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Abstract There exist several phenomena breaking the classical probability laws. The
systems related to such phenomena are context-dependent, so that they are adaptive
to other systems. In this paper, we present a new mathematical formalism to com-
pute the joint probability distribution for two event-systems by using concepts of the
adaptive dynamics and quantum information theory, e.g., quantum channels and lift-
ings. In physics the basic example of the context-dependent phenomena is the famous
double-slit experiment. Recently similar examples have been found in biological and
psychological sciences. Our approach is an extension of traditional quantum probabil-
ity theory, and it is general enough to describe aforementioned contextual phenomena
outside of quantum physics.

Keywords Quantum information and probability · Quantum channel · Lifting ·
Interference · Double-slit experiment · Cognitive science · Cell biology ·
Non-Bayesian updating of probabilities

M. Asano
Tokuyama College of Technology, Gakuendai, Shunan, Yamaguchi 745-8585, Japan

I. Basieva · A. Khrennikov (�)
International Center for Mathematical Modeling in Physics and Cognitive Sciences,
Linnaeus University, 35195 Växjö, Sweden
e-mail: andrei.khrennikov@lnu.se

M. Ohya · I. Yamato
Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan

mailto:andrei.khrennikov@lnu.se


896 Found Phys (2013) 43:895–911

1 Introduction

It is well-known that quantum mechanics describes statistical properties of micro-
scopic phenomena for which classical probability theory seems to be inapplicable. In
this paper, we focus on violations of classical probability laws that can be found in
quantum theory [40–42]. Our assertion is that the mathematical formalism of quan-
tum theory has some features of non-Kolmogorovian probability theory and it can
be used for analysis of statistical properties of some phenomena outside of quantum
physics. Actually, authors have pointed out that the violations of the total probability
law can be found in experimental data in biology [10], cognitive science [4, 5, 7, 9,
11–13, 15–17, 20, 27–31], and decision-makings in games [7, 8].

First of all, we briefly illustrate the violation of a classical probability law, namely,
the total probability law, in the famous double-slit experiment. The probability that a
photon is detected at the position x on a photo-sensitive plate is represented as
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where ψ1 and ψ2 are two wave functions, whose absolute values |ψk(x)|2 give the
distributions of photons which pass through the slits numerated as k = 1,2. The term
of |ψ1(x)||ψ2(x)| cos θ describes the interference effect due to superposition of two
wave functions. Let us denote |ψk(x)|2 by P(x|k). Then the above equation is rewrit-
ten as

P(x) = P(x|1)P (1) + P(x|2)P (2) + 2
√

P(x|1)P (1)P (x|2)P (2) cos θ (1)

where P(1) = P(2) = 1/2. However, the usual total probability law has the form:

P(x) = P(x|1)P (1) + P(x|2)P (2). (2)

Thus it is violated. The interference term

2
√

P(x|1)P (1)P (x|2)P (2) cos θ

describes the degree of violation.
For this example, we can propose the following interpretation. Let us consider

context “both slits are open”, and denote it by S1∪2. This context is not a simple
(Boolean) sum of two contexts Si , i = 1,2, “only ith slit is open”:

S1∪2 �= S1 ∪ S2.

In the approach of hidden variables theory, one would try to find a proper common
probability space describing all contexts, S1∪2 and S1 ∪S2. However, this is difficult.1

1In this paper we proceed pragmatically. We do not discuss arguments for and against hidden variables.
We want just proceed mathematically. In the literature on quantum foundations it is generally claimed that
Kolmogorov description of the double-slit experiment is impossible, cf., however, [19].
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In quantum mechanics, different contexts are distinguished as different states, like,
e.g.,

ρS1∪2 = 1

2
|ψ1〉〈ψ1| + 1

2
|ψ2〉〈ψ2| + 1

2
|ψ1〉〈ψ2| + 1

2
|ψ2〉〈ψ1|,

ρS1∪S2 = 1

2
|ψ1〉〈ψ1| + 1

2
|ψ2〉〈ψ2|.

(3)

The probabilities denoted by P(x) in Eqs. (1) and (2) are given by 〈x|ρS1∪2 |x〉 and
〈x|ρS1∪S2 |x〉, respectively. We denote these probabilities by PS1∪2(x) and PS1∪S2(x)

and rewrite Eq. (1) as

PS1∪2(x) = PS1∪S2(x) + 2
√

P(x|1)P (1)P (x|2)P (2) cos θ.

The violation of the total probability law comes from the difference between the
probabilistic structures of two contexts, S1∪2 and S1 ∪ S2, or more precisely, the two
states ρS1∪2 and ρS1∪S2 .

In this way we can discuss the violation of the total probability law for phenomena
outside of quantum physics. Let us consider a simple and intuitive example. Consider
the following experiments in the domain of cognitive psychology

We give chocolate to the subjects, and ask them whether it is sweet (C = 1) or not
(C = 2). Then we obtain statistical data determining the probabilities P(C = 1) and
P(C = 2). In another experiment we first give sugar to the (other) subjects before
giving chocolate to them. Then we can obtain the probabilities P(S = 1), P(S = 2),
P(C = 1|S = 1) and P(C = 1|S = 2). The probability that chocolate is sweet is
estimated as

P(C = 1|S = 1)P (S = 1) + P(C = 1|S = 2)P (S = 2). (4)

And a naive application of classical probability theory implies that it is equal to
P(C = 1). However, one can easily see that the value given by Eq. (4) is smaller
than P(C = 1);

P(C = 1) �= P(C = 1|S = 1)P (S = 1) + P(C = 1|S = 2)P (S = 2).

The LHS probability P(C = 1) is obtained in context “subjects did not taste sugar be-
fore tasting chocolate”. Contexts “a tongue tasted sugar” and “a tongue did not taste
sugar” are different. We denote first context by Ssug and the latter by S¬sug . The prob-
abilities of LHS and RHS in the above equation should be replaced by PS¬sug

(C = 1)

and PSsug (C = 1). Intuitively, the result of PS¬sug
(C = 1) �= PSsug (C = 1) seems to be

now natural. However, to explain this result mathematically, we need a proper proba-
bility space which describes the both contexts S¬sug and Ssug . To find such a common
probability space, enormous knowledge about the physical and chemical structure of
a tongue will be needed, so that it is very difficult to find such space, as in the case of
the hidden variables theory. In this paper, another approach is employed. It is based
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on the mathematical apparatus of quantum information and probability. The states
ρS¬suger

and ρSsuger describing two contexts S¬sug and Ssug are constructed. Then the
concepts of channel and lifting [3] play an important role.

A channel is a map from states to states. This is a basic mathematical tool of quan-
tum information theory. If a state describes context for a system, a channel operating
on the states describes the change of context. The role of lifting is more general than
one of channel, see Sect. 2. That is, a lifting sends a state in S(H) to a compound
state in an expanded space S(H ⊗ K). In Sect. 2, we introduce several examples of
lifting maps, and in Sect. 3, we point out that the lifting maps are useful to define joint
probabilities in two (event) systems. The violation of the total probability law can be
mathematically explained by the difference between two states which are provided
by lifting maps. The main problem discussed in this paper is how to construct such a
lifting map. To do this, we use the ideas of adaptive dynamics (AD) [37]. The basic
concept of AD is explained briefly in Sect. 3. The AD-framework presented in this
paper generalizes the standard open systems dynamics.2

We illustrate usage of the lifting maps to describe mathematically the violation
of the total probability law by three examples of cognitive phenomena. The first ex-
ample is the problem of sweetness, see Sect 5. In Sect. 6, we discuss the system
describing metabolism in E. coli. In biology, it is known that E. coli gives preference
to metabolism of glucose over one of lactose. Our model evaluates this function of
preference in the term of the violation of the total probability law. In Sect. 6, we fo-
cus on a problem which has been widely studied in psychology and cognitive science.
People frequently make an inference to estimate the probability of certain event. Ac-
cording to experimental analysis of human behavior in cognitive science, there are
cases such that human estimation of the probability does not match with classical
probability theory. Such inference is called heuristic inference. We assume that a
decision-maker using a heuristic inference holds some psychological factor biasing
Bayesian inference. The latter is known as a “rational” inference and it is based on
classical probability theory. In our approach, a lifting map is used for describing such
a psychological effect.

We also remark that application of quantum information theory outside of quan-
tum physics, e.g., for macroscopic biological systems, wakes up again the long debate
on a possibility to combine the realistic and quantum descriptions, cf. [6, 22, 23]. At
the moment we are not able to present a consistent interpretation for coming applica-
tions of quantum information theory outside of quantum physics; we can only keep
close to the operational interpretation of quantum information theory, e.g., [18, 19].
In applications of quantum probability outside of physics, the Bayesian approach to

2Elaboration of such generalized quantum(-like) dynamics is not based on just a rather common wish to
consider so general situation as possible. Already the simplest examples from biology, see Sect. 4, demon-
strate that for such biological systems the dynamical state change cannot be described in the conventional
quantum framework. Elaboration of such a new mathematical apparatus and its application to biology
differs this paper from our previous publications [7, 8] in which the standard theory of open dynamical
systems was in use. By the same reason we presented AD-theory in the framework of C�-algebras (and
not simply complex Hilbert space): in general there are no reasons to expect that the probabilistic structure
of all possible biological phenomena can be embedded into complex Hilbert space model of probability.
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quantum probability and information interpretation of the quantum state [14, 21] are
the most natural.3

2 Lifting Map

In this section we discuss the notion of lifting [3].
Let A be C∗-algebra. The space of states on this algebra is denoted by the sym-

bol S(A).

Definition Let A, B be C∗-algebras and let A ⊗ B be a fixed C∗-tensor product of
A and B. A lifting from A to A ⊗ B is a weak ∗-continuous map

E ∗ : S(A) → S(A ⊗ B)

If E ∗ is affine and its dual is a completely positive map, we call it a linear lifting; if it
maps pure states into pure states, we call it pure.

Remark Let A, B be the sets of all observables in Hilbert spaces H, K; A = O(H),
B = O(K). Then, E ∗ is a lifting from S(H) to S(H ⊗ K). The definition of lifting
includes that of channel: (1) If K is C, then lifting E ∗ is nothing but a channel from
S(H) to S(H). (2) If H is C, then lifting E ∗ is a channel from S(H) to S(K).

We present some important examples of liftings.

Example 1 Nondemolition lifting: Lifting from S(H) to S(H ⊗ K) is called nonde-
molition for a state ρ ∈ S(H) if ρ is invariant for E ∗ i.e., if for all a ∈ O(H)

tr
(

E ∗ρ(a ⊗ 1)
) = tr(ρa).

Example 2 Isometric lifting: A transition expectation from A ⊗ B to A is a com-
pletely positive linear map E : A ⊗ B → A satisfying

E (1A ⊗ 1B) = 1A.

Let V : H → H ⊗ K be an isometry

V ∗V = 1H.

Then the map

E : x ∈ B(H) ⊗ B(K) → V ∗xV ∈ B(H)

3We point out that by using liftings we operate with entangled quantum states. By the conventional in-
terpretation of quantum mechanics the corresponding probabilistic structure cannot be represented classi-
cally, in a Kolmogorov space. However, we again remark that inter-relation between classical and quantum
probabilistic descriptions is still actively debated.
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is a transition expectation, and the associated lifting maps a density matrix ρ in H
into

E ∗ρ = VρV ∗

in H ⊗ K. Liftings of this type are called isometric. Every isometric lifting is a pure
lifting.

Example 3 Compound lifting: Let Λ∗ : S(A1) → S(A2) be a channel. For any ρ1 ∈
S(A1) in the closed convex hull of the extremal states, fix a decomposition of ρ1 as
a convex combination of extremal states in S(A1)

ρ1 =
∫

S(A1)

ω1dμ

where μ is a Borel measure on S(A1) with support in the extremal states, and define

E ∗ρ1 ≡
∫

S(A1)

ω1 ⊗ Λ∗ω1dμ

Then E ∗ : S(A1) → S(A1 ⊗ A2) is a lifting, nonlinear even if Λ∗ is linear, and it is
a nondemolition type.

The most general lifting, mapping S(A1) into the closed convex hull of the ex-
tremal product states on A1 ⊗ A2 is essentially of this type. This nonlinear nondemo-
lition lifting was first discussed by Ohya to define the compound state and the mutual
entropy for quantum information communication [34, 35].

Now we omit the condition that μ is concentrated on the extremal states used
in [34]. Therefore once a channel is given, then lifting of the convex product type
can be constructed. For example, the von Neumann quantum measurement process is
written, in the terminology of lifting, as follows. Having measured a compact observ-
able A = ∑

n anPn (spectral decomposition with
∑

n Pn = I ) in a state ρ, the state
after this measurement will be

Λ∗ρ =
∑

n

PnρPn

and lifting E ∗ of the convex product type associated to this channel Λ∗ and to a fixed
decomposition of ρ as ρ = ∑

n μnρn (ρn ∈ S(A1)) is given by

E ∗ρ =
∑

n

μnρn ⊗ Λ∗ρn.

3 Adaptive Dynamics and New View to Total Probability Law

The idea of the adaptive dynamics (AD) has implicitly appeared in series of papers
[2, 3, 25, 26, 32, 34, 36–39]. The name of the adaptive dynamics was deliberately



Found Phys (2013) 43:895–911 901

used in [37]. The AD has two aspects, one of which is the “observable-adaptive” and
another is the “state-adaptive”.

The idea of observable-adaptivity comes from studying chaos. Recognition (mea-
surement) of chaos in a phenomenon depends on the choice of the method of struc-
turing of this phenomenon; for example, which scales of time, distance or domain
are used by observer. And even generally measurement depends on the choice of
the method of structuring of a phenomenon. For example, consider time dependent
dynamics; suppose that one studies its discretization based on a time interval τ and
another takes ten times of τ , their results can be different. (See the paper [37] in more
details.) Examples of the observable-adaptivity are used to understand chaos [32, 36]
and to examine the violation of Bell’s inequality, namely the chameleon dynamics
proposed by Accardi [1].

The idea of state-adaptivity is implicitly started in constructing a compound state
for quantum communication [2, 33–35]. Examples of the state-adaptivity are seen
in an algorithm solving NP complete problem [3, 38, 39]. State-adaptivity means
that dynamics depends on the state of a system. For instance, in [3], the interaction
Hamiltonian used for the computation depends on the state at time t0 and the state
after t > t0 is changed by this Hamiltonian.

The above concept of AD can be represented mathematically by lifting. Let us
introduce lifting from S(H) to S(H ⊗ K) (or lifting from S(K) to S(H ⊗ K)),
say E ∗

σQ. Here, σ and Q are a state and an observable belonging to S(H ⊗ K) and
B(H) ⊗ B(K), respectively. Lifting E ∗

σQ is constructed with the aid of σ and Q. We
consider the following dynamics.

ρ ⇒ E ∗
σQ(ρ) ⇒ trH E ∗

σQ(ρ) ≡ ρσQ ∈ S(K).

The initial state ρ is defined in S(H) or S(K). We call this state change the dynamics
adaptive to the state σ and the observable Q or the dynamics adaptive to context
S = {σ,Q}.

The compound state E ∗
σQ(ρ) = E ∗

S (ρ) describes correlation of an event system of
the interest with another event system.

Now consider two “event systems” A = {ak ∈ R,Ek ∈ O(K)} and B = {bj ∈ R,

Fj ∈ O(H)}, where the sets of {Ek} and {Fk} are positive operator valued measures
(POVMs), i.e., satisfying

∑

k Ek = I,
∑

k Fk = I and Ek,Fk > 0. We define the joint
probability as

PS(ak, bj ) = trEk ⊗ Fj E ∗
S (ρ). (5)

Further, the probability PS(ak) is defined as

∑

j

PS(ak, bj ) = tr I ⊗ Ek E ∗
S (ρ)

= trK EkρS

≡ PS(ak).

As was discussed in the introduction, the violation of the total probability law comes
from a difference of two contexts, say S = {σ,Q} and S̃ = {σ̃ , Q̃}. It is represented



902 Found Phys (2013) 43:895–911

as

PS(ak) = P
S̃
(ak) + 
 =

∑

j

P
S̃
(ak, bj ) + 
.

Generally, if S �= S̃, then 
 �= 0. In order to discuss the form of 
 mathematically we
have to define corresponding liftings.

In the sequels, we shall find proper liftings describing the following three prob-
lems: (1) state change of a tongue as the reaction to sweetness; (2) lactose-glucose
interference in E. coli growth; (3) Bayesian updating.

4 State Change as Reaction of Tongue to Sweetness

The first problem under investigation is not so sophisticated, but quite common. As
was discussed in the introduction, we consider the following cognitive experiment.
One takes sugar S or (and) chocolate C and he is asked whether it is sweet or not
so. The answers “yes” and “no” are numerically encoded by 1 and 2. Then the basic
classical probability law need not be satisfied, that is,

P(C = 1) �= P(C = 1|S = 1)P (S = 1) + P(C = 1|S = 2)P (S = 2),

because the LHS P(C = 1) will be very close to 1 but the RHS will be less than 1
2 .

Note that the LHS P(C = 1) is obtained in context that subjects do not taste sugar;
they start directly with chocolate. Contexts “a tongue tasted sugar”, say Ssug , and
“a tongue did not taste sugar”, say S¬sug , are different. The probabilities in LHS and
RHS in the above equation should be replaced by PS¬sug

(C = 1) and PSsug (C = 1).
The problem to be discussed is how to obtain these probabilities mathematically.

Let |e1〉 and |e2〉 be the orthogonal vectors describing sweet and non-sweet states,
respectively. The initial state of a tongue is neutral such as

ρ ≡ ∣
∣x0〉〈x0

∣
∣,

where x0 = 1√
2
(|e1〉 + |e2〉). Here we start with the neutral pure state ρ, because we

consider experiments with two sweet things. This problem can be described by the
Hilbert space C

2, so that |e1〉 and |e2〉 can be set as
(1

0

)

and
(0

1

)

, respectively.
When one tastes sugar, the operator corresponding to tasting sugar is mathemati-

cally (and operationally) represented as

S =
(

λ1 0
0 λ2

)

,

where |λ1|2+ |λ2|2 = 1. This operator can be regarded as the square root of the sugar
state σS :

σS = |λ1|2E1 + |λ2|2E2, E1 = |e1〉〈e1|, E2 = |e2〉〈e2|.
Taking sugar, he will taste that it is sweet with the probability |λ1|2 and non-sweet
with the probability |λ2|2, so |λ1|2 should be much higher than |λ2|2 for usual sugar.
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This comes from the following change of the neutral initial (i.e., non-adaptive) state
of a tongue:

ρ → ρS = Λ∗
S(ρ) ≡ S∗ρS

tr |S|2ρ . (6)

This is the state of a tongue after tasting sugar.
This dynamics is similar to the usual expression of the state change in quantum

dynamics. The subtle point of the present problem is that just after tasting sugar the
state of a tongue is neither ρS nor ρ. Note here that if we ignore subjectivity (personal
features) of one’s tongue, then, instead of the state given by (6), the “just after tasting
sugar” state will have the form:

E1ρSE1 + E2ρSE2.

This is the unread objective state as usual in quantum measurement. We can use
the above two expressions, which give us the same result for computation of the
probabilities for the S-variable.

However, for some time duration, the tongue becomes dull to sweetness (and this
is the crucial point of our approach for this example), so the tongue state can be
written by means of a certain “exchanging” operator X = ( 0 1

1 0

)

such that

ρSX = XρSX.

Then similarly as for sugar, when one tastes chocolate, the state will be given by

ρSXC = Λ∗
C(ρSX) ≡ C∗ρSXC

tr |C|2ρSX

,

where the operator C has the form:

C =
(

μ1 0
0 μ2

)

with |μ1|2+ |μ2|2 = 1. Common experience tells us that |λ1|2 ≥ |μ1|2 ≥ |μ2|2 ≥
|λ2|2 and the first two quantities are much larger than the last two quantities.

As can be seen from the preceding consideration, in this example the “adaptive
set” {σ,Q} is the set {S,X,C}. Now we introduce the following nonlinear demolition
lifting:

E ∗
σQ(ρ) = ρS ⊗ ρSXC = Λ∗

S(ρ) ⊗ Λ∗
C

(

XΛ∗
S(ρ)X

)

.

The corresponding joint probabilities are given by

P(S = j,C = k) = trEj ⊗ Ek E ∗
σQ(ρ).

The probability that one tastes sweetness of the chocolate after tasting sugar is

P(S = 1,C = 1) + P(S = 2,C = 1) = |λ2|2|μ1|2
|λ2|2|μ1|2 + |λ1|2|μ2|2 ,
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which is PSsug (C = 1). Note that this probability is much less than

P¬Ssug (C = 1) = trE1Λ
∗
C(ρ) = |μ1|2,

which is the probability of sweetness tasted by the neutral tongue ρ. This means that
the usual total probability law should be replaced by the adaptive (context dependent)
probability law.

5 Activity of Lactose Operon in E. Coli

The lactose operon is a group of genes in E. coli (Escherichia coli), and it is required
for the metabolism of lactose. This operon produces β-galactosidase, which is an en-
zyme to digest lactose into glucose and galactose. There was an experiment measur-
ing the activity of β-galactosidase which E. coli produces in the presence of (I) only
0.4 % lactose, (II) only 0.4 % glucose, or (III) mixture 0.4 % lactose +0.1 % glucose,
see [24]. The activity is represented in Miller’s units (enzyme activity measurement
condition), and it reaches to 3000 units by full induction. In the cases of (I) and (II),
the data of 2920 units and 33 units were obtained. These results make one to expect
that the activity in the case (III) will be large, because the number of molecules of
lactose is larger than that of glucose. However, the obtained data were only 43 units.
This result implies that E. coli metabolizes glucose in the preference to lactose. In
biology, this functionality of E. coli have been discussed, and it was known that glu-
cose has a property reducing lactose permease provided by the operon. Apart from
such qualitative and biochemical explanation, it will be also necessary to discuss
mathematical representation such that the biological activity in E. coli is evaluated
quantitatively. In the paper [10], it is pointed out that the activity of E. coli violates
the total probability law as shown below, which might come from the preference in
E. coli’s metabolism. We will explain this contextual behavior by the formula (5).

We consider two events L and G; L: “E. coli detects a lactose molecule in
cell’s environment—to use it for its metabolism” and G: “E. coli detects a glucose
molecule”. In the case of (I) or (II), the probability P(L) = 1 or P(G) = 1 is given.
In the case of (III), P(L) and P(G) are calculated as

P(L) = 0.4

0.4 + 0.1
= 0.8, P (G) = 0.1

0.4 + 0.1
= 0.2.

The events L and G are mutually exclusive. So it can be assumed that P(L) +
P(G) = 1. Further, we consider the events {+,−} which means that E. coli acti-
vates its lactose operon or not. From the experimental data for the cases (I) and (II),
the following conditional probabilities are obtained:

(I): P(+|L) = 2920

3000
,

(II): P(+|G) = 33

3000
.

(7)
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In the case (III), if the total probability law were satisfied, the probability P(+) would
be computed as

P(+|L)P (L) + P(+|G)P (G)

However, from the experimental data, we obtain

P(+) = 43

3000
,

so that the total probability law is violated:

P(+|L ∪ G) �= P(+|L)P (L) + P(+|G)P (G).

This violation is similar to that one in the double-slit experiment which was discussed
in the introduction. Context of the case (III), say SL∪G, is different from a simple
(Boolean) sum of two contexts, that is, SL ∪ SG. We replace the LHS probability
of the above equation by PSL∪G

(+) and replace the RHS probabilities P(+|L) and
P(+|G) by PSL

(+) and PSG
(+) respectively;

PSL∪G
(+) �= PSL

(+)P (L) + PSG
(+)P (G) ≡ PSL∪SG

(+).

We now use our mathematical model for computation of the above probabilities,
by using the concept of lifting. First, we introduce the initial state ρ = |x0〉〈x0| in
Hilbert space H = C

2. The state vector x0 is written as

|x0〉 = 1√
2
|e1〉 + 1√

2
|e2〉.

The basis {e1, e2} denote the detection of lactose or glucose by E. coli, i.e., the events,
L and G. In the initial state ρ, the E. coli bacteria has not recognized the existence
of lactose and glucose yet. When E. coli recognizes them, the following state change
occurs:

ρ �→ ρD = Λ∗
D(ρ) ≡ DρD∗

tr(|D|2ρ)
,

where

D =
(

α 0
0 β

)

with |α|2 + |β|2 = 1. Note that |α|2 and |β|2 give the probabilities of the events L

and G: P(L) and P(G). The state σD ≡ DD∗ encodes the probability distribution
P(L),P (G):

σD = P(L)|e1〉〈e1| + P(G)|e2〉〈e2|.
In this sense, the state σD represents the chemical solution of lactose and glucose.
We call D the detection operator and call ρD the detection state. The state determin-
ing the activation of the operon in E. coli depends on the detection state ρD . In our
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operational model, this state is obtained as the result of the following transformation:

ρDQ = Λ∗
Q(ρD) ≡ QρDQ∗

tr(QρQ∗)
,

where the operator Q is chosen as

Q =
(

a b

c d

)

.

We call ρDQ the activation state for the operon and we call Q the activation operator.
(The components a, b, c and d will be discussed later.)

We introduce lifting

E ∗
DQ(ρ) = Λ∗

D(ρ) ⊗ Λ∗
Q

(

Λ∗
D(ρ)

) ∈ H ⊗ K = C
2 ⊗ C

2,

by which we can describe the correlation between the activity of lactose operon and
the ratio of concentration of lactose and glucose. From the discussion in Sect. 3, the
joint probabilities PDQ(L,+) and PDQ(G,+) are given by

PDQ(L,+) = tr
(

E1 ⊗ E1 E ∗
DQ(ρ)

)

,

PDQ(G,+) = tr
(

E2 ⊗ E1 E ∗
DQ(ρ)

)

.
(8)

The probability PDQ(±) is obtained as PDQ(L,±) + PDQ(G,±).
Let us consider context SL (the case (I)) such that the detection operator D sat-

isfies the condition P(L) = |α|2 = 1. We denote such D by the symbol DL. The
probabilities PDLQ(±) = PSL

(±) are calculated as

PSL
(+) = |a|2

|a|2 + |c|2 , PSL
(−) = |c|2

|a|2 + |c|2 .

From the experimental results of Eq. (6), these values should be 2920
3000 and 80

3000 . There-
fore, we can give the following forms for the parameters a and c.

a =
√

2920

3000
eiθ+LkL, c =

√

80

3000
eiθ−LkL

Here, kL is a certain real number. In a similar way, we consider context SG (the
case (II)) and obtain

b =
√

33

3000
eiθ+GkG, d =

√

2967

3000
eiθ−GkG

for the components b and d . To simplify the discussion, hereafter, we assume
θ+L = θ−L, θ+G = θ−G and denote eiθLkL, eiθGkG by k̃L, k̃G. Then, the operator
Q is rewritten to
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Q = 1√
3000

(√
2920

√
33√

80
√

2967

)(

k̃L 0
0 k̃G

)

=
(√

PSL
(+)

√

PSG
(+)

√

PSL
(−)

√

PSG
(−)

)(

k̃L 0
0 k̃G

)

. (9)

By using this Q, we calculate the probability PSL∪G
(+) corresponding to the

case (III):

PSL∪G
(+)

= |√PSL
(+)k̃Lα + √

PSG
(+)k̃Gβ|2

|√PSL
(+)k̃Lα + √

PSG
(+)k̃Gβ|2 + |√PSL

(−)k̃Lα + √

PSG
(−)k̃Gβ|2 .

In general, the value of this probability is different from that of PSL∪SG
(+) =

PSL
(+)|α|2 + PSG

(+)|β|2. The rate |k̃L|/|k̃G| essentially determines the degree of
the difference. Recall the experimental data in the case (III). In this case, P(L) =
|α|2 = 0.8 > P(G) = |β|2 = 0.2, but PSL∪G

(+) is very small. According to our in-
terpretation, it implies that the rate |k̃L|/|k̃G| is very small. In this sense, the operator

F =
( k̃L 0

0 k̃G

)

in Eq. (9) specifies the preference in E. coli’s metabolism. We call F the

preference operator. Finally note that if α, β are real and k̃L = k̃∗
G, the usual total

probability law is held.

6 Bayesian Updating Biased by Psychological Factor

The Bayesian updating is an important concept in Bayesian statics, and it is used to
describe a process of inference, which is explained as follows. Consider two event
systems denoted by S1 = {A,B} and S2 = {C,D}, where the events A and B are
mutually exclusive, and the same holds for C and D. Firstly, a decision-making en-
tity, say Alice, estimates the probabilities P(A) and P(B) for the events A and B ,
which are called the prior probabilities. The prior probability is sometimes called
“subjective probability” or “personal probability”. Further, Alice knows the condi-
tional probabilities P(C|A) and P(C|B) which are obtained from some statistical
data. When Alice sees the occurrence of the event C or D in the system S2, she can
change her prior prediction P(A) and P(B) to the following conditional probabili-
ties by Bayes’ rule: When Alice sees the occurrence of C in S2, she can update her
prediction for the event A from P(A) to

P(A|C) = P(C|A)P (A)

P (C|A)P (A) + P(C|B)P (B)
.

When Alice sees the occurrence of D in S2, she can update her prediction for the
event A from P(A) to

P(A|D) = P(D|A)P (A)

P (D|A)P (A) + P(D|B)P (B)
.
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In the same way she updates her prediction for the event B . These conditional (up-
dating) probabilities are called the posterior probabilities. The change of prediction
is described as “updating” from the prior probabilities P(A),P (B) to the posterior
probabilities, and it is called the Bayesian updating.

In the paper [9], we redescribed the process of Bayesian updating in the framework
of “quantum-like representation”, where we introduced the following state vector
belonging to Hilbert space H = H1 ⊗ H2 = C

2 ⊗ C
2;

|Φ〉 =
√

P
(

A′)|A′〉 ⊗ (
√

P
(

C′|A′)|C′〉 +
√

P
(

D′|A′)|D′〉)

+
√

P
(

B ′)|B ′〉 ⊗ (
√

P
(

C′|B ′)|C′〉 +
√

P
(

D′|B ′)|D′〉). (10)

We call this vector the prediction state vector. The set of vectors {|A′〉, |B ′〉} is an
orthogonal basis on H1, and {|C′〉, |D′〉} is another orthogonal basis on H2. The A′,
B ′, C′ and D′ represent the events defined as

Event A′ (B ′): Alice judges “the event A(B) occurs in the system S1.”
Event C′(D′): Alice judges “the event C(D) occurs in the system S2.”

These events are the subjective events (judgments) in Alice’s “mental space” and
the vectors |A′〉, |B ′〉, |C′〉 and |D′〉 give quantum-like representation of the above
judgments. The vector |Φ〉 represents coexistence of these judgments in Alice’s brain.
For example, Alice is conscious of |A′〉 with the weight

√
P(A′), and under the con-

dition of the event A′, she sets the weights
√

P(C′|A′) and
√

P(D′|A′) for the minds
|C′〉 and |D′〉. Such an assignment of weights implies that Alice feels causality be-
tween S1 and S2: The events in S1 are causes and the events in S2 are results. The
square of

√
P(A′) corresponds to a prior probability P(A) in the Bayesian theory.

If Alice knows the objective conditional probabilities P(C|A) and P(C|B), Alice
can set the weights of

√
P(C′|A′) and

√
P(C′|B ′) from P(C′|A′) = P(C|A) and

P(C′|B ′) = P(C|B). If Alice has the prediction state |Φ〉〈Φ| ≡ ρ and sees the oc-
currence of the event C in S2, the event D′ is vanished instantaneously (in her mental
representation). This vanishing is represented as the reduction by the projection op-
erator MC′ = I ⊗ |C′〉〈C′|;

MC′ρMC′

tr(MC′ρ)
≡ ρC′

The posterior probability P(A|C) is calculated by

tr(MA′ρC′),

where MA′ = |A′〉〈A′| ⊗ I .
The inference based on the Bayesian updating is rational—from the view point

of classical probability theory, game theory and economics (the Savage sure thing
principle). However, in cognitive psychology and economics one can find extended
empirical data showing that sometimes human inference seems to be irrational, see
[30] for the review. Typically this happens in contexts such that there are (often hid-
den) psychological factors disturbing the rational inferences. Our aim is to provide a
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mathematical description of such an irrational inference; the concept of lifting will
be used. Let us introduce lifting from S(H) to S(H ⊗ K) by

E ∗
σV (ρ) = Vρ ⊗ σV ∗.

Here σ ∈ S(K) represents the state of Alice’s psychological representation of context
which is generated when Alice updates her inference. The operator V on H ⊗ K is
unitary and gives a correlation between the prediction state ρ and the psychological
factor σ , in other words, it specifies a psychological affection to the rational inference.
We call the state defined by

ρσV ≡ trK
(

E ∗
σV (ρ)

)

,

the prediction state biased from the rational prediction ρ. From this ρσV , the joint
probability is defined as

tr(MX′MY ′ρσV MY ′) ≡ PσV

(

X′, Y ′),

for the events X′ = (A′ or B ′) and Y = (C′ or D′), and the biased posterior proba-
bility is defined as

PσV

(

X′|Y ′) = PσV (X′, Y ′)
tr(MC′ρσV )

In general, the value of PσV (X′|Y ′) is different from the original P(X′|Y ′) obtained
with the aid in the rational (Bayesian) inference.
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