velocity
smaller than the approach velocity.

The collision of two rigid rods along a common line, with no ensuing rotation,
can be treated using the preceding formalism. We consider a collision between two
rods of masses M1 and M2 and rest lengths L1 and L2, each moving along the x-axis
with velocities V1 and V2, respectively. Rod 2 leads rod 1, and velocity V1 is greater
than V2 (which may be zero or negative) so that the two rods eventually collide.
The right end of rod 1 and the left end of rod 2 have an impulsive impact resulting
in final velocities V ′

1 and V ′
2. These two ends continue at these constant velocities,

which eventually become the final velocities of each entire rod. The final velocities
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are determined by conservation of momentum, and conservation of energy for an
elastic collision, once a final constant velocity is reached for all parts of each rod.

The leading end of each rod (the right end of rod 1 and the left end of rod 2)
move at the constant velocities V1 and V2 until they impact at their common origin of
coordinates x = 0, t = 0 The original back ends of each rod (the left end of rod 1 and
the right end of rod 2) move at these constant velocities until times given by Eq. (20).
That is

T1 = −γ1V1L1,

T2 = γ2V2L2.
(21)

These ends then follow Eq. (19) so

x1 = −
√

L2
1 + t2

1 ,

x2 =
√

L2
2 + t2

2

(22)

until times given by

T ′
1 = −γ ′

1V
′
1L1, (23)

T ′
2 = γ ′

2V
′
2L2. (24)

For times greater than T ′
1 and T ′

2, each end of each rod continues at constant velocities
V ′

1 and V ′
2. Because the combination x2 − t2 is invariant, Eq. (22) holds in any Lorentz

system, as long as the impact occurs at time t = 0 in that system.

6 An Elastic Collision

In this section, we treat in detail the collision of a rod of rest length L0 with mass M1
and velocity V = 0.6 (γV = 1.25) with a rod of the same rest length, and mass M2,
which is originally at rest. We consider two examples, case I with M2 = 2M1 so the
incoming rod rebounds, and case II with M1 = 2M2 where both rods continue in
the forward direction. We find the final velocities by transforming to the barycentric
system for the impact, and then transforming back to the original system.

The velocity to transform to the barycentric system is given by

u = p1

E1 + M2
= M1V γV

M1γV + M2
= 0.231(0.429), γu = 1.028(1.107). (25)

In this and subsequent equations the numerical result for case I is given first, followed
by the result for case II in parentheses. The velocity of each rod in the barycentric
system is

V 1 = V − u

1 − uV
= 0.429(0.231), γ 1 = 1.107(1.028),

V 2 = −u = −0.231(−0.429), γ 2 = 1.028(1.107).

(26)
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For an elastic collision in the barycentric system, the velocities after impact are
the negative of the initial velocities:

V
′
1 = −V 1 = −1.107(−1.028),

V
′
2 = −V 2 = −1.028(−1.107).

(27)

If the collision were inelastic, the final velocities would be determined by

γ ′
1V

′
1 = −εγ 1V 1,

γ ′
2V

′
2 = −εγ 2V 2,

(28)

where ε is the relativistic coefficient of restitution. The appearance of the γ factors
in Eq. (28) preserves conservation of momentum.

The next step is to Lorentz transform, with velocity −u, the barycentric velocities
back to the original system where the second rod was originally at rest. Initially, the
right end of rod 1 and the left end of rod 2 have the constant velocities

V1 = V = 0.6,

V2 = 0.
(29)

After impact, their velocities will be

V ′
1 = u + V

′
1

1 + uV
′
1

= −0.220(0.220), γ ′
1 = 1.025(1.025),

V ′
2 = u + V

′
2

1 + uV
′
2

= 0.439(0.725), γ ′
2 = 1.113(1.452).

(30)

The left end of rod 1 will move at constant velocity V1 = 0.6 until a time T1, which
is given by Eq. (21) to be

T1 = −γ1V1L0 = −0.731(−0.750)L0. (31)

The right end of rod 2 will remain at rest until a time T2 given by

T2 = γ2V2L0 = 0(0). (32)

The left end of rod 1 and the right end of rod 2 will then follow accelerated motion
from the times T1 and T2 until the times

T ′
1 = −γ ′

1V
′
1L0 = 0.225(−0.226)L0,

T ′
2 = γ ′

2V
′
2L0 = 0.488(1.052)L0.

(33)
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Fig. 3 Trajectories for a
collision between rigid rods for
case I: M2 = 2M1. The times T1
and T2 represent the start of
acceleration, and T ′

1 and T ′
2 the

end of acceleration for the outer
ends of the rods

The accelerated motion for each rod follows Eq. (22) between the times T1 → T ′
1

and T2 → T ′
2. That is

x1 = −
√

L2
0 + t2, −0.731(−0.750)L0 < t < 0.225(−0.226)L0,

x2 =
√

L2
0 + t2, 0(0) < t < 0.488(1.052)L0.

(34)

After time T ′
1, the left end of rod 1 will move at the same constant velocity, V ′

1 =
−0.220(+0.220), as the right end. After time T ′

2, the right end of rod 2 will move at
the same constant velocity, V ′

2 = 0.439(0.725), as the left end.
The trajectories of the two rods are shown in Fig. 3 for case I: M2 = 2M1, and in

Fig. 4 for case II: M1 = 2M2. Rod 2 remains stationary until it is struck by the right
end of rod 1. Then it moves to the right just like the stationary bar given an impulse
in Sect. 4. The right end of rod 1 and the left end of rod 2 follow the same constant
velocity trajectories that point objects of the same mass would follow if energy and
momentum conservation were implemented. The left end of rod 1 follows the curved
trajectory shown between times T1 and T ′

1, and the right end of rod 2 follows its
curved trajectory between times T2 and T ′

2. After that, they move at the same constant
velocities as the other end.

For case I, the lighter rod rebounds and its final trajectory is the same as that of a
rod with an impulsive start from rest. For case II, the heavier rod continues in the for-
ward direction. Although the equal time lengths of the two rods are changing as they
move, this change is necessary to keep their rest frame lengths constant, as is required
for rigid bodies. The momentum of either rod is not defined during the accelerated
motion, but overall momentum is conserved for the final constant velocities.
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Fig. 4 Trajectories for a
collision between rigid rods for
case II: M1 = 2M2. The times
T1 and T2 represent the start of
acceleration, and T ′

1 and T ′
2 the

end of acceleration for the outer
ends of the rods

7 Summary

Using the definition that a rigid body retains its rest frame length while in motion
we have discussed the accelerated motion and collisions of rigid bodies in special
relativity. We have restricted our treatment to constant accelerations, so as to be able
to give simple equations for the trajectories. We believe that the general features we
have found would also hold for time dependent acceleration, although the curves for
the accelerated portions would be somewhat different. These general features are:

1. Different parts of an accelerating rigid body undergo different accelerations in the
rest frame.

2. In a rigid body collision, the ends that make impulsive contact follow constant ve-
locity paths determined by conservation of momentum and energy (or appropriate
energy loss for an inelastic collision).

3. The outer ends in a collision of a rigid body follow curved, accelerating trajec-
tories in the transition from the initial velocity to the final velocity. For constant
acceleration in the rest frame, the accelerated trajectories are given in the body of
this paper.

References

1. Pauli, M.: Theory of Relativity, p. 132. Pergamon Press, Oxford (1958)
2. Panofsky, W.K.H., Phillips, M.: Classical Electricity and Magnetism, 2nd edn. p. 287. Addison-

Wesley, Reading (1962)
3. Einstein, A.: Ann. Phys. 17, 891 (1905)
4. Born, M.: Ann. Phys. 335, 1 (1909)
5. Herglotz, G.: Ann. Phys. 336, 393 (1910)
6. Noether, N.: Ann. Phys. 336, 919 (1910)
7. Cavalleri, G., Spinella, A.G.: Nuovo Cimento B 66, 11 (1970)
8. Kafada, C.B.: Ann. Phys. 484, 325 (1973)



Found Phys (2013) 43:1489–1501 1501

9. Gron, O.: Am. J. Phys. 45, 65 (1977)
10. Nikolic, H.: Am. J. Phys. 67, 1007 (1999)
11. Paiva, F.M., Teixeira, A.F.F.: Oscillation of a rigid rod in the special relativity (2012). arXiv:1201.

0670
12. Franklin, J.: Eur. J. Phys. 31, 291 (2010)
13. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, p. 67, 1st edn. Cambridge University

Press, Cambridge (1973)
14. Franklin, J.: Classical Electromagnetism. Addison-Wesley, San Francisco (2005)

http://arxiv.org/abs/arXiv:1201.0670
http://arxiv.org/abs/arXiv:1201.0670

	Rigid Body Motion in Special Relativity
	Abstract
	Introduction
	Deﬁnition of a `Relativistic Rigid Body'
	Constant Acceleration
	Impulsive Acceleration
	Rigid Body Collisions
	An Elastic Collision
	Summary
	References


