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Abstract Collapse models predict the spontaneous collapse of the wave function, in
order to avoid the emergence of macroscopic superpositions. In their mass-dependent
formulation, they claim that the collapse of any system’s wave function depends on its
mass. Neutral K , D, B mesons are oscillating systems that are given by Nature as su-
perposition of two distinct mass eigenstates. Thus they are unique laboratory for test-
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ing collapse models that are sensitive to the mass. In this paper we derive—for the sin-
gle mesons and bipartite entangled mesons—the effect of the mass-proportional CSL
(Continuous Spontaneous Localization) collapse model on the dynamics on neutral
mesons. We compare the theoretical prediction with experimental data from different
accelerator facilities.

Keywords Collapse models · Meson–antimeson systems

1 Introduction

Flavored neutral mesons, those with a net non-zero strangeness, charm, or beauty
content, are among the most fascinating systems in elementary particle physics. Par-
ticle and antiparticle are distinguished only by the flavor quantum number, exhibiting
the phenomenon of flavor oscillations in their time evolution [1, 2] (see also [3–10]).
In the following we will focus on K-mesons, but our conclusions can be easily gen-
eralized to the other flavored meson systems, as discussed at the end of the paper.

Flavor oscillation is a direct consequence of the superposition principle of quan-
tum mechanics. Nowadays many scientists question its validity [11–14], and several
experiments have been performed [15–20] or proposed, which challenge it. On the
theoretical side, models of spontaneous wave function collapse [21–38] explicitly
predict that the superposition principle is valid only at the microscopic scale, while
it gradually breaks down when moving towards the macroscopic scale. Therefore, by
altering the standard quantum dynamics, collapse model predict a different behavior
for kaon oscillations. Aim of this paper is to compute such an effect, and compare
it with available experimental data. To this end, we will use one of the most popular
collapse model, the mass-proportional CSL (Continuous Spontaneous Localization)
model [22, 23], and will perform the calculation of the probabilities, that are observed
in experiments, to second order perturbation theory and from that deduce the higher
orders. Comparison with experimental data will allow to conclude whether current or
future experiments are sensitive to this effect.

One of the difficulties in computing the effect of collapse models on kaon oscil-
lation is that these models act on the spatial part of the wave function—since the
collapse is supposed to localize wave functions in space—while oscillations occur
for the internal degrees of freedom. What happens then, is that the noise responsible
for the collapse of the wave function acts like a random medium through which the
particles propagate, modifying their evolution and also the oscillatory behavior. By
resorting to standard quantum field theoretical tools, we will compute analytically
such an effect. Note that the time evolution of K-mesons is involved, the two distinct
mass eigenstates have considerably different decay constants, and, therefore, it is not
straightforward to compute e.g. by dimensionality arguments the order of the effect.

2 Kaon Phenomenology and the Mass-Proportional CSL Model

We start by recalling why kaons oscillate. For convenience of the readers we keep the
discussion here short and more details can be find in Appendix A and references
therein. The basic observation is that the mass eigenstates are different from the
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flavour eigenstates. For kaons, there are two mass eigenstates, the short state |KS〉
and the long state |KL〉, as well as two flavor eigenstates, |K0〉 and |K̄0〉. In this pa-
per, we work in the approximation that there is no CP violation: this implies that |KS〉
and |KL〉 are orthogonal.1 The relation between the mass and the flavour eigenstates
is given by:

∣
∣K0〉 = |KL〉 + |KS〉√

2
,

∣
∣K̄0〉 = |KL〉 − |KS〉√

2
. (1)

During the time evolution, the mass eigenstates change by acquiring different phase
factors, depending on their mass.2 The phenomenon of flavor oscillation arises be-
cause what we measure are not the mass eigenstates, but the flavor eigenstates, which
are superpositions of mass eigenstates. The different phase factors in front of the mass
eigenstates change the superposition, making it possible, for example, to start with a
|K0〉 and end up with a |K̄0〉.

According to collapse models, the time evolution of the mass eigenstates is differ-
ent compared to the one given by standard quantum mechanics. Hence we expect to
see a different behavior in kaon oscillations. According to the mass proportional CSL
model [22, 23], the evolution of the state vector is given by the non-linear equation:

d|φt 〉 =
[

− i

�
Hdt +

√
γ

m0

∫

dx
(

M(x) − 〈

M(x)
〉)

dWt(x)

− γ

2m2
0

∫

dx
(

M(x) − 〈

M(x)
〉)2

dt

]

|φt 〉, (2)

where 〈M(x)〉 := 〈φt |M(x)|φt 〉. Here H is the standard quantum Hamiltonian of the
system and the other two terms induce the collapse of the wave function in space. The
mass m0 is a reference mass, which is taken equal to that of a nucleon. The parameter
γ is a positive coupling constant which sets the strength of the collapse process, while
M(x) is a smeared mass density operator:

M(x) =
∑

j

mjNj (x), Nj (x) =
∫

dyg(y − x)ψ
†
j (y)ψj (y), (3)

where ψ
†
j (y), ψj(y) are, respectively, the creation and annihilation operators of a

particle of type j , namely having mass mj , in the space point y. Neutral kaons are
spin zero particles, thus the spin will be of no relevance for the following calculations.
The smearing function g(x) is usually taken to be a Gaussian:

g(x) = 1

(
√

2πrC)3
e−x2/2r2

C , (4)

1This is justified by the smallness of the CP violation effect in neutral kaons, which gives rise to a small (of

the order of 10−3) odd/even CP impurity in the KS/KL states, and to a small non-orthogonality between
them.
2Indeed, this is not exactly true: if we take into account that kaons decay in time, there is also an exponen-
tial damping factor, besides the phase factor. We will consider this property later. Here we want to explain
the basic idea behind the oscillation phenomenon.
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where rC is the second new phenomenological constant of the model. The standard
numerical value of this correlation length rC is [21, 24, 26]:

rC = 10−5 cm, (5)

while, in the literature, two different values for the collapse strength γ have been
proposed. The first value has been originally proposed by Ghirardi, Pearle and Rim-
ini [24]

γ = 10−30 cm3s−1 (6)

in analogy with the GRW model [21]. The second value has been proposed by Adler,
inspired by the analysis of the process of latent image formation according to collapse
models, and amounts to [25]

γ = 10−22 cm3s−1. (7)

Finally, Wt(x) is an ensemble of independent Wiener processes, one for each point in
space.

Working with non-linear equations is notoriously difficult. As shown e.g. in
Ref. [27] the experimentally testable predictions of the model—when averaged over
the noise—do not change if the real noise Wt(x) is replaced by an imaginary noise
iWt (x). In this way, one loses the collapse properties, i.e. the non-linear terms, of the
equation. However, the advantage of having an imaginary noise is that the evolution
is described by a standard Schrödinger equation with a random Hamiltonian:

HTOT = H − �
√

γ
∑

j

mj

m0

∫

dyw(y, t)ψ
†
j (y)ψj (y) (8)

where

w(y, t) =
∫

dxg(y − x)ξt (x), (9)

and ξt (x) = dWt (x)
dt

is a white noise field, with correlation function E[ξt (x)ξs(y)] =
δ(t − s)δ(x − y). As such, w(x, t) is a Gaussian noise field, with zero mean and the
correlation function:

E
[

w(x, t)w(y, s)
] = δ(t − s)F (x − y), F (x) = 1

(
√

4πrC)3
e−x2/4r2

C . (10)

In the following, we will be a bit more general without making the calculation more
complicated, and we will assume that the noise has a general time correlation function
f (t − s) instead of a white noise time-correlator δ(t − s).

In our analysis, we treat the kaons as non-relativistic particles, which is in accor-
dance with the experimental situation at some acceleration facilities. Accordingly, the
Hamiltonian for the mass eigenstates is given by (j = S,L; short or long)

H(t) =
∑

j=S,L

∫

dxHj (x) (11)
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with

Hj (x) = mjc
2ψ

†
j (x)ψj (x) + �

2

2mj

∇ψ
†
j (x) · ∇ψj(x)

︸ ︷︷ ︸

:= Hj

S (x)

−�
√

γmj
w(x)ψ

†
j (x)ψj (x)

︸ ︷︷ ︸

:= N j (x)

(12)

and

γmj
≡ γ

(
mj

m0

)2

. (13)

The Hamiltonian includes two contributions: the standard Schrödinger term HS (x) =
HS

S (x) + HL
S (x) and the term N (x) = N S(x) + N L(x) which accounts for the col-

lapse. Note that in HS(x) we have included also the mass terms. These terms are
usually ignored, since they lead only to a constant shift of the energy, which implies
no observable effect. In the specific situation of kaons, where we have a superposition
of two different mass eigenstates, it is fundamental to keep it.

Indeed, for most investigations of the kaon phenomenology the kinetic part is
not relevant and one introduces an effective Hamiltonian with two different mass
eigenstates, i.e. the system is treated as a two state system analogously to spin- 1

2
particles [3, 4] and the two relevant bases—if C P violation is neglected—are the
strangeness (flavor) basis and mass eigenstate basis. For convenience of the readers
we provide a summary in Appendix A.

Since the effect of the CSL noise is to localize the wavefunction in space, we
cannot simplify our model by neglecting the kinetic part and we need to work in
a standard field theoretical background. In order to compute the effect of collapse
models on their evolution, we must specify therefore the spatial part of the wave
function, the form of the wave function in space, which will be localized by the noise
field. This means that, as said before, the change in the oscillatory behavior of kaons,
according to the collapse dynamics, is an indirect, not a direct, effect of the collapse
process.

In the following, we focus our attention on computing the probability that, starting
from a |K0〉 state at time t = 0, we end up in a |K̄0〉 state at a later time. The others
possible transition probabilities (|K0〉 −→ |K0〉, |K̄0〉 −→ |K̄0〉 and |K̄0〉 −→ |K0〉)
can be computed in a very similar way. In order to keep the computation as simple as
possible, we assume that the initial state is a plane wave with definite momentum pi .
Therefore, the quantity we wish to compute is:

PK0→K̄0(pi ) =
∑

pf

E
∣
∣
〈

K̄0,pf

∣
∣U(t)

∣
∣K0,pi

〉∣
∣2 (14)

where we assumed that also the final state is a momentum eigenstate, and we sum
over all the possible final states. Here, E denotes the stochastic average with respect
to the noise of the background field. It is convenient to express the matrix elements
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in terms of the mass eigenstates, instead of the strangeness eigenstates, since they are
the diagonal states of the Hamiltonian and, therefore, provide the simplest form of
the time evolution:

〈

K̄0,pf

∣
∣U(t)

∣
∣K0,pi

〉 =
∑

i,j

αjβ
∗
i

〈

Ki,pf

∣
∣U(t)

∣
∣Kj ,pi

〉

=
∑

j

αjβ
∗
j

〈

Kj ,pf

∣
∣Uj (t)

∣
∣Kj ,pi

〉

≡
∑

j

αjβ
∗
j Tj (pf ,pi , t), (15)

where i, j = S,L and αS = αL = βL = 1/
√

2, βS = −1/
√

2 [the parameters α,β

change accordingly for the other transition probabilities]. The second equation is
due to the fact that since the structure of the Hamiltonian is given by H(t) =
HS(t) + HL(t), namely not mixing of the mass eigenstates, the time evolution op-
erator factorizes U(t) = US(t) ⊗ UL(t). This implies that if a mass eigenstate is
produced at time t = 0 it persists its identity for any later time point. This is strongly
supported by experimental data.

Substituting Eq. (15) into Eq. (14) we get

PK0→K̄0(pi , t) =
∑

j,k

αjβ
∗
j α∗

kβk

∑

pf

E
[

T ∗
k (pf ,pi , t)Tj (pf ,pi , t)

]

︸ ︷︷ ︸

≡ Pkj (pi; t)

. (16)

We now compute these probabilities.

3 Derivation of the Probabilities for One-Particle States

We cannot solve the equations of motion exactly, because of the noise term in the
Hamiltonian. Therefore, we move to the interaction picture and apply a standard per-
turbative approach. We treat HS (x) as the unperturbed Hamiltonian, and N (x) as a
perturbation. This is certainly a very reasonable assumption since the noise coupling
constant γ is very small.

3.1 The Interaction Picture

In the interaction picture, the states evolve as follows [39]

|ψt 〉I ≡ UI (t,0)|ψ0〉I , (17)

with

UI (t,0) = 1 +
∞
∑

n=1

(−i

�

)n ∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtnNI (t1)NI (t2) · · ·NI (tn)

(18)



Found Phys (2013) 43:813–844 819

given via the well known Dyson series. The relation between the evolution operator in
the Schrödinger picture and the corresponding one in the interaction picture is given
by

U(t,0) = e− i
�
HStUI (t,0). (19)

The fields, on the other hand, evolve accordingly to the free Hamiltonian, therefore
we expand the wave function into a superposition of plane waves

ψI (x) = 1√
L3

∑

k

bke− i
�
(Ekt−k·x). (20)

In order to avoid possible divergences coming from the fact that we are working
with plane waves, we quantize our system in a box with side L by imposing periodic
boundary conditions. This implies that the components of the wave vector k take only

discrete values kj = 2π�

L
nkj , with nkj integer. The energy is Ek = mc2 + k2

2m
and bk

is the annihilation operator of a particle with momentum k. Since kaons are bosons,
their operators have to satisfy the commutation relations [bk, b

†
k′ ] = δk,k′ . The total

Hamiltonian can then be written as

H =
∑

k

Ekb
†
kbk. (21)

At the end of the calculation, we take the limit L → ∞, which amounts to making
the substitutions:

+∞
∑

k=−∞
−→

∫

dk,
1

L3
−→ 1

(2π�)3
. (22)

We have now introduced all the necessary elements for computing the matrix ele-
ments and the transition probabilities.

3.2 Computation of the Transition Amplitudes

We start by focusing our attention on the computation of the transition amplitude of
a certain mass eigenstate Tj (pf ,pi , t). Since this computation is independent of the
mass eigenstate j = S,L, we drop this index in this section. The interesting expres-
sion to compute is

T (pf ,pi , t) ≡ 〈pf |U(t)|pi〉 = 〈pf |e− i
�
HStUI (t,0)|pi〉

= e− i
�
Ef t 〈Ω|bpf

UI (t,0)b†
pi

|Ω〉, (23)

where Ef = mc2 + p2
f

2m
and |Ω〉 is the vacuum state. The perturbative scheme goes as

follows. We keep terms up to second order, which—when averaged over the noise—
give the first order contribution to the oscillation. The reason is that the corrections
are proportional to the average of products of the noise computed in different space
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time points, which are not zero when the noise appears a even number of times in the
matrix elements. Therefore we have

UI (t,0) � 1 − i

�

∫ t

0
dt1NI (t1) − 1

�2

∫ t

0
dt1

∫ t1

0
dt2NI (t1)NI (t2). (24)

Accordingly, the transition probability becomes:

T (pf ,pi , t)

� e− i
�
Ef t

[

T (0)(pf ;pi; t) + T (1)(pf ;pi; t) + T (2)(pf ;pi; t)
]

, (25)

where each term corresponds to one of the first three terms of the Dyson series. It
is possible to give a representation by means of Feynman diagrams for each one of
these three terms:

where the solid lines refer to the kaon and the dotted lines to the noise. The first term,
T (0), is trivial:

T (0)(pf ;pi; t) ≡ 〈Ω|bpf
b†

pi
|Ω〉 = δpf ,pi

. (26)

The second term is given by:

T (1)(pf ;pi; t) ≡ i
√

γm

∫ t

0
dt1

∫

dx1w(x1)〈Ω|bpf
ψ

†
I (x1)ψI (x1)b

†
pi

|Ω〉. (27)

Using the plane-wave expansion of the fields given by Eq. (20), and a similar expan-
sion for the adjoint of the field, we get:

〈Ω|bpf
ψ

†
I (x1)ψI (x1)b

†
pi

|Ω〉

= 1

L3

∑

k,k′
e

i
�
(Ek′ t1−k′·x1)e− i

�
(Ekt1−k·x1)〈Ω|bpf

b
†
k′bkb†

pi
|Ω〉

= 1

L3
e

i
�
[(Ef −Ei)t1−(pf −pi )·x1], (28)

and therefore:

T (1)(pf ;pi; t) = i
√

γm

1

L3

∫ t

0
dt1

∫

dx1w(x1)e
i
�
[(Ef −Ei)t1−(pf −pi )·x1]. (29)
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The third term is given by:

T (2)(pf ;pi; t) = −γm

∫ t

0
dt1

∫ t1

0
dt2

∫

dx1

∫

dx2w(x1)w(x2)

× 〈Ω|bpf
ψ

†
I (x1)ψI (x1)ψ

†
I (x2)ψI (x2)b

†
pi

|Ω〉. (30)

The matrix element becomes:

〈Ω|bpf
ψ

†
I (x1)ψI (x1)ψ

†
I (x2)ψI (x2)b

†
pi

|Ω〉

= 1

L3

∑

k,k′
e− i

�
(Ekt2−k·x2)e

i
�
(Ek′ t1−k′·x1)〈Ω|bpf

b
†
k′ψI (x1)ψ

†
I (x2)bkb†

pi
|Ω〉

= 1

L3
e− i

�
(Ei t2−pi ·x2)e

i
�
(Ef t1−pf ·x1)〈Ω|ψI (x1)ψ

†
I (x2)|Ω〉

= 1

L6
e− i

�
(Ei t2−pi ·x2)e

i
�
(Ef t1−pf ·x1)

∑

k

e− i
�
(Ekt1−k·x1)e

i
�
(Ekt2−k·x2), (31)

and thus we obtain:

T (2)(pf ;pi; t) = −γm

∫ t

0
dt1

∫ t1

0
dt2

1

L6

∫

dx1

∫

dx2w(x1)w(x2)

× e− i
�
(Ei t2−pi ·x2)e

i
�
(Ef t1−pf ·x1)

×
∑

k

e− i
�
(Ekt1−k·x1)e

i
�
(Ekt2−k·x2). (32)

3.3 Computation of the Transition Probability

The next step is to compute the transition probability Pkj (pi; t), defined in Eq. (16);
now we reintroduce the mass-index k and j . In the interaction picture, it reads:

Pkj (pi; t) =
∑

pf

e
i
�
(E

(k)
f −E

(j)
f )t

E
[

T ∗
Ik(pf ;pi; t)TIj (pf ;pi; t)

]

, (33)

where TIj (pf ;pi; t) is the sum of the terms inside the square bracket in Eq. (25).
When averaged over the noise, the non-zero terms are those which contain an even
number of noises (in the graphical representation in terms of Feynman diagrams, only
products of diagrams having an even number of dotted lines). Keeping terms only up
to second order, we have:

E
[

T ∗
Ik(pf ,pi , t)TIj (pf ,pi , t)

] = δpf ,pi
+ δpf ,pi

E
[

T
(2)
j (pf ;pi; t)

]

+ E
[

T
(2)∗
k (pf ;pi; t)

]

δpf ,pi

+ E
[

T
(1)∗
k (pf ;pi; t)T (1)

j (pf ;pi; t)
]

. (34)



822 Found Phys (2013) 43:813–844

Therefore we get:

Pkj (pi; t) = e
i
�
(E

(k)
i −E

(j)
i )t

[

1 + I
(2)
j (pi; t) + I

(2)∗
k (pi; t) + I

(1)
jk (pi; t)

]

(35)

where we have introduced the abbreviations:

I
(2)
j (pi; t) ≡ E

[

T
(2)
j (pi;pi; t)

]

,

I
(1)
jk (pi; t) ≡ e

i
�
(E

(j)
i −E

(k)
i )t

∑

pf

e
i
�
(E

(k)
f −E

(j)
f )t

E
[

T
(1)∗
k (pf ;pi; t)T (1)

j (pf ;pi; t)
]

.

(36)

These two terms are explicitly computed in Appendices B and C. Here we report only
the final result, which is:

I
(1)
jk (pi; t) = √

γmj
γmk

[

2
∫ t

0
dsf (s)(t − s)

]
1

(2π)3

π3/2

r3
C

(37)

and

I
(2)
j (pi; t) = −γmj

[∫ t

0
dsf (s)(t − s)

]
1

(2π)3

π3/2

r3
C

, (38)

where f (s) is the temporal correlation function of the noise. Inserting the expression
for I

(1)
jk (pi; t) and I

(2)
j (pi; t) written above in Eq. (35) one obtains:

Pkj (pi; t) = e
i
�
(E

(k)
i −E

(j)
i )t

{

1 − (
√

γmj
− √

γmk
)2

8π3/2r3
C

[∫ t

0
dsf (s)(t − s)

]}

= e
i
�
(E

(k)
i −E

(j)
i )t

{

1 − γ (mj − mk)
2

8π3/2r3
Cm2

0

[∫ t

0
dsf (s)(t − s)

]}

, (39)

where in the second line we use the definition given in Eq. (13). Finally, the transition
probability, Eq. (16), is computed to be:

PK0→K̄0(pi ) = 1

4

[

PSS(pi; t) − PLS(pi; t) − PSL(pi; t) + PLL(pi; t)
]

= 1

2

[

1 − cos

[
1

�

(

E
(L)
i − E

(S)
i

)

t

]

×
{

1 − γ (mj − mk)
2

8π3/2r3
Cm2

0

[∫ t

0
dsf (s)(t − s)

]}]

. (40)

In analogous way we can find the probability that a K0 remains K0 with the time
evolution:
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PK0→K0(pi ) = 1

4

[

PSS(pi; t) + PLS(pi; t) + PSL(pi; t) + PLL(pi; t)
]

= 1

2

[

1 + cos

[
1

�

(

E
(L)
i − E

(S)
i

)

t

]

×
{

1 − γ (mj − mk)
2

8π3/2r3
Cm2

0

[∫ t

0
dsf (s)(t − s)

]}]

. (41)

The computations starting from the anti-kaon are completely analogous, since we
neglected C P violation. Let us list here on two observations:

(1) The probabilities PK0→K0(pi ) and PK0→K̄0(pi ) sum to 1, which means that
there are no particle losses.

(2) The factor after the cosine is due to the noise present in this model, i.e. if there is
no noise (γ = 0) the square bracket gives 1 and arrive at the standard oscillations
formula3 [9, 40].

Since the effect of the noise is usually very similar to the one given by the decoher-
ence [9, 40], and it is well known from the literature that in such cases decoherence
damps the oscillation with an exponential function, we can think at the term inside
the curely bracket as the first term of the series of an exponential function. Therefore,
we can guess that the exact result for the probability transition from a kaon to an
anti-kaon could reasonably be:

PK0→K̄0(pi ) = 1

2

{

1 − cos

[
1

�

(

E
(L)
i − E

(S)
i

)

t

]

· e− γ (mj −mk)2

8π3/2r3
C

m2
0

[∫ t
0 dsf (s)(t−s)]}

.

(42)

To conclude the computation on a single particle, we can include the decay of the
particle adding to the free Hamiltonian HS an imaginary term:

HjS −→ HjS − i

2
Γj . (43)

This changes the previous computation by sending E
(j)
i −→ E

(j)
i − i

2Γj and one
can easily notice that the only change consists in multiplying each Pkj (pi; t) with the

exponential function e− Γk+Γj
2�

t in order to take the decay into account. Thus we obtain
the final result:

PK0→K̄0(pi ) = 1

4

{

e− ΓL
�

t + e− ΓS
�

t

− 2 cos

[
1

�

(

E
(L)
i − E

(S)
i

)

t

]

· e− ΓL+ΓS
2�

t · e
− γ (mS−mL)2

16π3/2r3
C

m2
0
t

︸ ︷︷ ︸

effect due to CLS model

}

(44)

3In some of these works, inside the cosine, only the mass difference appears. This is the same result as

ours, if one makes the approximation (good at the non-relativistic level) E
(j)
i

= mj c2 + p2
i

2mj
� mj c2.
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where now we have assumed that the noise is white in time, i.e. f (s) = δ(s). This is
the standard situation with the CSL model. Similar results hold for the other transition
probabilities.

4 The Collapse Model for Two Particle States

At the DA�NE collider [41–44] neutral kaons are copiously produced in an entan-
gled antisymmetric state:

|I 〉 = |KSKL〉 − |KLKS〉√
2

= |K̄0K0〉 − |K0K̄0〉√
2

. (45)

We want here to investigate how the mass-proportional CSL model changes the
time evolution of entangled states. In order to obtain a more general result, we
perform the computation for an arbitrary two-particle state. One particle evolves
to the left hand side and the other particle evolves to the right hand side, for
which they need the time tl , tr , respectively. It is convenient to use the mass ba-
sis |KSKS〉, |KSKL〉, |KLKS〉, |KLKL〉, where the state on the left hand side is a
plane wave with momentum −pi and the one on the right hand side is a plane
wave with momentum pi . In the Fock space framework, this means for example
|KSKL〉 = a

†
S(−pi )a

†
K(pi )|Ω〉. Since we are considering only states with two par-

ticles with definite momenta ±pi , the four states above form a complete basis. So the
generic initial state can be decomposed as:

|I 〉 =
∑

j,k=S,L

αjk|KjKk〉 with
∑

j,k=S,L

|αjk|2 = 1. (46)

Let us assume that we want to know the probability to find the left particle at time tl
in the state |Fl,pl〉 = ∑

m=S,L βm|Km,pl〉 and the right particle at time tr in the state
|Fr,pr 〉 = ∑

n=S,L γn|Kn,pr〉. Here |Fl〉 and |Fr 〉 can be mass or flavor eigenstates.
In the end we have to sum over all pl and all pr since we are interested in a result,
which is independent from the particular final momentum of the particles. We start
by computing the amplitude:

A(Fl,pl;Fr,pr )

= 〈Fl,pl;Fr,pr |ULEFT(tl) ⊗ URIGHT(tr )|I 〉
=

∑

j,k=S,L

αjk〈Fl,pl |Uj (tl)|Kj ,−pi〉〈Fr,pr |Uk(tr )|Kk,pi〉

=
∑

j,k,m,n=S,L

αjkβ
∗
mγ ∗

n 〈Km,pl |Uj (tl)|Kj ,−pi〉〈Kn,pr |Uk(tr )|Kk,pi〉

=
∑

j,k=S,L

αjkβ
∗
j γ ∗

k 〈Kj ,pl |Uj (tl)|Kj ,−pi〉〈Kk,pr |Uk(tr )|Kk,pi〉, (47)
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since it gives the probability of interest:

P(Fl;Fr) ≡
∑

pl ,pr

E
∣
∣A(Fl,pl;Fr,pr )

∣
∣
2

=
∑

j,k,j ′,k′=S,L

αjkβ
∗
j γ ∗

k α∗
j ′k′βj ′γk′

× E

{[
∑

pl

〈Kj ′ ,pl |Uj ′(tl)|Kj ′ ,−pi〉∗〈Kj ,pl |Uj (tl)|Kj ,−pi〉
]

×
[
∑

pr

〈Kk′ ,pr |Uk′(tr )|Kk′ ,pi〉∗〈Kk,pr |Uk(tr )|Kk,pi〉
]}

. (48)

The noise average involves two terms describing the evolution of the particle mov-
ing to the right and left hand side, respectively. The mixing terms are in the plane
wave picture important. As we show explicitly in Appendix D, however, in the more
realistic situation of wave packets propagating in opposite directions, these mixed
terms are negligible. This considerably simplifies the computation to

P(Fl;Fr) =
∑

j,k,j ′,k′=S,L

αjkβ
∗
j γ ∗

k α∗
j ′k′βj ′γk′

×
{
∑

pl

[

E〈Kj ′ ,pl |Uj ′(tl)|Kj ′ ,−pi〉∗〈Kj ,pl |Uj (tl)|Kj ,−pi〉
]

×
∑

pr

[

E〈Kk′ ,pr |Uk′(tr )|Kk′ ,pi〉∗〈Kk,pr |Uk(tr )|Kk,pi〉
]
}

. (49)

The terms inside the square bracket are the same as those we computed in the
previous sections for the single particle case, therefore we obtain a factorization of
the probabilities, i.e.

P(Fl;Fr) =
∑

j,k,j ′,k′=S,L

αjkβ
∗
j γ ∗

k α∗
j ′k′βj ′γk′Pj ′j (−pi; tl) · Pk′k(pi; tr ), (50)

with Pkj (pi; t) given in Eq. (39).
For the antisymmetric initial state (45) (αSL = −αLS = 1√

2
else αij = 0) and

choosing the final states, |Fl〉 = |K0〉 (βS = βL = 1√
2

) and |Fr 〉 = |K0〉 (γS = γL =
1√
2

), respectively, we have to compute

P
(

K0;K0) = 1

8

[

PSS(−pi; tl) · PLL(pi; tr ) + PLS(−pi; tl) · PSL(pi; tr )
+ PSL(−pi; tl) · PLS(pi; tr ) + PLL(−pi; tl) · PSS(pi; tr )

]

, (51)
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where in the case of white noise field we have:

Pkj (pi; t) = e− Γk+Γj
2�

t e
i
�
(E

(j)
i −E

(k)
i )t · e− γ (mj −mk)2

16π3/2r3
C

m2
0
t

(52)

and thus:

P
(

K0;K0) = 1

8

{

e− ΓS
�

tl− ΓL
�

tr + e− ΓL
�

tl− ΓS
�

tr

+ 2 · cos

[
1

�

(

E
(S)
i − E

(L)
i

)

(tr − tl)

]

· e− ΓL+ΓS
2�

(tl+tr )

· e
− γ (mS−mL)2

16π3/2r3
C

m2
0
(tl+tr )

︸ ︷︷ ︸

effect due to CLS model

}

. (53)

In the next section, we comment on the experimental implications of the above for-
mula.

5 Estimation of the Effect of the Collapse on Single and Entangled Kaons &
Connections to Other Models

Now we want to compare decoherence models (interactions of a quantum system
with an environment) to the prediction of the CSL model for single and entangled
meson systems. For entangled meson systems there exist experiments that compare
the experimental data with specific decoherence models. We will use the experimen-
tally obtained bounds on possible decoherence effects to find out whether the effect
of the CSL model on the interference term can be observed.

The dynamics of closed quantum systems are covered by the Schrödinger equa-
tion. These are systems which do not suffer any unwanted interactions with the
outside classical or quantum world—generally termed environment—and are con-
sequently described by unitary dynamics. However, in the real world, it is often not
possible to avoid interactions of the system of interest with other (quantum) systems,
such systems are denoted as open quantum systems. The whole system S +E, where
S is the quantum system under investigation and E is the environment, is assumed to
be closed. Possible decoherence effects arise due to some interaction of the system
with its environment. Sources for “standard” decoherence effects can be the experi-
mental background or noise of the experimental setup. “Nonstandard” decoherence
effects may result from fundamental “modifications” of QM or may be traced back to
the influence of quantum gravity—quantum fluctuations in the space-time structure
on the Planck mass scale—and arise in general on a different energy scale. Assuming
certain conditions, a master equation, such as e.g. Lindblad master equation [45, 46]
that assume only Markovian interactions, can be obtained which allows to handle the
dynamics (e.g. decoherence models) without modeling any environment. Note that in
general the decay property can as well treated by the Lindblad master equation [47],
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the prize to pay is that the Hilbert space has to be enlarged at least by two dimen-
sions. In the following, we use the non-hermitian Hamiltonian to describe the decay
property and describe by the Lindblad generators solely the effect of decoherence.

In the last section we found that the effect of the collapse on the interference term
is a damping in addition to the damping due to the decay property. This effect is
also observed in the case one assumes that during the time evolution of the single or
two-particle state the kaon or kaons interact with an environment in the mass basis
{KS,KL}, which was investigated by the authors of Ref. [40]. They treated the neutral
kaons as an open quantum system with Markovian interactions (for an overview on
open quantum system see e.g. [48]) and their dynamics is given by the Liouville–
von Neumann equation with an additional Lindblad term:

D[ρ] = 1

2

∑

j

(

L
†
jLjρ + ρL

†
jLj − 2LjρL

†
j

)

(54)

which gives rise to the well known Lindblad master equation [45, 46]:

d

dt
ρ = −iHρ + iρH † − D[ρ]. (55)

They further assumed that the interaction occurs in the mass basis. For the single par-
ticle case one chooses the Lindblad generators to be LS,L = √

Λsingle|KS,L〉〈KS,L|
where Λsingle is the strength of the interaction. The solution of the components of the
density matrix ρ = ∑

i,j=S,L ρij (t)|Ki〉〈Kj | is given by:

ρij (t) = ρij (0) · e−Γi tδi,j +(1−δi,j )(i c2
�

(mi−mj )t− ΓS+ΓL
2�

t−Λsingle·t), (56)

thus, as we expect, only the off-diagonal terms are affected by the interaction with
the environment. In particular, the probability to find an antikaon when a kaon state
was produced at time t = 0 becomes:

PK0→K̄0(t) = 1

4

{

e− ΓS
�

t + e− ΓL
�

t

− 2 cos

[
c2

�
(mS − mL)t

]

e− ΓS+ΓL
2�

t · e−Λsingle·t
︸ ︷︷ ︸

decoherence effect

}

(57)

which is of the same structure as the result, Eq. (44), based on the mass de-
pendent CLS model. In the two particle case we have a similar behaviour if the
two Lindblad generators are chosen to be L1 = √

Λtwo-particle|e1〉〈e1| and L2 =
√

Λtwo-particle|e2〉〈e2| with |e1〉 = |KS〉 ⊗ |KL〉 and |e2〉 = |KL〉 ⊗ |KS〉. Then for
the initial antisymmetric state ρ = |ψ−〉〈ψ−| with |ψ−〉 = 1√

2
{|e1〉− |e2〉} we obtain

the following time dependent density matrix before one kaon decayed:

ρ(t) = 1

2
e− ΓS+ΓL

2�
t
{|e1〉〈e1| + |e2〉

〈

e2| − e−Λtwo-particle·t(|e1
〉〈e2| + |e2〉〈e1|

)}

.

(58)



828 Found Phys (2013) 43:813–844

The authors of Ref. [40] assumed that only the two-particle state undergoes de-
coherence, namely only the two-particle state interacts with the environment. That
means that after one particle decayed the time evolution is given by the single non-
hermitian Hamiltonian Hsingle = M + iΓ , where the hermitian operators M is the
mass-operator (covering the unitary part of the evolution) and the operator Γ de-
scribes the decay property (see Appendix A for more detail on the Hamiltonian. Note
that there is no additional effect assumed due to decoherence assumed. The under-
lying philosophy is the assumption that an entangled two-particle state is one entity
and, consequently, has a single time evolution and interacts holistically with the envi-
ronment. Therefore, the joint probability to obtain same strangeness states at different
times tl , tr is given by [40]

P
(

K0, tl;K0tr
)

= Tr
(∣
∣K0〉〈K0

∣
∣U

single
max{tl ,tr },min{tl ,tr } Trmin{tl ,tr }

(

Pmin{tl ,tr }ρ
(

min{tl , tr}
)))

= 1

8

{

e− ΓS
�

tl− ΓL
�

tr + e− ΓL
�

tl− ΓS
�

tr

+ 2 · cos

[
c2

�
(mS − mL)(tr − tl)

]

· e− ΓL+ΓS
2�

(tl+tr ) · e−Λtwo-particle·min{tl ,tr }
︸ ︷︷ ︸

decoherence effect

}

,

(59)

where ρ(t) is given by Eq. (58), U
single
t is the time evolution of a single kaon without

decoherence effects and the two-particle projector is given by

Pmin{tl ,tr } =
{ |K0〉〈K0| ⊗ 1 for tl ≤ tr

1 ⊗ |K0〉〈K0| for tr ≤ tl
. (60)

This joint probability has a similar structure as the result obtained from the CSL
model, Eq. (53), except that here the damping is not sensitive to the sum of the times,
but on the time value corresponding to the first measured kaon. Thus these two models
differ and an experiment with a proper time resolution should be able to distinguish
these two models. For B-mesons the time resolution of the experimental data obtain at
the accelerator facility KEK was investigated [49]. The chosen experimental method
turned not out to be sensitive enough in obtaining the needed time resolution (for
details see the PhD thesis of Gerald Richter [49]).

Another option is to assume that both kaons, though being entangled, separately
interact with the environment. This is the case for the considered CSL model, because
it assumes that the contribution from the collapse is the sum of contributions to the
Hamiltonian of the short-lived state and the long-lived state. It is worth noting here,
however, that different to the above discussed decoherence models, the CSL model
predicts the value of the decoherence parameter Λ explicitly.

In the following we want to compare these decoherence models with data of ex-
periments and by that estimate whether a collapse as predicted by the CSL model can
be experimentally observed in flavor oscillations.
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There exist precision experiments for neutral K-mesons and neutral B-mesons in
the antisymmetric entangled state |ψ−〉 that investigate bounds on these possible de-
coherence effects or differently stated on the stability of nonlocal correlations. They
consider the joint probabilities and model them by one single phenomenological pa-
rameter ζ multiplying the interference effect, i.e.:

P
(

K0;K0) = 1

8

{

e− ΓS
�

tl− ΓL
�

tr + e− ΓL
�

tl− ΓS
�

tr

+ 2 · cos

[
1

�

(

E
(S)
i − E

(L)
i

)

(tr − tl)

]

· e− ΓL+ΓS
2�

(tl+tr ) · (1 − ζ )

}

.

(61)

From data one obtains bounds on ζ quantifying the strength of the interactions
with the environment. The authors of Ref. [50] analyzed the 1999-CPLEAR experi-
ment [51] and found the following upper bounds if the decoherence effect is assumed
to be in the mass basis (as discussed above) averaged over both measured time con-
figurations

ζ̄ = 0.13{+0.16
−0.15 (62)

from which we estimate via 1 − ζ̄ ≡ e−Λtwo-particle·min{tl ,tr } the upper bound of effects
coming from possible interactions with the environment to be (C.L. . . . Confidence
Level):

Λtwo-particle ≤ 8.8 · 109 s−1 at 90 %C.L. or
(63)

Λ̃two-particle := Λtwo-particle

ΓS

≤ 0.79 at 90 %C.L.

Note that we have only in this case a one-to-one correspondence between the ζ ap-
proach and the Λtwo-particle approach since in both measured time configurations the
minimal time was the same.

Let us compare this result with the theoretical prediction given by the mass-
proportional CSL model. Using the stronger value suggested by Adler for γ , namely
γ = 10−22 cm3 s−1 [25], and recalling that rC = 10−5 cm, |mS − mL| � 3.5 ·
10−12 MeV/c2 [52], and m0 � 9.4 · 102 MeV/c2 [52], we obtain:

Λ̄CSL := γ (mS − mL)2

16π3/2r3
Cm2

0

= 1.5 × 10−38 s−1 or

(64)

Λ̃CSL := Λ̄CSL

ΓS

= 1.3 · 10−48.

Thus the expected effect is by many orders smaller than the sensitivity given by the
CPLEAR experiment [51].

The KLOE collaboration [41–43] exploring the antisymmetric entangled kaon
state produced at the � resonance has also investigated possible decoherence effect.
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It is a very clean experiment to look for small effects. The above idea of the ζ -
parameter [50] was investigated—differently from the above described experiment—
for the final states π+π− on both sides. Moreover, the decoherence strength ζ was
achieved by integration over the natural distribution of the time differences. It gives
so far the highest precision due to a C P suppressing mechanism, i.e. the value is:

ζ̄π+,π− = 0.003 ± 0.018stat ± 0.006syst. (65)

Collapse models apply to all systems, and for small times one has: ζ ≈ ΛCSL · t . From
that we can estimate that the sensitivity of the above experiment, namely the statistical
sensitivity, the detector resolutions and the performance of the chosen setup, is not
high enough to show the possible effects of the CSL model. Certainly, one has in this
case to do the calculation including C P violation, but the final conclusion should not
change significantly.

In summary, the experimental situation at the DA�NE collider, where the experi-
ments of the KLOE Collaboration are performed, provides a very clean environment
in the sense that environmental effects can be kept low. As the above averaged value
of ζ shows, however, the limiting errors are the statistical one and the systematic one
given by the present technology. Looking for better suited time measurements (no
average), better suited observables and more statistics might considerably enhance
the sensitivity.

Let us now discuss the other meson systems. For all mesons types except the K-
mesons the decay widths are in good approximation equal (see Appendix A), ΓL �
ΓH � Γ , thus the probabilities to find on both sides the same flavor eigenstates M0 =
B,D,Bs at different times is given by (compare with Eq. (61)):

P
(

M0, tl;M0, tr
) = e− Γ

�
(tl+tr )

4

{

1 + cos

[
1

�

(

E
(S)
i − E

(L)
i

)

(tr − tl)

]}

, (66)

hence the effect of the decay property is only an overall effect. Let us compute the
effect predicted by the CSL model using the data of [52] for these mesons:

Λ̄CSL,B-meson := γ (mH − mL)2

16π3/2r3
Cm2

0

= 1.4 × 10−34 s−1 or

Λ̃CSL := Λ̄CSL,B-meson

Γ
= 2.1 · 10−46,

Λ̄CSL,Bs -meson := γ (mH − mL)2

16π3/2r3
Cm2

0

= 1.7 × 10−31 s−1 or

(67)

Λ̃CSL := Λ̄CSL,Bs -meson

Γ
= 2.6 · 10−42,

Λ̄CSL,D-meson := γ (mH − mL)2

16π3/2r3
Cm2

0

= 3.2 × 10−37 s−1 or

Λ̃CSL := Λ̄CSL,D-meson

Γ
= 1.3 · 10−49.
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We observe that the effect of the collapse compared with the mean time is the best
for the Bs -meson. For B-mesons estimates for ζB-mesons exists [49, 53–55], they are
again far from the needed accuracy. Last but no least let us mention that authors
discuss possible decoherence effects arising from different effects, e.g. the author
of Ref. [56] discusses decoherence arising from the presence of dark energy in the
universe and concludes that a possible decoherence effects due to quantum gravity
strongly depends on the details of the structure of the quantum foam.

6 Conclusions

In this paper we addressed the question whether models of spontaneous wave function
collapse, which modify the standard quantum evolution by adding non-linear and
stochastic terms to the Schrödinger equation, are testable, or not, for single and even
entangled neutral meson systems in High Energy Physics. If spontaneous collapses
occur in Nature, we expect they would affect these systems and their flavor oscillation
mechanism in a non trivial way.

We have focussed our analysis on the mass-proportional CSL (Continuous Spon-
taneous Localization) model [22, 23] and assumed that the contributions of the two
different mass eigenstates are independently added to the Hamiltonian. With that we
connected the spatiotemporal CSL collapse mechanism with the two dimensional
dynamics describing the flavor oscillations. In order to perform the lengthly and in-
volved computation we had to use different methods. First, we replaced the collapse
noise with an imaginary noise that has been shown to produce all the experimentally
testable predictions of the CSL model. Next, the noise has been treated as a small
perturbation. Moving to the interaction picture we derived order by order via Dyson
series the transition amplitudes. Via them we obtained the probabilities of interest for
single and bipartite systems. In the very last step we assumed that the noise is white
in time. Consequently, via our computation one can in future also consider the effects
of different noise correlation functions.

The result of the computed probabilities within the CSL model shows that the os-
cillation terms are affected by an exponential damping. It is sensitive to the mass dif-
ference squared and the two phenomenological parameters of the CSL model, which,
if the theory is taken seriously, acquire the status of new constants of nature. They are
currently fixed to certain numbers [25] which are compatible with the results of all
current experiments. We computed also the case of bipartite entangled systems where
we found that the effect of CSL factorizes, i.e. each meson seems to be affected sep-
arately and independently of the initial state they share.

We compared the CSL model with other models [40, 50] that investigate possible
decoherence effects or the stability of nonlocal correlations and that have been in-
vestigated at accelerator facilities [41–43, 51]. We want to note here, that the upper
bound on the ζ parameter published by the KLOE collaboration gives us an estimate
on the magnitude of the current sensitivity of the experiments. Our overall conclu-
sion is that the possible collapse effect on these mass-superposed states is too small
to be seen by the up to date performed experiments. A dedicated experiment, choos-
ing other more suitable observables, times and with more statistics might enhance the
sensitivity.
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Last but not least, we want to compare the results of mesons with the ones of
neutrinos (for a detailed discussion see Refs. [57, 58]). In that case one has to connect
the spatiotemporal propagation with the three dimensional Hilbert space of the lepton
flavor oscillations. Since the mass is much lower than in the meson case one expects
that the collapse effect is also considerably smaller and thus harder to observe. Let
us remark that for neutrinos, differently to mesons, the control of the environmental
effects is not possible since it is given mainly by interaction with other neutrinos
while traveling through our universe.
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Appendix A: Kaon Phenomenology

The phenomenology of oscillation and decay of meson-antimeson systems can be
described by nonrelativistic quantum mechanics effectively, because the dynamics is
depending on the observable hadrons rather than on the more fundamental quarks.
A quantum field theoretical calculation showing negligible corrections can e.g. be
found in Refs. [10, 59].

A neutral meson M0 is a bound state of quark and antiquark. As numerous ex-
periments have revealed the particle state M0 and the antiparticle state M̄0 can decay
into the same final states, thus the system has to be handled as a two state system
similar to spin 1

2 systems. In addition to being a decaying system these massive parti-
cles show the phenomenon of flavor oscillation, i.e. an oscillation between matter and
antimatter occurs. If e.g. a neutral meson is produced at time t = 0 the probability to
find an antimeson at a later time is nonzero.

The most general time evolution for the two state system M0–M̄0 including all its
decays is given by an infinite–dimensional vector in Hilbert space:

∣
∣ψ̃(t)

〉 = a(t)
∣
∣M0〉 + b(t)

∣
∣M̄0〉 + c(t)|f1〉 + d(t)|f2〉 + · · · (68)

where fi denote all decay products and the state |ψ̃(t)〉 is a solution of the
Schrödinger equation (� ≡ 1):

d

dt

∣
∣ψ̃(t)

〉 = −iĤ
∣
∣ψ̃(t)

〉

(69)

where Ĥ is an infinite-dimensional Hamiltonian operator. There is no known method
about how to solve this infinite set of coupled differential equations affected by strong
dynamics. The usual procedure is based on restricting to the time evolution of the
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components of the flavour eigenstates, a(t) and b(t). Then one uses the Wigner–
Weisskopf approximation and can write down an effective Schrödinger equation:

d

dt

∣
∣ψ(t)

〉 = −iH
∣
∣ψ(t)

〉

(70)

where |ψ〉 is a two dimensional state vector and H is a non-hermitian Hamiltonian.
Any non-hermitian Hamiltonian can be written as a sum of two hermitian operators
M,Γ , i.e. H = M + i

2Γ , where M is the mass-operator, covering the unitary part of
the evolution and the operator Γ describes the decay property. The eigenvectors and
eigenvalues of the effective Schrödinger equation, we denote by:

H |Mi〉 = λi |Mi〉 (71)

with λi = mi + i
2Γi (c ≡ 1). For neutral kaons the first solution (with the lower mass)

is denoted by KS , the short lived state, and the second eigenvector by KL, the long
lived state, as there is a huge difference between the two decay widths ΓS � 600ΓL.
For B-mesons the lower mass solution is denoted by BL with L for light, and the
second solution by BH with H for heavy. For this meson type (as for all the other ones
except K-mesons) the decay widths are in good approximation equal, i.e. ΓL � ΓH .
Thus, the huge difference in two decay widths is special to K-mesons and this is
one reason that they are attractive to various foundational tests, such as e.g. tests for
nonlocality [60–65] or the very working of a quantum eraser [44, 66–68].

Certainly, the state vector is not normalized for times t > 0 due to the non-
hermitian part of the dynamics. Different strategies have been developed to cope
with that. In Ref. [47] based on the open quantum formalism the authors developed
a framework that shows that the effect of decay is a kind of decoherence. In this
paper we handle only the surviving part of the evolution, but given the framework
developed in Ref. [47] (or similar in Ref. [69]) one can straightforwardly obtain the
full quantum information content of the meson systems, e.g. to study Heisenberg’s
uncertainty in relation with C P violation in the time evolution [70, 71].

Appendix B: Computation of I
(1)
jk (pi; t)

Let us focus our attention on the stochastic average, i.e.:

E
[

T
(1)∗
k (pf ;pi; t)T (1)

j (pf ;pi; t)
]

= E

[(

−i
√

γmk

1

L3

∫ t

0
dt2

∫

dx2w(x2)e
− i

�
[(E(k)

f −E
(k)
i )t2−(pf −pi )·x2]

)

×
(

i
√

γmj

1

L3

∫ t

0
dt1

∫

dx1w(x1)e
i
�
[(E(j)

f −E
(j)
i )t1−(pf −pi )·x1]

)]

= √
γmj

γmk

1

L6

∫ t

0
dt1

∫ t

0
dt2

∫

dx1

∫

dx2E
[

w(x1)w(x2)
]

· e i
�
[(E(j)

f −E
(j)
i )t1−(pf −pi )·x1] · e− i

�
[(E(k)

f −E
(k)
i )t2−(pf −pi )·x2]. (72)
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The average over the noise is:

E
[

w(x1)w(x2)
] = f (t1 − t2)

e−(x1−x2)
2/4r2

C

(
√

4πrC)3
, (73)

where f (t1 − t2) is a generic correlation function characterizing the noise. Therefore
we have:

E
[

T
(1)∗
k (pf ;pi; t)T (1)

j (pf ;pi; t)
]

= √
γmj

γmk

∫ t

0
dt1e

i
�
(E

(j)
f −E

(j)
i )t1

∫ t

0
dt2e

− i
�
(E

(k)
f −E

(k)
i )t2f (t1 − t2)

︸ ︷︷ ︸

≡C(t,pf ,pi )

· 1

L6

∫

dx1

∫

dx2
e−(x1−x2)

2/4r2
C

(
√

4πrC)3
e− i

�
(pf −pi )·(x1−x2)

︸ ︷︷ ︸

≡S(pf ,pi )

. (74)

We first compute the function S:

S(pf ,pi ) ≡ 1

L6

∫ + L
2

− L
2

dx1

∫ + L
2

− L
2

dx2
e−(x1−x2)

2/4r2
C

(
√

4πrC)3
e− i

�
(pf −pi )·(x1−x2). (75)

Here we wrote explicitly the integration extremes (given by the box of side L). We
make the following change of variables:

y = (x1 + x2) and x = (x1 − x2). (76)

The Jacobian of this transformation is 1/23 and the integral (in the one dimensional
case) changes as follows:

∫ + L
2

− L
2

dx1

∫ + L
2

− L
2

dx2f (x1, x2) = 1

2

∫ +L

0
dx

∫ +(L−x)

−(L−x)

dy
[

f (x, y) + f (−x, y)
]

.

(77)
In our case we have:

f (x,y) = e−x2/4r2
C

(
√

4πrC)3
e− i

�
(pf −pi )·x

−→ f (x) + f (−x) = e−x2/4r2
C

(
√

4πrC)3
2 cos

[
1

�
(pf − pi ) · x

]

. (78)

Accordingly, the function S becomes:
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S(pf ,pi ) = 1

L6

1

23

∫ L

0
dx

∫ +(L−x)

−(L−x)

dy
e−x2/4r2

C

(
√

4πrC)3
2 cos

[
1

�
(pf − pi ) · x

]

= 1

L3

∫ L

0
dx

e−x2/4r2
C

(
√

4πrC)3
2 cos

[
1

�
(pf − pi ) · x

]
1

23

3
∏

i=1

2
(L − xi)

L
.

(79)

In the limit L → ∞ (which we will do later) the term 1
23

∏3
i=1 2 (L−xi )

L
−→ 1, so we

can write:

S(pf ,pi ) = 1

L3

∫ L

0
dx

e−x2/4r2
C

(
√

4πrC)3
2 cos

[
1

�
(pf − pi ) · x

]

= 1

L3

∫ +L

−L

dx
e−x2/4r2

C

(
√

4πrC)3
e

i
�
(pf −pi )·x. (80)

We now compute the function C(t,pf ,pi ). Let us introduce the two variables a ≡
1
�
(E

(j)
f − E

(j)
i ) and b ≡ − 1

�
(E

(k)
f − E

(k)
i ) and so we can write

C(t,pf ,pi ) =
∫ t

0
dt1

∫ t

0
dt2e

iat1eibt2f (t1 − t2)

=
∫ t

0
dt1

∫ t

0
dt2e

i
2 [(a−b)(t1−t2)+(a+b)(t1+t2)]f (t1 − t2). (81)

We now make the change of variables introduced when computing S; we define u =
t1 + t2 and s = t1 − t2 and focus our attention only on the case b = −a:

C(t,pf ,pi ) =
∫ t

0
dt1

∫ t

0
dt2e

ia(t1−t2)f (t1 − t2)

= 1

2

[∫ 0

−t

dseiasf (s)

∫ 2t+s

−s

du +
∫ t

0
dseiasf (s)

∫ 2t−s

s

du

]

=
∫ 0

−t

dseiasf (s)(t + s) +
∫ t

0
dseiasf (s)(t − s)

= 2
∫ t

0
ds cos(as)f (s)(t − s). (82)

In the white noise limit f (s) = δ(s) and the function C takes the very simple expres-
sion:

Cw(t,pf ,pi ) = t. (83)

Collecting all pieces together, we have:
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E
[

T
(1)∗
k (pf ;pi; t)T (1)

j (pf ;pi; t)
]

= √
γmj

γmk
C(t,pf ,pi )

1

L3

∫ +L

−L

dx
e−x2/4r2

C

(
√

4πrC)3
e

i
�
(pf −pi )·x (84)

and therefore I
(1)
jk (pi; t) becomes:

I
(1)
jk (pi; t) = √

γmj
γmk

e
i
�
(E

(j)
i −E

(k)
i )t

∑

pf

e
i
�
(E

(k)
f −E

(j)
f )t

C(t,pf ,pi )

· 1

L3

∫ +L

−L

dx
e−x2/4r2

C

(
√

4πrC)3
e

i
�
(pf −pi )·x. (85)

We now are in the position to take the limit L → ∞, so that the above equation
becomes:

I
(1)
jk (pi; t) = √

γmj
γmk

e
i
�
(E

(j)
i −E

(k)
i )t

∫

dpf e
i
�
(E

(k)
f −E

(j)
f )t

C(t,pf ,pi )

× 1

(2π�)3

∫ +∞

−∞
dx

e−x2/4r2
C

(
√

4πrC)3
e

i
�
(pf −pi )·x. (86)

The last integral can be computed exactly:

∫ +∞

−∞
dx

e−x2/4r2
C

(
√

4πrC)3
e

i
�
(pf −pi )·x = e

− (pf −pi )
2r2

C

�2 , (87)

therefore we have:

I
(1)
jk (pi; t) = √

γmj
γmk

e
i
�
(E

(j)
i −E

(k)
i )t

∫

dpf e
i
�
(E

(k)
f −E

(j)
f )t

C(t,pf ,pi )

· 1

(2π�)3
e
− (pf −pi )

2r2
C

�2 . (88)

The Gaussian function has a spread σ = �/rC � 12 eV/c, which is very small
compared to the typical wavelengths entering the oscillatory terms. Indeed, the mod-
ulus of the part of the exponent that depends on pf is

t

�

∣
∣E

(k)
f − E

(j)
f

∣
∣ = t

�

∣
∣
∣
∣

p2
f

2mk

− p2
f

2mj

∣
∣
∣
∣
= t

2�

|mj − mk|
mjmk

p2
f ∼ 2,7 × 10−16(eV/c)−2.

(89)
In the case j = k this is simply zero while for j �= k we substitute |mS − mL| � 3.5 ·
10−12 MeV/c2, mL � mS � 498 MeV/c2 [52] and, for the kaons at DA�NE we have
computed t using the maximum possible length L = 10 m and taking v = 0,2c so that
t = L/v = 1.6 · 10−7 s. Regarding the term C(t,pf ,pi ) it can be shown, starting by
its definition, that it is composed of terms that involve exponential oscillation with
a phase of the same order of the one above multiplied by the Fourier transform of



Found Phys (2013) 43:813–844 837

the noise correlation function f (t). This means that, like the exponential case we
studied just above, even this term changes little the Gaussian width and so we can
bring all these terms outside the integral and set pf = pi . In this way, we need only
compute C(t,pi ,pi ), which is the expression as given in Eq. (82) with a = −b = 0.
So it remains only a Gaussian integral that can be computed explicitly and we get the
final result:

I
(1)
jk (pi; t) = √

γmj
γmk

[

2
∫ t

0
dsf (s)(t − s)

]
1

(2π)3

π3/2

r3
C

. (90)

In the white noise case f (s) = δ(s), which we are mainly interested in, the above
formula reduces to:

I
(1)
jk (pi; t) = √

γmj
γmk

t

(2π)3

π3/2

r3
C

. (91)

We can notice that this formula is consistent with the relativistic expression first de-
rived in Ref. [58]:

I
(1)
jk (pi , si; t) = √

γmj
γmk

mjmkc
4

E
(j)
i E

(k)
i

t

(2π)3

π3/2

r3
C

, (92)

since, in the non relativistic limit: E
(j)
i =

√

p2
i c

2 + m2
j c

4 � mjc
2.

Appendix C: Computation of I
(2)
j (pi; t)

We now compute I
(2)
j (pi; t) ≡ E[T (2)

j (pi;pi; t)], with T
(2)
j (pi;pi; t) as given by

Eq. (32). Using once more relation Eq. (73), we obtain:

I
(2)
j (pi , si; t) = −γmj

∑

k

∫ t

0
dt1

∫ t1

0
dt2e

i
�
(E

(j)
i −E

(j)
k )(t1−t2)f (t1 − t2)

︸ ︷︷ ︸

=C′(t,pi ,k)

· 1

L6

∫

dx1

∫

dx2
e−(x1−x2)

2/4r2
C

(
√

4πrC)3
e− i

�
(pi−k)·(x1−x2)

︸ ︷︷ ︸

=S(pi ,k)

. (93)

The function S is the same as the one defined and computed in the previous section.
The function C′ instead is slightly different from the function C previously intro-
duced, the main difference being that in C the second integral goes from 0 to t1,
while for C′ it goes from 0 to t . As before it will be interested just in the case pi = k
and, performing similar computation, one finds out that:

C′(t,pi ,pi ) ≡
∫ t

0
dt1

∫ t

0
dt2θ(t1 − t2)f (t1 − t2) =

∫ t

0
dsf (s)(t − s). (94)
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Going back to the definition of I
(2)
j (pi; t), by taking the limit L → ∞, one obtains:

I
(2)
j (pi; t) = −γmj

∫

dkC′(t,pi ,k)
1

(2π�)3
e
− (pi−k)2r2

C

�2 (95)

where the Gaussian integral has already been computed in Appendix B. At this point,
as we did in the previous section, we can make the approximation, inside the integral,
C′(t,pi ,k) � C′(t,pi ,pi ) and so we get:

I
(2)
j (pi , si; t) = −γmj

[∫ t

0
dsf (s)(t − s)

]
1

(2π)3

π3/2

r3
C

white noise case−→ −γmj

2

t

(2π)3

π3/2

r3
C

, (96)

that is still consistent with the relativistic result:

I
(2)
j (pi , si; t) = −1

2
γmj

m2
j c

4

ω
2(j)
pi

t

(2π)3

π3/2

r3
C

. (97)

Appendix D: A Computation with Wave Packets

Let us start from the formula Eq. (48):

P(Fl;Fr) ≡
∑

pl ,pr

E
∣
∣A(Fl,pl;Fr,pr )

∣
∣
2 =

∑

j,k,j ′,k′=S,L

αjkβ
∗
j γ ∗

k α∗
j ′k′βj ′γk′

× E

{[
∑

pl

〈

Kj ′ ,pl

∣
∣Uj ′(tl)

∣
∣Kj ′ ,−pi

〉∗〈
Kj ,pl

∣
∣Uj (tl)

∣
∣Kj ,−pi

〉
]

×
[
∑

pr

〈

Kk′ ,pr

∣
∣Uk′(tr )

∣
∣Kk′ ,pi

〉∗〈
Kk,pr

∣
∣Uk(tr )

∣
∣Kk,pi

〉
]}

. (98)

Here we want to make clear why we can neglect all the terms involving the correlation
between terms in the first square bracket with terms in the second square bracket. We
recall that:

〈Kj ,pf |Uj (t)|Kj ,pi〉 = e
− i

�
E

(j)
f t[

δpf ,pi
+ T

(1)
j (pf ;pi; t)

︸ ︷︷ ︸

1 noise

+ T
(2)
j (pf ;pi; t)

︸ ︷︷ ︸

2 noise

]

. (99)

If we substitute this in the second and third lines and we take only the contribution
up to the second order we get:
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E

{[
∑

pl

〈

Kj ′ ,pl

∣
∣Uj ′(tl)

∣
∣Kj ′ ,−pi

〉∗〈
Kj ,pl

∣
∣Uj(tl)

∣
∣Kj ,−pi

〉
]

×
[
∑

pr

〈

Kk′ ,pr

∣
∣Uk′(tr )

∣
∣Kk′ ,pi

〉∗〈
Kk,pr

∣
∣Uk(tr )

∣
∣Kk,pi

〉
]}

= e
i
�
(E

(j ′)
i −E

(j)
i )tl e

i
�
(E

(k′)
i −E

(k)
i )tr {1 + E

[

T
(2)∗
j ′ (−pi;−pi; tl)

]

+ E
[

T
(2)
j (−pi;−pi; tl)

] + E
[

T
∗(2)

k′ (pi;pi; tr )
] + E

[

T
(2)
k (pi;pi; tr )

]

+ E
[

T
(1)∗
j ′ (−pi;−pi; tl)T (1)∗

k′ (pi;pi; tr )
]

+ E
[

T
(1)∗
j ′ (−pi;−pi; tl)T (1)

k (pi;pi; tr )
]

+ e
i
�
(E

(j ′)
i −E

(j)
i )tl e

i
�
(E

(k′)
i −E

(k)
i )tr {1 + E

[

T
(2)∗
j ′ (−pi;−pi; tl)

]

+ e
i
�
(E

(k′)
i −E

(k)
i )tr

∑

pl

e
i
�
(E

(j ′)
l −E

(j)
l )tl E

[

T
(1)∗
j ′ (pl;−pi; tl)T (1)

j (pl;−pi; tl)
]

+ e
i
�
(E

(j ′)
i −E

(j)
i )tl

∑

pr

e
i
�
(E

(k′)
r −E

(k)
r )tr E

[

T
(1)∗
k′ (pr ;pi; tr )T (1)

k (pr ;pi; tr )
]

. (100)

We can see that the first and the last two lines contain pieces that involve only terms
referring to the same particle (left or right). But there are also pieces containing the
product of terms which refer to one particle and terms which refer to the other par-
ticle. This pieces seems unphysical, especially because they are present even if we
take a separable state as the initial state. And the fact that the correlation between left
terms and right terms could play an important role even for separable states sounds
suspicious. Indeed this problem arises because we had oversimplified our analysis: by
using plane waves as states of the particles, we are working with totally delocalized
states, which is the origin of the correlation between terms of the left and the right
particle. Anyway this is not what actually happens in laboratories: in such cases, the
state of the system is described by wave packets well localized in space and we will
show now that, with such an assumption, the suspicious pieces cancel. To do that, we
have to replace this plane waves with wave packets. Therefore, in place of the two
initial states |pi〉 and |−pi〉, we now consider:

|f 〉 =
∑

pi

f (pi )|pi〉 and |g〉 =
∑

pi

g(pi )|pi〉, (101)

where |f 〉 (|g〉) it is a wave packet propagating in the left (right) direction. Regarding
the final states, we will continue to take them as plane waves, because, as before,
we will sum over them. Taken different initial states implies that the matrix element
〈Kj ,pf |Uj (t)|Kj ,pi〉 become:
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〈

Kj ,pf

∣
∣Uj (t)

∣
∣Kj ,f

〉

= e
− i

�
E

(j)
f t

∑

pi

f (pi )
[

δpf ,pi
+ T

(1)
j (pf ;pi; t)

︸ ︷︷ ︸

1 noise

+ T
(2)
j (pf ;pi; t)

︸ ︷︷ ︸

2 noise

]

(102)

and the same happen with the matrix element containing |g〉. Let us see how the
undesired terms change, for example:

e
i
�
(E

(j ′)
i −E

(j)
i )tl e

i
�
(E

(k′)
i −E

(k)
i )tr E

[

T
(1)
j (−pi;−pi; tl)T (1)∗

k′ (pi;pi; tr )
]

. (103)

Looking at the formula for the correlation Eq. (100), we know that this term came
out by taking the delta (i.e. the zero order contribution) for the bracket labeled by
j ′ and k and taking the first order term T (1) for the ones labeled by the index j

and k′. If we take now the corresponding terms we get f ∗(pl ), g(pr ) instead of
δpl ,pi

, δpr ,pi
and

∑

p1
f (p1)T

(1)
j (pl;p1; tl), ∑

p2
g∗(p2)T

(1)∗
k′ (pr ;p2; tr ) instead of

T
(1)
j (pi;p1; tl), T

(1)∗
k′ (pi;p2; tr ) and so Eq. (103) is replaced by

∑

pl ,pr

e
i
�
(E

(j ′)
l −E

(j)
l )tl e

i
�
(E

(k′)
r −E

(k)
r )tr f ∗(pl )g(pr )

·
∑

p1,p2

f (p1)g
∗(p2)E

[

T
(1)
j (pl;p1; tl)T (1)∗

k′ (pr ;p2; tr )
]

. (104)

Regarding this expression the interesting piece is:

Z ≡
∑

p1,p2

f (p1)g
∗(p2)E

[

T
(1)
j (pl;p1; tl)T (1)∗

k′ (pr ;p2; tr )
]

. (105)

Using Eq. (27):

Z = √
γmj

γmk′ E

[∫ tl

0
dt1

∫

dx1w(x1)〈Ω|bjpl
ψ

†
jI (x1)ψjI (x1)|f 〉

×
∫ tr

0
dt2

∫

dx2w(x2)〈Ω|bk′pr
ψ

†
k′I (x2)ψk′I (x2)|g〉

]

. (106)

We can focus our attention on the matrix elements. For example the second one is:

〈Ω|bk′pr
ψ

†
k′I (x2)ψk′I (x2)|g〉

= 〈Ω|bk′pr
ψ

†
k′I (x2)e

i
�
HSt2ψk′(x2)e

− i
�
HSt2 |g〉. (107)

Now we can introduce |g, t2〉 ≡ e− i
�
HSt2 |g〉, that is the wave packet evaluated up to

the time t2 with the free evolution. From the experiments we know that one kaon is
measured on the left hand side and the other one at the right hand side. This means
that the wavepackets associated to these kaons do not spread much compared to their
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distance from the source.4 Now we can use the key relation:

|g, t2〉 =
∫

dxg(x, t2)ψ
†
k′(x)|Ω〉 (108)

and so:

〈Ω|bk′pr
ψ

†
k′I (x2)ψk′I (x2)|g〉

=
∫

dxg(x, t2)〈Ω|bk′pr
ψ

†
k′I (x2)e

i
�
HSt2ψk′(x2)ψ

†
k′(x)|Ω〉

= g(x2, t2)〈Ω|bk′pr
ψ

†
k′I (x2)e

i
�
HSt2 |Ω〉

= g(x2, t2)
e

i
�
(E

(k′)
r t2−pr ·x2)

√
L3

. (109)

Doing the same for the other matrix element and inserting everything in Z we get:

Z = √
γmj

γmk′

∫ tl

0
dt1

∫ tr

0
dt2

∫

dx1

∫

dx2
e

i
�
(E

(j)
l t1−pl ·x1)e

i
�
(E

(k′)
r t2−pr ·x2)

L3

× f (x1, t1)g(x2, t2)E
[

w(x1)w(x2)
]

(110)

and using the correlation (in the white noise case) E[w(x1)w(x2)] = δ(t1 − t2) ×
e
−(x1−x2)2/4r2

C

(
√

4πrC)3 :

Z = √
γmj

γmk′
1

L3

∫ min(tl ,tr )

0
dt1e

i
�
(E

(j)
l +E

(k′)
r )t1

×
∫

dx1

∫

dx2e
− i

�
pl ·x1e− i

�
pr ·x2f (x1, t1)g(x2, t1)

e−(x1−x2)
2/4r2

C

(
√

4πrC)3
. (111)

We recall that rC = 10−7 m so, apart for the starting instants, the two wave
packet are always far away and the integral is small. This doesn’t happen for the
terms where the correlation is taken between noise related to the same particle, be-
cause in such case we end up with terms containing pieces like f (x1, t1)f (x2, t1) or
g(x1, t1)g(x2, t1) inside the integrals, that gives an important contribution even for
large time.

4One can claim that the wavepacket observed in the laboratory is the one given by the complete evolution,
taken into account also the noise, and so it is different from g(x, t) that is the wavepacket evolved with
the free Hamiltonian. Anyway it is well known from the literature that the effect of the noise on the
spread of the wavefunction for typical experimental times is negligible, so we can be sure that if the “real”
wavepacket remains confined, the same should be valid for g(x, t).
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