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Abstract This paper examines the nature of classical correspondence in the case of
coherent states at the level of quantum trajectories. We first show that for a harmonic
oscillator, the coherent state complex quantum trajectories and the complex classical
trajectories are identical to each other. This congruence in the complex plane, not
restricted to high quantum numbers alone, illustrates that the harmonic oscillator in
a coherent state executes classical motion. The quantum trajectories we consider are
those conceived in a modified de Broglie-Bohm scheme. Though quantum trajectory
representations are widely discussed in recent years, identical classical and quantum
trajectories for coherent states are obtained only in the present approach. We may
note that this result for standard harmonic oscillator coherent states is not totally
unexpected because of their holomorphic nature. The study is extended to coherent
states of a particle in an infinite potential well and that in a symmetric Poschl-Teller
potential by solving for the trajectories numerically. For the Gazeau-Klauder coherent
state of the infinite potential well, almost identical classical and quantum trajectories
are obtained whereas for the Poschl-Teller potential, though classical trajectories are
not regained, a periodic motion results as t → ∞. Similar features were found for
the SUSY quantum mechanics-based coherent states of the Poschl-Teller potential
too, but this time the pattern of complex trajectories is quite different from that of
the previous case. Thus we find that the method is a potential tool in analyzing the
properties of generalized coherent states.
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1 Introduction

Quantum trajectories, such as those due to de Broglie and Bohm (dBB), Floyd,
Faraggi and Matone (FFM), etc., have gained wide attention [1–10] recently. In
another attempt, complex quantum trajectories were conceived by a modified de
Broglie-Bohm (MdBB) approach to quantum mechanics [11–22]. These trajectories
are obtained by putting Ψ ≡ exp(iS/�) in the Schrodinger equation, which results
in an equation similar to the classical Hamilton-Jacobi equation, in terms of the
generally complex function S(x, t). Instead of using the Hamilton-Jacobi formal-
ism (where one must use the Jacobi’s theorem to obtain trajectories, as in classical
mechanics and the FFM trajectory representation [9, 10]), an equation of motion [11]

ẋ = 1

m
∇S, (1)

is used, where x now is a complex variable x ≡ xr + ixi . This equation appears
similar to but is not the same as that used by de Broglie [1–3] to obtain a velocity
field. On integration, it gives complex trajectories, in contrast to the real trajectories
in the dBB approach.

Our attempt in this paper is to find the nature of classical correspondence at the
level of quantum trajectories of particles in coherent states [23, 24] (denoted as
φz(x, t), where z is a complex parameter), moving in potentials such as the har-
monic oscillator, infinite potential well, a symmetric Poschl-Teller potential etc. It is
found that the MdBB representation has the feature of identical classical and quan-
tum trajectories for harmonic oscillator coherent states. For the coherent state of
the infinite potential well, one can observe this feature in the limit of high |z|. But
for the Poschl-Teller potential, such a conclusion cannot be made. However, peri-
odic motion for the particle results as t → ∞ for both the Gazeau-Klauder coher-
ent states and the supersymmetric quantum mechanics (SUSYQM)-based coherent
states.

Since the MdBB quantum trajectories are in a complex plane, the demonstration
of identical quantum and classical trajectories is to be made in the complex plane.
The theory of coherent states is inextricably connected to the complex parameter z

and hence identical trajectories for the quantum and classical cases in the complex
space is not unnatural.

Given below, in Fig. 1, are the trajectories for the quantum harmonic oscillator
in the lowest energy eigenstates with n = 0, 1, 2, 3 and 4, drawn using numerical
methods. Similarly, in Fig. 2, the corresponding complex quantum trajectories for a
particle in an infinite potential well are drawn numerically. Such solutions for these
stationary states agree very well with the analytical solutions in [11, 14]. They serve
as benchmark for the numerical method and encourages us to apply it to other prob-
lems with known wave functions as well.

2 Complex Classical Trajectories

Solutions of classical dynamical problems of physical systems obtained in terms of
complex space variables are well-known. In the past decade, interesting properties
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Fig. 3 The complex classical
trajectories for the harmonic
oscillator of energy E = 4.5
units

of classical trajectories of complex Hamiltonians are discovered [25–27]. To obtain
complex trajectories, one solves the Hamilton’s equations ẋ = ∂H

∂p
, ṗ = − ∂H

∂x
, for

complex initial conditions and not just for initial conditions in the classically allowed
regions. For instance, consider the harmonic oscillator problem. With H = p2/2m +
(1/2)kx2, x ≡ xr + ixi , and the complex momentum p ≡ pr + ipi , one writes the
Hamilton’s equations as ẋr = pr/m, ẋi = pi/m, ṗr = −kxr and ṗi = −kxi . For a
particle with real energy E such that 0 < E < (1/2)kA2 = (1/2)mω2A2, the solution
of these equations can be found as

xr = A cos(ωt), xi = B sin(ωt), B =
√

A2 − 2E

mω2
. (2)

This leads to elliptical trajectories in the complex plane, as plotted in Fig. 3. Note that
in the limit E → 0, these ellipses become concentric circles.

Now consider the case of a free particle with real energy E > 0. Then we have
ẋr = pr/m, ẋi = pi/m, ṗr = 0, ṗi = 0, prpi = 0 and also p2

r > p2
i . Then the so-

lutions are xr = ±
√

2E
m

t + cr , xi = ci , where the constants cr , ci are real. These
classical trajectories are straight lines which lie in the complex plane, parallel to the
real axis.

Another example we consider here is that of a Poschl-Teller potential

V (x) = V0

2

[
l(l − 1)

cos2( x
2a

)
+ k(k − 1)

sin2( x
2a

)

]
. (3)

The symmetric Poschl-Teller potential results when we take l = k ≥ 1 [28]. Putting
2a to be of unit magnitude, the potential becomes V (x) = 2V0l(l − 1)/ sin2(2x).
The complex classical trajectories for a particle having an energy E = 2.25 units are
drawn numerically in Fig. 4.
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Fig. 4 The complex classical
trajectories for a particle with
E = 2.25 units in the symmetric
Poschl-Teller potential

3 Complex Quantum Trajectories of Harmonic Oscillator Coherent States

We may now illustrate that the complex quantum trajectories of the harmonic oscil-
lator in coherent state are the same as those trajectories obtained in complex classical
mechanics. Here it is shown that these are identical to each other for all mean values
of energy, thus demonstrating the quantum-classical correspondence. We start with
the coherent state wave function of a harmonic oscillator with X ≡ αx,

φz(x, t) =
(

α√
π

)1/2

exp

[
1

2

(
X2 − λ2 − iωt

)]
exp

[−(X − η)2], (4)

where α = √
mω/�, z = λeiκ , and η = 1√

2
λe−i(ωt−κ). The de Broglie-type equation

of motion used in MdBB [11] gives

Ẋ = iω(X − 2η). (5)

The above coherent state φz is the eigenfunction of the lowering operator a with
eigenvalue z, which is complex. Note that in the limit λ → 0, the coherent state wave
function and its equation of motion reduce to the corresponding entities of harmonic
oscillator ground state, as expected. The real and imaginary parts of the velocity field
Ẋ are

Ẋr = −ω
[
Xi + √

2λ sin(ωt − κ)
]

(6)

and

Ẋi = ω
[
Xr − √

2λ cos(ωt − κ)
]
. (7)

These equations have the solutions Xr = A cos(ωt − κ) and Xi = B sin(ωt − κ),
which are the same as the solutions of the classical Hamilton’s equations obtained
in (2), except for a phase factor, when A, B (both real and positive) are related to
λ by the equation A − B = √

2λ. Each one of such quantum trajectories in MdBB
corresponds to a trajectory of the complex classical oscillator. This congruence estab-
lishes the correspondence of a quantum harmonic oscillator in coherent state with the
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classical harmonic oscillator. In the limit λ → 0, the solution with A = B exists. This
gives concentric circular paths corresponding to the ground state harmonic oscillator
obtained in [11, 14].

Let us now compare the coherent state MdBB trajectories for the harmonic os-
cillator with those in the dBB guiding wave mechanics. The equation of motion in
the latter case is Ẋ = −ω

√
2λ sin(ωt − κ), with X real. The trajectories are non-

crossing [5] and the particles oscillate with amplitude A = √
2λ. In the limit λ → 0

(which is equivalent to the condition that the mean value of energy E → 0), they re-
main stationary at their initial positions X(0). We note that in the real case, classical
simple harmonic oscillators can, at best, be stationary only at the equilibrium point
X = 0 and that the above feature of stationary particles at all values of X is unnatural
in the classical limit. On the other hand, the MdBB trajectories in the coherent state
correspond to the complex classical trajectories in every respect. Even for λ → 0,
all the trajectories enclose X = 0; they are concentric circles of the n = 0 harmonic
oscillator state given in Fig. 1 and agree with the corresponding classical trajectories.
Often in conventional dBB scheme, the stationarity of particles in bound eigenstates
is justified as an instance which demands a new ‘quantum intuition’, but the above
mentioned failure to exhibit correspondence with classical motion, even for coherent
states, is indeed a setback for the formalism.

By using numerical methods the complex trajectories for the harmonic oscillator
in a coherent state with |z| = λ = 2.1 are drawn. Instead of expression (4), we use the
expansion

φz(x, t) =
∑
n≥0

e− 1
2 |z|2 zn

√
n!e

−i(n+ 1
2 )ωtψn(x) (8)

for obtaining the coherent states in terms of the eigenfunctions. The trajectories are
shown in Fig. 5. In this numerical evaluation, we have included terms up to n = 4
in the expansion. One finds deviations from the expected classical trajectories at the
inner parts. It can easily be seen that those trajectories with large values of x(0) are
almost circular in shape and they always agree with the complex classical trajecto-
ries. When the number of terms included in the series is varied, however, the shape of
trajectories at the inner regions, with small values of x(0), vary significantly. The de-
viations of these trajectories with those drawn using Eqs. (6) and (7) are thus expected
to arise from the truncation in the series.

4 Infinite Potential Well and Poschl-Teller Potential

As another example, now consider a particle of mass m and energy E, trapped in an
infinite potential well of width πa. As seen in Sect. 3, the classical trajectories are
straight lines in the complex plane, lying parallel to the real axis. Let us attempt to
solve the quantum problem with a shifted Hamiltonian [28]

H = − �
2

2m

d2

dx2
− �

2

2ma2
, (9)
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Fig. 5 The complex trajectories
for the harmonic oscillator in a
coherent state with λ = 2.1 and
κ = 0, evaluated numerically by
including terms up to n = 4 in
the expansion. The trajectories
are plotted for the initial values
xr = 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,
2.8 and 2.9

together with the boundary condition

ψ(x) = 0, x ≥ πa and x ≤ 0. (10)

The normalized eigenstates and corresponding eigenvalues are

ψn(x) =
√

2

πa
sin(n + 1)

x

a
, n = 0,1, . . . (11)

and

En = �ωen, (12)

with

ω = �

2ma2
and en = n(n + 2), n = 0,1, . . . (13)

With a = 1, we have drawn the complex quantum trajectories corresponding to n =
0,1,2,3,4 states of the infinite potential well eigenstates in Fig. 2. The coherent
states of this particle can be written as [28]

φJ (x, t) = 1

N(J )

∑
n≥0

Jn/2√
n!(n+2)!

2

e−in(n+2)ωtψn(x). (14)

The numerically evaluated complex trajectories for the particle in the J = 0.04, 0.16,
0.25, 0.36 coherent states, with ω = 1, are shown in Fig. 6. In this numerical ap-
proach, we have included terms up to n = 7 in the expansion (14). It is interesting
to note the presence of almost straight trajectories parallel to the real axis, as in the
case of classical complex trajectory solutions of free particles (Sect. 2). But near the
turning points, the trajectories are more like those near the turning points of classi-
cal symmetric Poschl-Teller potentials. In this case, deviations from the classically
expected straight line trajectories (mentioned above) at the inner region do not seem
to arise from truncation errors in the numerical method. This can be seen by varying
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Fig. 6 The numerically evaluated complex trajectories for the particle in coherent state in an infinite well
potential, in the J = 0.04, 0.09, 0.16, 0.25, 0.36 cases. In all cases, trajectories are plotted for the initial
values of xr = 1.6, 2.0, 2.4 and 3.1, respectively

the number of terms in the series (14). The curves are the same even if we include
only terms up to n = 4. But drawing trajectories for much larger values of J than that
given in Fig. 6 is not possible with the present numerical method. For such values
of J , the trajectories are not confined to the physically limited interval of 0 < xr < π

while using this method.
The next problem we consider is the symmetric Poschl-Teller potential

V (x) = 2V0
l(l − 1)

sin2(2x)
, (15)

whose classical trajectories are discussed in Sect. 3. We have taken l = k and 2a = 1
in Eq. (3). In addition, we consider a shifted Hamiltonian [28]

H = − �
2

2m

d2

dx2
− 2

�
2

m
l2 + V (x). (16)

Solving the Schrodinger equation with the boundary condition ψ(0) = ψ(π/2) = 0,
the normalized eigenstates can be found as

ψn(x) = [
cn(l)

]−1/2 cosl (x) sinl(x)2F1
(−n,n + 2l; l + (1/2); sin2 x

)
. (17)

Here we choose l = 3/2. The Gazeau-Klauder coherent states are [28]

φJ (x, t) =
√

3!
N(J )

∑
n≥0

Jn/2

√
n!(n + 3)!e

−in(n+3)ωtψn(x), (18)

where ω = �/2ma2. The complex quantum trajectories, evaluated numerically with
ω = 1, a value of J = 0.16 and for different initial points are shown in Fig. 7. Terms
up to n = 4 are included in the series.

These trajectories are not identical to those of the corresponding classical case;
i.e., there is no congruence with the classical trajectories in this case. However, some
interesting features of these trajectories may be noted. First, for initial points close to
the boundary of the potential, they spiral inwards with a period; i.e., the maximum
displacements from the center to either side on the real and imaginary axes decrease
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Fig. 7 The complex trajectories for the particle in a Gazeau-Klauder coherent state with J = 0.16 in the
Poschl-Teller potential. The trajectories in different plots are for the initial values on the real line xr0 = 0.2,
0.67, 0.7015 respectively and for 0 < t < 100 in each case

with each cycle. This can be seen clearly from the first trajectory in Fig. 7, which has
starting point xr0 = 0.2. When the initial point is nearer to the bottom of the potential,
such as xr0 = 0.67 shown in the second figure, we have a pentagonal star-shaped
trajectory. The point xr0 = 0.7015 is special for the case of J = 0.16, since it leads
to an almost circular trajectory in the complex plane and the particle remains in it for
ever. It is interesting to note that if we follow the trajectory for large t , the pattern
evolves with time and passes through these different phases. Thus the trajectory in
the third panel is the final one, in the limit t → ∞, for whatever initial point one
starts with. In particular, we have observed that the trajectory with the initial point
xr0 = 0.2, drawn in Fig. 7, approaches this final shape asymptotically. During this
process, also its orientation changed from anti-clockwise to clockwise and period
changed from π to π/2. Including only terms up to n = 3 does not significantly
affect the shape of this or neighboring trajectories. Hence we conclude that also in
Fig. 7, the shape of the trajectories do not arise from truncation errors. For values of
J much larger than that in this figure, the trajectories cannot be drawn since they are
not confined to the physically limited interval of 0 < xr < π/2. This may be due to
the error in truncation.

There is another class of coherent states based on supersymmetric quantum me-
chanics (SUSYQM) [29, 30]. In the case of symmetric Poschl-Teller potential given
in Eq. (15), let us take V0 = �

2/m and keep the Hamiltonian as

Hl = − �
2

2m

d2

dx2
+ 2�

2

m

l(l − 1)

sin2(2x)
. (19)

Then the energy eigenvalues can be written as

En = 2�
2

m
(n + l)2, (20)

while the eigenstates ψn(x) are the same as that in Eq. (17).
The superpotential Wl(x) in this case are defined as Wl(x) = −2�l cot(2x) [29,

30] and the lowering and raising operators Al and A
†
l are, respectively,

Al ≡ Wl + �
d

dx
and A

†
l ≡ Wl − �

d

dx
. (21)
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Fig. 8 The complex trajectories for the particle in a SUSYQM coherent state with q = 0.8 and k = 0.5 in
the Poschl-Teller potential. The trajectories in the different plots are for the initial values on the real line
xr0 = 0.55, 0.65, 0.72, π/4, respectively and for 0 < t < 100 in each case

The Hamiltonian Hl now becomes Hl = 1
2m

A
†
l Al + E0. The SUSYQM coherent

states are the normalized eigenvectors of Al and can be written as

ηq,k(x) = N(q)e(−3 cot(2q)+ik)x sin3/2(2x), (22)

where we have taken l = 3/2 as in the previous case of Gazeau-Klauder coherent
states. The corresponding eigenvalues are −3� cot(2q) + i�k. The time evolution of
this state can be found using the usual approach of expanding ηq,k(x, t) in terms of
the eigenfunctions ψn(x) given in Eq. (17):

ηq,k(x, t) =
∞∑

n=0

anψn(x)e−i
En
�

t =
∞∑

n=0

cnψn(x)e−i(n+ 3
2 )2ωt (23)

where ω = 2�/m in this case. Then the coefficients an can be found as

an =
∫ π/2

0
ψ�

n(x)ηq,k(x,0)dx.

Putting q = 0.8 and k = 0.5, the values obtained numerically for the first few
of these coefficients are a0 = 0.80121555 + i 0.33440120, a1 = 0.02393104 −
i 0.10634033, a2 = −0.00838162− i 0.00039834, a3 = 0.00168689− i 0.00677396,
a4 = −0.00133694 − i 0.00007039, a5 = 0.00041423 − i 0.00164860. Using these
in Eq. (23), complex quantum trajectories were drawn for various initial values, fol-
lowing the numerical method adopted in the previous cases. Figure 8 shows such
trajectories for initial values xr0 = 0.55, 0.65, 0.72, and π/4, respectively. It was
found that the situation is similar to that of the Gazeau-Klauder coherent states for
the same potential, but has quite different patterns for the complex trajectories. Tra-
jectories which start from points away from the minimum of the potential (xr = π/4)
can be seen to inspiral as in the previous case, but they appear to be more symmet-
rical (For example, see the first two diagrams in the panel of Fig. 8). Similarly for
points close to the minimum of the potential (for instance, xr0 = 0.72), the pattern
evolves to that of a pentagonal flower. Moreover, the final temporally stable pattern
(the last one in Fig. 8, where xr0 = π/4) is not a circle, which demonstrates that this
SUSYQM coherent state is quite distinct from Gazeau-Klauder coherent states.
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We have attempted to draw these trajectories for various combinations of the val-
ues of q , k and starting points xr0. In all cases, the shape of trajectories remain the
same. However, it was not possible to draw the trajectories for values of both q and
starting points near the turning points and k 	 1, possibly due to truncation errors. In
such cases, the trajectories were not found confined to the physically limited interval
of 0 < xr < π/2.

5 Conclusion

Using the MdBB approach, we have illustrated that the coherent state trajectories of
the harmonic oscillator are identical to the complex classical trajectories. This feature
is not restricted to high energies alone. We note that this result is not totally unex-
pected for standard coherent states because of their holomorphic nature. However,
such congruence is as yet reported only in the MdBB quantum trajectory representa-
tion. The analysis is extended to potentials such as an infinite well and a symmetric
Poschl-Teller potential. We have used numerical methods for the plotting of com-
plex trajectories in such cases. It is found that for a particle trapped in an infinite
potential well, the coherent state complex trajectories partly agree with the classical
solutions. For large values of the parameter J , the agreement becomes almost perfect
when initial points are located close to the turning points. On the other hand, for the
Poschl-Teller potential, no congruence is observed and hence no exact classical cor-
respondence can be claimed for both Gazeau-Klauder and SUSYQM coherent states.
But we find that the complex trajectories of these coherent states become periodic as
t → ∞, for typical values of the parameters involved. Most interestingly, different
generalized coherent states have different complex trajectories with distinguishable
patterns.

There were several attempts to formulate complex quantum mechanics, such as
that in [31] and references therein, where complex space variables appear. But they
are not directly related to the de Broglie-Bohm quantum trajectories approach and
does not envisage individual particle trajectories as in Bohmian mechanics. However,
it remains a strong possibility that such works on complex quantum mechanics shall
be of help to explain, in a more comprehensive way, the physical interests behind
the present work. In this paper, our attempt is to see whether the complex classi-
cal trajectories of particles [25–27] in various potentials are identical to the complex
trajectories in a modified version of de Broglie-Bohm quantum theory, for the corre-
sponding coherent states. Since this is our main concern, other complex formulations
of quantum mechanics are not considered here. But we wish to highlight that to pro-
ceed further, the complex quantum mechanics developed in the above references can
be of immense help.

Exploring the classical correspondence of coherent states at the level of quantum
trajectories is capable of revealing more information on the fundamental nature of
coherent states. It is interesting to note how the individual eigenstates which lead
to trajectories in Fig. 2 combine to form a coherent state with quantum trajectories
shown in Fig. 6, that at least partly agree with the classical solutions. Similarly, the
eigenstates of Poschl-Teller potential combine to form coherent states having trajec-
tories that correspond to periodic classical trajectories. In general, such trajectories
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have very interesting properties, which makes the method a potential tool in analyz-
ing the properties of generalized coherent states.
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