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Abstract Spekkens has introduced a toy theory (Spekkens in Phys. Rev. A 75(3):
032110, 2007) in order to argue for an epistemic view of quantum states. I describe a
notation for the theory (excluding certain joint measurements) which makes its sim-
ilarities and differences with the quantum mechanics of stabilizer states clear. Given
an application of the qubit stabilizer formalism, it is often entirely straightforward
to construct an analogous application of the notation to the toy theory. This assists
calculations within the toy theory, for example of the number of possible states and
transformations, and enables superpositions to be defined for composite systems.
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1 Introduction

What is the quantum state? The ontic view holds that it is a property of the physical
system. The epistemic view is that it merely represents some agent’s knowledge about
the system. To support the latter view, Spekkens has constructed a toy theory [1]
where the underlying physical systems are classical yet many quantum features are
recovered through an epistemic restriction.

The states, transformations and measurements in the toy theory bear a striking
resemblance to those described by the stabilizer formalism for qubits. That formal-
ism describes a non-trivial subset of the quantum mechanical states, transforma-
tions and measurements of qubits in a much more compact manner than the normal
Hilbert space formalism. A surprising consequence of this compactness, known as
the Gottesman-Knill theorem, is that a non-trivial subset of quantum mechanics can
be efficiently simulated on a classical computer. The subset is rich enough to include
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many quantum phenomena, for instance entanglement, non-locality, quantum tele-
portation and dense coding.

The formalism was originally developed [2] to study quantum error correcting
codes, but has seen widespread use since, for example in the study of measurement
based quantum computation [3]. I will review the relevant parts of the qubit stabilizer
formalism during this paper. For the reader that has never encountered it before, a full
introduction to that formalism can be found in Sect. 10.5 of [4], and further useful
details in [5, 6].

The purpose of this paper is to provide a new notation for the toy theory which
explains the similarities with the qubit stabilizer formalism, whilst also pinning down
exactly how the predictions of the toy theory differ from those of quantum mechanics.
A sneak preview of the notation is given by Table 1, showing how similar it is to the
qubit stabilizer formalism. The key difference is that whilst for qubits XZ = −iY , in
the toy theory X Z = Y .

The fact that the toy theory can be described using a notation so similar to the
qubit stabilizer formalism may itself be considered further evidence for the epistemic
view of quantum states.

The notation is also useful for carrying out calculations in the theory, as shown by
the examples in Sect. 6. This is primarily for two reasons. Firstly the notation is much
more compact: the description of the key objects of the theory (pure epistemic states
and reversible transformations) using the stabilizer notation scales polynomially in
the number of systems. A direct description, as used in [1], scales exponentially.
Secondly, there is widespread experience with, and extensive literature on, the qubit
stabilizer formalism. Much of this can be applied to the toy theory thanks to the
notation provided here.

The use of the notation to describe states, transformations, and measurements is
described in Sects. 2, 3 and 4 respectively. Convex combinations and coherent super-
positions are discussed in Sect. 5.

Spekkens has already outlined a new phase-space based formulation of the toy
theory [8] which is closely related to this notation as shown in Appendix B. The
theory has also been reformulated using category theory [9], but since that is very
different to the standard qubit stabilizer formalism it does not facilitate calculations
and comparisons in the same way as the notation provided here.

2 States

2.1 Qubits

Denote the 2 by 2 identity matrix by I and let

X =
(

0 1
1 0

)
, Y =

(
0 −i

i 0

)
, Z =

(
1 0
0 −1

)
. (1)

Define Pn, the Pauli group on n qubits, as the 2n by 2n matrices of the form
αp1 ⊗ · · · ⊗ pn for some α ∈ {1,−1, i,−i} and pk ∈ {I,X,Y,Z}. Call the Hermi-
tian elements (i.e. those with α ∈ {1,−1}) Pauli observables. Define Xk as X acting
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Table 1 Dense coding [7] in two theories (the quantum version closely follows Sect. 2.3 of [4]), each in
two notations. For the benefit of those readers that are familiar with [1], the column labelled “ontic space”
reproduces the relevant diagrams from that paper. The remaining readers may ignore that column. Initially
the joint state of two systems indicated in row 1 is prepared. Alice is given the first system and Bob the
second. In isolation, each system can only be used to transmit a single bit of classical information, yet
the dense coding protocol allows two bits (b1, b2) to be sent from Alice to Bob with the transfer of only
one system. If b1 = 1 then Alice performs the operation indicated in row 2 on her system. Similarly, if
b2 = 1 she performs the operation indicated in row 3. For example, if (b1, b2) = (1,1) she performs both
operations and the joint state of the system is then as shown in row 4. Finally, Alice sends her system to
Bob, who performs the joint measurement indicated in row 5 to recover two bits of information

Quantum mechanics Toy theory

Hilbert space Stabilizer formalism Ontic space Stabilizer notation

1 |�+〉 = 1√
2
(|00〉 + |11〉) 〈X1X2,Z1Z2〉 〈X1 X2, Z1 Z2〉

2 X = ( 0 1
1 0

)
X1 → X1,Z1 → −Z1 X1 → X1, Z1 → −Z1

3 Z = ( 1 0
0 −1

)
X1 → −X1,Z1 → Z1 X1 → −X1, Z1 → Z1

4 |�−〉 = 1√
2
(|01〉 − |10〉) 〈−X1X2,−Z1Z2〉 〈−X1 X2,−Z1 Z2〉

5 {|�+〉, |�−〉, |�+〉, |�−〉} X1X2 and Z1Z2 X1 X2 and Z1 Z2

on the k-th qubit, i.e. I⊗(k−1) ⊗X⊗I⊗(n−k). Similarly for Yk and Zk . Pn is generated
by the Xk and the Zk along with iI⊗n.

An element g of the Pauli group, ignoring its phase α, can be written as a check
vector r(g). This is a vector of 2n bits, where the first n bits give the locations of Xs,
whilst the second n bits give the locations of Zs, a Y being indicated by 1s in both
positions. For example, r(X ⊗ Y ⊗ Z) = (1,1,0,0,1,1), r(−Z ⊗ I ) = (0,0,1,0).
A useful property of check vectors is that r(gh) = r(g) ⊕ r(h), where ⊕ indicates
addition modulo 2 (making r a group homomorphism from Pn to (Z2)

2n).
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Let S be a subgroup of Pn that does not contain −I⊗n (a qubit stabilizer sub-
group). It is conventional to associate S with the subspace VS of pure states |ψ〉
satisfying g|ψ〉 = |ψ〉 for all g ∈ S. The projector onto this subspace is [5]

PS = 1

|S|
∑
g∈S

g. (2)

For comparison with what follows it is useful instead to associate S with the quan-
tum state ρS = |S|2−nPS . This is a pure state if and only if |S| = 2n. Otherwise it is
a uniform mixture of 2n

|S| pure states (which form a basis for VS ). States of this form

are also considered in [10, 11].
For any Pauli observable g

Tr(gρS) =
⎧⎨
⎩

1 g ∈ S,

−1 −g ∈ S,

0 otherwise.
(3)

In epistemic language we could say that ρS represents complete knowledge about the
Pauli observables g with ±g ∈ S and zero knowledge about the rest.

2.2 Toy Theory

In Spekkens toy theory, the simplest systems, called elementary systems, are always
in one of the four possible ontic states. The ontic state is a “hidden variable” that
completely describes the physical state of affairs of the system. In the stabilizer nota-
tion these ontic states are identified with the vectors e1 = (1,0,0,0), e2 = (0,1,0,0),
e3 = (0,0,1,0) and e4 = (0,0,0,1).

A composite system is composed of elementary systems, and its ontic state is spec-
ified by specifying the ontic state of each elementary system. For example 2 ·4 means
that the first system is in ontic state 2 and the second is in state 4. In the stabilizer
notation this is identified with the tensor product e2 ⊗ e4, whilst 1 · 3 · 2 is identified
with e1 ⊗ e3 ⊗ e2, and so on. In this way ontic state for n elementary systems will
therefore correspond to a 4n-dimensional vector v with a single component taking
the value 1 and the rest zero.

An epistemic state describes an agent’s knowledge about a system. An agent that
assigns the epistemic state 1 ∨ 2 to an elementary systems knows that its ontic state
is either 1 or 2. Crucial to Spekkens’ argument is the observation that the epistemic
states resemble quantum states, whilst the ontic states do not.

Notice that the knowledge is incomplete: the agent does not know the exact ontic
state. This is required by the theory’s “knowledge balance principle” [1]. Detailed
discussion of this principle is relegated to Appendix A, where it is shown that the
epistemic states satisfying it are exactly those that can represented as follows:

Denote the 4 by 4 identity matrix by I = diag(1,1,1,1) and let

X = diag(1,−1,1,−1), (4)

Y = diag(1,−1,−1,1), (5)

Z = diag(1,1,−1,−1). (6)
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These correspond to the possible measurements of an elementary system, where
if the ontic state is k then a measurement of g ∈ {I, X , Y , Z} will return v ∈ {1,−1}
according to the eigenvalue equation gek = vek .

Define Gn as the 4n by 4n matrices of the form αg1 ⊗· · ·⊗gn for some α ∈ {1,−1}
and gk ∈ {I, X , Y , Z}. This group plays the same role as the Pauli group does in the
qubit case. Call the elements toy observables. Denote Xk = I ⊗(k−1) ⊗ X ⊗ I ⊗(n−k),
and similarly for Yk and Zk . Gn is generated by −I ⊗n together with Xk and Zk for
all k ∈ {1, . . . , n}.

Let m : Gn → Pn be the mapping suggested by our notation, so that m(−X ⊗ Z) =
−X ⊗ Z and so on. Abuse terminology by saying g,h ∈ Gn commute (anticommute)
if m(g) and m(h) commute (anticommute). Define the check vector of g ∈ Gn to be
r(m(g)), the check vector of m(g). As with the qubit case, we have that multipli-
cation in Gn corresponds to addition of check vectors modulo two. (More formally,
r ◦ m : Gn → (Z2)

2n is a group homomorphism, even though m : Gn → Pn is not.
Furthermore, appending a “phase bit” 1

2 (1 + α) to the check vector gives a group
isomorphism between Gn and (Z2)

(2n+1).)
Let S be a subgroup of Gn that does not contain −I ⊗n and for which every

g,h ∈ S commute (a toy stabilizer subgroup). S represents an epistemic state for
n elementary systems, namely the knowledge that the ontic state v satisfies gv = v
for all g ∈ S. This is a subgroup because if gv = v and hv = v then ghv = v also. The
projector PS onto the ontic states compatible with S is of the form (2).

Notice that whilst in the qubit case −I⊗n /∈ S automatically ensures the elements
of S commute, in the toy theory the commuting requirement is added “by hand”.

The only element of S with non-zero trace is I ⊗n and so TrPS , which is the
number of ontic states compatible with S, is 4n/|S|. Since we assume a uniform
distribution over the possible ontic states, ρs = |S|4−nPS gives a diagonal matrix of
the probabilities for each ontic state.

Some examples of toy stabilizer subgroups are shown in Tables 2 and 3. They are
all reminiscent of qubit stabilizer states, and the following lemma shows why.

Table 2 All of the toy stabilizer
subgroups for an elementary
system. The filled boxes in the
first column correspond to the
possible ontic states, as in [1].
The symbol ∨ should be read as
“or”

Picture Ontic states Toy stabilizers

1 ∨ 3 〈X 〉

2 ∨ 4 〈−X 〉

1 ∨ 2 〈Z〉

3 ∨ 4 〈−Z〉

1 ∨ 4 〈Y 〉

2 ∨ 3 〈−Y 〉

1 ∨ 2 ∨ 3 ∨ 4 〈〉
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Table 3 Some toy stabilizer
subgroups for composite
systems. They are each
composed of two elementary
systems, except for the last
which is composed of three. The
pictures use the same
conventions as in [1], briefly:
each axis corresponds to an
elementary system, and the
possible ontic states are filled. In
the two-system cases each row
is a state of the first system and
each column a state of the
second, with the ontic state 1 · 1
in the bottom-left corner. In the
three-system case the “depth”
gives the state of the third
system, with the ontic
state 1 · 1 · 1 is the
bottom-left-back corner

Picture Ontic states Toy stabilizers

(1 · 3) ∨ (1 · 4) ∨
(2 · 3) ∨ (2 · 4)

〈Z1,−Z2〉

(1 · 1) ∨ (2 · 2) ∨
(3 · 3) ∨ (4 · 4)

〈Z1 Z2, X1 X2〉

(1 · 2) ∨ (2 · 3) ∨
(3 · 4) ∨ (4 · 1)

〈−Z1 Y2,−X1 X2〉

(3 ∨ 4) · (1 ∨ 2 ∨
3 ∨ 4)

〈−Z1〉

[(1 ∨ 3) · (2 ∨ 4)] ∨
[(2 ∨ 4) · (1 ∨ 3)]

〈−X1 X2〉

(1 ∨ 2 ∨ 3 ∨ 4) ·
(1 ∨ 2 ∨ 3 ∨ 4)

〈〉

(1 ·1 ·1)∨(1 ·2 ·2)∨
(2 ·1 ·2)∨(2 ·2 ·1)∨
(3 ·3 ·3)∨(3 ·4 ·4)∨
(4 · 3 · 4) ∨ (4 · 4 · 3)

〈X1 X2 X3, Z1 Z2, Z2 Z3〉

Lemma 1 (Proven in Appendix A) g1, g2, . . . , gl ∈ Gn are independent generators
of a toy stabilizer subgroup if and only if m(g1),m(g2), . . . ,m(gl) are independent
generators of a qubit stabilizer subgroup.

It is crucial to note that although valid lists of independent generators are the
same in both theories, the resultant subgroups are in general different. For exam-
ple 〈X1 X2, Y1 Y2〉 = {I ⊗2, X1 X2, Y1 Y2, Z1 Z2} whilst 〈X1X2, Y1Y2〉 = {I⊗2,X1X2,

Y1Y2,−Z1Z2}.
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It is easy to see that if g1, . . . , gl are independent generators for S then |S| = 2l .
The maximum number of independent generators for a qubit stabilizer subgroup is n

[4], and the above lemma means this is also true for toy stabilizer subgroups. Hence
an S with |S| = 2n represents a state of maximal knowledge, or a pure state.

Two epistemic states are called disjoint if no ontic state is compatible with both.
In this notation there is a useful criterion for disjoint states, which is identical to the
criterion for orthogonality in the qubit stabilizer case.

Lemma 2 A pair of toy stabilizer subgroups S,T ⊂ Gn represent disjoint epistemic
states if and only if there exists some g ∈ S with −g ∈ T .

Proof S and T represent disjoint states if and only if 0 = PSPT = P〈S∪T 〉. This holds
if and only if −I ⊗n ∈ 〈S ∪ T 〉. But since −I ⊗n /∈ S,T , this holds if and only if there
exists g ∈ S with −g ∈ T . �

Finally, note that the theory of qubits restricted to the computational basis is just
the classical probability theory of bits. It is occasionally helpful to view the above
notation as being based on the encoding of the ontic level of the toy theory (two clas-
sical bits per elementary system) in the computational basis states of qubits. Since
X = I ⊗ Z, Y = Z ⊗ Z and Z = Z ⊗ I , the toy observables are then Hermitian
observables on those qubits. This device should not be taken too seriously, for ex-
ample (as discussed in Sect. 4) a measurement of X can disturb the value of Z in
the toy theory, whereas the observables I ⊗ Z and Z ⊗ I are compatible in quantum
mechanics.

3 Transformations

3.1 Qubits

Define Cn, the Clifford group on n qubits as the 2n by 2n unitaries U satisfying
UgU† ∈ Pn for all g ∈ Pn. These take stabilizer states to stabilizer states, since
UρSU† = ρT where T = {UgU†|g ∈ S} is another stabilizer subgroup.

Since UghU† = UgU†UhU† we can specify the action of U by its action on
the generators of Pn. Since UiI⊗nU† = iI⊗n it suffices to specify the action on
the Xk and Zk . Note that [UgU†,UhU†] = U [g,h]U†. Hence if UXkU

† = gk and
UZkU

† = hk we will have that the gk commute, the hk commute, and gk commutes
with hl if and only if k = l. Since U is reversible we must have that the hk and gk ,
together with iI⊗n, generate Pn.

Such hk, gk are described in [5] as canonical generator sets. It is then shown that,
conversely, for any given canonical generator set there is a Clifford unitary that maps
the Xk and Zk to it. That unitary can be generated from the single qubit Clifford
unitaries plus the controlled-NOT gate, which sends X1 → X1X2,X2 → X2,Z1 →
Z1,Z2 → Z1Z2. Furthermore the single qubit Clifford unitaries can themselves be
generated from the Hadamard gate, which sends X → Z,Z → X, and the phase gate,
which sends X → Y,Z → Z.
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3.2 Toy Theory

In the toy theory reversible transformations are permutations of the ontic states that
take any valid epistemic state to another valid epistemic state. In this section I show
that the group of reversible transformations in the toy theory has a very similar struc-
ture to the Clifford group. The transformations act on the Xk and Zk in the same
way as the qubit case. Furthermore the transformations can be generated in a similar
fashion to the Clifford group.

We can write a reversible transformation on n elementary systems as a 4n by
4n permutation matrix U . For example, the permutation matrix for the permutation
1 → 2 → 3 → 1 on an elementary system is

U =

⎛
⎜⎜⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ (7)

If v is the ontic state before the transformation then Uv is the state afterwards. Hence
if we know that the ontic state is in the support of a projector PS before then our new
knowledge is exactly that the ontic state is in the support of the projector UPSUT .

Before the transformation the epistemic state may have been 〈g〉 for any g ∈ Gn.
Since P〈g〉 = 1

2 (I ⊗n + g), for the new epistemic state to be valid (and hence repre-
sented by a toy stabilizer subgroup) we must have UgUT ∈ Gn. Compare this to the
definition of the Clifford group. To ensure the elements of the new subgroup com-
mute we must also require that UgUT and UhUT commute if and only if g and h

commute.
The theory now develops much like the qubit case. Since UghUT = UgUT UhUT

and U(−I ⊗n)UT = −I ⊗n we can specify the action of U by its action on the Xk and
Zk . The resulting elements must have the same commutation structure and, along
with −I ⊗n, generate Gn. Call such elements canonical generating sets, and note that
applying m gives a qubit canonical generator set.

For an elementary system, it is shown in Table 4 that all of the 4! = 24 permuta-
tions of the ontic states are valid, and that there is a permutation that sends the X and
Z to any canonical generator set.

It is well known that the group of permutations on n elements can be generated by
a transposition and an n-cycle. Hence any elementary transformation can be written
as a sequence of, for example 3 ↔ 2 and 1 → 4 → 2 → 3 → 1 transformations. The
first is reminiscent of a Hadamard gate in that it maps X → Z and Z → X , although
it maps Y → Y whereas a Hadamard maps Y → −Y . The second is reminiscent of a
phase gate in that it maps X → Y and Y → −X , although it maps Z → −Z whereas
a phase gate maps Z → Z.

The argument in [5] now gives that there is a permutation on a composite system
that sends the Xk, Zk to any given canonical generator set, and that it can be generated
using the elementary system transformations and the controlled-NOT gate shown in
Table 5.

One difference between the transformations in the two theories has already been
noted: transformations that act on Xk and Zk in the same way in both theories do
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Table 4 The valid reversible
transformations for an
elementary system. The first
column shows the permutations
to the ontic states in cycle
notation, for example (342)
indicates that 3 → 4 → 2 → 3.
The second shows the result of
UgUT on two non-trivial
generators of G1

Permutation Effect on toy stabilizers

(1)(2)(3)(4) X → X , Z → Z
(1)(2)(43) X → Y , Z → Z
(1)(32)(4) X → Z , Z → X
(1)(342) X → Y , Z → X
(1)(432) X → Z , Z → Y
(1)(42)(3) X → X , Z → Y
(21)(3)(4) X → −Y , Z → Z
(21)(43) X → −X , Z → Z
(231)(4) X → Z , Z → −Y
(2341) X → −X , Z → −Y
(2431) X → Z , Z → −X
(241)(3) X → −Y , Z → −X
(321)(4) X → −Y , Z → X
(3421) X → −Z , Z → X
(31)(2)(4) X → X , Z → −Y
(341)(2) X → −Z , Z → −Y
(31)(42) X → X , Z → −Z
(3241) X → −Y , Z → −Z
(4321) X → −X , Z → Y
(421)(3) X → −Z , Z → Y
(431)(2) X → Y , Z → −X
(41)(2)(3) X → −Z , Z → −X
(4231) X → Y , Z → −Z
(41)(32) X → −X , Z → −Z

Table 5 Two reversible
transformations for pairs of
elementary systems. The first
column shows the permutations
to the ontic states (laid out in a
grid using the same conventions
as [1] and Table 3). The second
shows the action on the
non-trivial generators of G2.
The first transformation acts on
each system separately. The
second transformation is
analogous to a controlled-NOT

Permutation Effect on toy stabilizers

X1 → −Y1, X2 → X2, Z1 → Z1, Z2 → −Y2

X1 → X1 X2, X2 → X2, Z1 → Z1, Z2 → Z1 Z2

not necessarily act in the same way on other group elements, for example the Yk .
Another difference is that whilst commutation structure is automatically preserved
by any unitary transformation on qubits, this requirement must be added “by hand”
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in the toy theory. For example, the matrix U for the two-system permutation

1 · 2 ↔ 3 · 1, 1 · 4 ↔ 3 · 3, 2 · 2 ↔ 4 · 1, 2 · 4 ↔ 4 · 3 (8)

satisfies the requirement that UgU† ∈ G2 for all g ∈ G2, but has U X1U
T = X1 and

U X2U
T = Z1 and so is not a valid transformation.

4 Measurements

4.1 Qubits

Suppose a Pauli observable g is measured on a state described by S. If ±g ∈ S then
±1 is returned and the state is unchanged.

If ±g /∈ S, then the result v ∈ {1,−1} will be completely random. To find the state
after the measurement, first write down a set of independent generators for S with at
most one element h that anticommutes with g. (Any other elements that anticommute
can be multiplied by h.) Add vg to the list and remove h (if present) to obtain a list
of independent generators for the new state.

4.2 Toy Theory

A measurement in the toy theory is specified by partitioning the ontic state into valid
epistemic states. The result of the measurement is simply whichever member of the
partition the ontic state lies in. In order to ensure that the new epistemic state is valid,
the measurement must disturb the ontic state.

In the toy stabilizer notation we can describe measurements of toy observables
g, i.e. the partitioning of the ontic states into 〈g〉 and 〈−g〉. In this section I will
show that measurements of toy observables behave in exactly the same way as Pauli
observables in the qubit case, but that not every measurement in the toy theory can
be described using toy observables.

Let the epistemic state before the measurement be described by a toy stabilizer
subgroup S. If g ∈ S then all the possible ontic states lie in the +1 eigenspace of g,
so we are certain to get the +1 outcome. Similarly if −g ∈ S we are certain to get the
−1 outcome. Notice that the expected value of g is Tr(gρS). If g,−g /∈ S then this
gives 0. Hence the measurement of such a toy observable must give either outcome
with equal probability.

In order to ensure that the epistemic state after the measurement is valid, there
must be a random disturbance to the value of any anticommuting toy observables. Let
us assume this is the only disturbance—all commuting observables are unaffected.

If ±g was already in the subgroup then there is no change to the epistemic state.
Otherwise, if the outcome of a measurement is ±1 the new toy stabilizer subgroup
will be generated by ±g and the old stabilizer subgroup without any elements that
anticommute with g. A systematic way to update the toy stabilizer subgroup is to
follow the qubit stabilizer procedure: write a list of independent generators for the
old state with at most one element that anticommutes with g, delete that element if
present, and add ±g.
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An example of a valid measurement with four outcomes is the partitioning of the
ontic states into those associated with 〈X1 X2, Z1 Z2〉, 〈−X1 X2, Z1 Z2〉, 〈Z1,−Z2〉
and 〈−Z1, Z2〉. This measurement can be handled in the stabilizer notation by first
considering a measurement of Z1 Z2. The +1 outcome means that the ontic state must
lie in one of the first two sets and we can measure X1 X2 to determine which. Similarly
the −1 outcome narrows it down to the last two sets and we then measure Z1.

Can every valid measurement be described using sequences of toy observables in
this way? Somewhat surprisingly, the answer is no.

Lemma 3 (Proven in Appendix A) Any valid measurement on one or two elementary
systems is equivalent to measuring a sequence of toy observables.

Lemma 4 Not every valid measurement on three or more elementary systems is
equivalent to measuring a sequence of toy observables.

Proof Consider the measurement on three or more elementary systems with eight
outcomes

〈Z1, Z2, X3〉, 〈−Z1, X2, Z3〉, 〈X1,−Z2,−Z3〉, 〈Z1, Z2,−X3〉,
〈−Z1,−X2, Z3〉, 〈−X1,−Z2,−Z3〉, 〈Z1,−Z2, Z3〉,
〈−Z1, Z2,−Z3〉.

(9)

There is no non-trivial toy observable g with ±g in all the outcome subgroups (indeed
there is no such g for the first three outcomes alone). Therefore there is no g that can
be the first in the sequence of toy observable measurements. �

Since the only valid measurements on elementary systems are toy observables
(Lemma 3), the above set of eight uncorrelated (product) states cannot be distin-
guished using local measurements alone. The same situation arises in quantum me-
chanics, where it is known as “non-locality without entanglement” [12]. Indeed equa-
tion 43 in [12] is very similar to (9). As noted in [1], the presence of this effect in
the toy theory, which is local by construction, may indicate that “non-locality without
entanglement” is a misnomer.

A similar structure also arises in so-called “boxworld” [13]: the measurement in
their proof of Theorem 3 is also reminiscent of (9).

5 Mixtures and Superpositions

5.1 Qubits

I have been unable to find procedures for constructing mixtures (convex combina-
tions) and superpositions of qubit stabilizer states in the literature, so I briefly develop
the theory here.

Let S and S′ be two stabilizer subgroups on n qubits. When g ∈ S if and only if
±g ∈ S′, call S′ a rephasing of S. In that case, either S = S′, or they represent or-
thogonal states and can be written S = 〈g1, . . . , gl−1, gl〉, S′ = 〈g1, . . . , gl−1,−gl〉.
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For example, S′ = 〈Z1,−Z2〉 is a rephasing of S = 〈−Z1,Z2〉. For each list of
generators we then multiply first by the second to obtain S′ = 〈−Z1Z2,−Z2〉,
S = 〈−Z1Z2,Z2〉.

Consider the mixture 1
2 (ρS + ρS′). It is easy to check that the result is equal to

ρT for some stabilizer subgroup T if and only if S′ is a rephasing of S. In that case
T = S ∩ S′ and PT ∝ PS + P ′

S . For example, with S and S′ as above we would have
T = 〈−Z1Z2〉.

The rephasing condition also applies to coherent superpositions, provided we re-
strict attention to orthogonal states. This excludes somewhat irregular cases such as
|00〉−|++〉, which happens to be a stabilizer state.

Lemma 5 (Proven in Appendix A) Let S,S′, T be stabilizer subgroups of size 2n.
Let S and S′ stabilize orthogonal states |ψ〉 and |ψ ′〉 respectively. Then there exists
a θ ∈ R such that T stabilizes 1√

2
(|ψ〉 + eiθ |ψ ′〉) if and only if we can write S =

〈g1, . . . , gn−1, gn〉, S′ = 〈g1, . . . , gn−1,−gn〉 and T = 〈g1, . . . , gn−1, h〉 for some h /∈
S ∪ S′.

There are always four such superpositions:

Lemma 6 (Proven in Appendix A) Let S = 〈g1, . . . , gn−1, gn〉 and S′ = 〈g1, . . . ,

gn−1,−gn〉. Then there are exactly four distinct stabilizer subgroups of the form
〈g1, . . . , gn−1, h〉 with h /∈ S ∪ S′.

For example, take S = 〈Z1,Z2〉 and S′ = 〈−Z1,−Z2〉, which correspond to |00〉
and |11〉 respectively. Then we obtain four distinct superpositions of the form T =
〈Z1Z2, h〉 by setting h to ±X1X2 or ±X1Y2, corresponding to 1√

2
(|00〉 ± |11〉) or

1√
2
(|00〉 ± i|11〉) respectively.

5.2 Toy Theory

Define rephasing for toy stabilizer subgroups in the same way. Convex combinations
then work in exactly the same way as the qubit case. If S and S′ represent disjoint
states then PS + PS′ is a projector onto the union of the epistemic states compatible
with S and S′, which is how convex combinations are defined in [1]. Defining convex
combinations for any rephasing also allows S = S′, which is a trivial extension.

Since the toy theory does not have a direct analogue of Hilbert space there is
no inherent definition of a coherent superposition. Instead we simply define it by
analogy to the qubit case. Suppose S and S′ are two toy stabilizer subgroups for
pure states, and S is a rephasing of S′. Then either S = S′ (in which case we can
trivially define S to be a coherent superposition of S and S′), or we can write S =
〈g1, . . . , gn−1, gn〉 and S′ = 〈g1, . . . , gn−1,−gn〉. Call an epistemic state of the form
T = 〈g1, . . . , gn−1, h〉 with h /∈ S ∪ S′ a uniform coherent superposition of S and S′.

This definition generalizes the coherent superpositions for elementary systems
found in [1] to composite systems. For any pair of distinct epistemic states, one be-
ing a rephasing of the other, there are four distinct coherent superpositions (using the
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same proof as for Lemma 6 above). The epistemic states thus obtained contain ontic
states from both of the epistemic states in the superposition.

It was shown in Sect. 3 that for any pair of canonical generating sets, there is a
permutation which maps one to the other. Take S,S′ and a coherent superposition T

written as above. Write a canonical generating set g1, . . . , gn,h1, . . . , hn. Fix hn = h

(h anticommutes with gn by the same argument used in the proof of Lemma 5). The
other hk are irrelevant, provided they satisfy the requirements of a canonical generator
set (such hk can always be found). Another canonical generating set is obtained by
changing gn to h and hn to −gn. So there exists a permutation that sends S to T and
T to S′. This is considered in [1] to be indicative of a coherent superposition.

6 Examples

In this section the computational power of the notation is used to demonstrate some
similarities of the toy theory to qubit stabilizers not identified in [1]. On the other
hand, to show why not every phenomena involving qubit stabilizers is found in the
toy theory, this section concludes with a discussion of the Mermin-Peres square.

6.1 Counting States and Transformations

The number of pure stabilizer states on n qubits is calculated in [10] to be

2n
n−1∏
k=0

(
2n−k + 1

)
. (10)

Their argument applies equally to toy stabilizers and so the number of pure epistemic
states for n elementary systems in the toy theory is identical.

The number of ordered canonical generator sets, and hence the elements of the
Clifford group (modulo global phases) is calculated in [5] to be

22n2+3n

n∏
k=1

(
1 − 2−2k

)
. (11)

The same argument applies equally to toy stabilizers and so, recalling the link be-
tween transformations and canonical generator sets outlined in Sect. 3, the number of
valid reversible transformations in the toy theory is identical.

6.2 Classical Simulation

It was already noted in [1] that the ontic states of the toy theory can be tracked effi-
ciently by a classical computer. Using the stabilizer notation a classical computer can
furthermore efficiently track the epistemic state. Indeed the proof in [10] that the sim-
ulation of qubit stabilizer circuits is complete for the classical complexity class ⊕L
(which is believed to be strictly weaker than P, polynomial-time universal classical
computation) can now easily be adapted to the toy theory.
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6.3 Graph States

Let G be a finite simple graph on n vertices. We can associate G with a pure state
on n elementary systems as follows. Begin with each system in the state 〈X 〉. Apply
the two-system permutation that sends X1 → X1 Z2, X2 → Z1 X2, Z1 → Z1 and
Z2 → Z2 (analogous to a controlled-Z gate) to each pair of systems connected by an
edge on the graph (in any order). The toy stabilizer subgroup for the resulting state is
generated by

gk = Xk

∏
l∈N(k)

Zl (12)

for k ∈ {1, . . . , n} where N(k) are the vertices connected to vertex k.
Such states are analogous to graph states on qubits [14], and share many qualitative

features with them. For example, a Zk commutes with all of the generators except for
gk . Hence a Z measurement on the k-th system will return ±1 with equal probability
and generators for the new toy stabilizer can be found by replacing gk with ±Zk .
By multiplying the gl with l ∈ N(k) by this we obtain another list of generators.
If the value −1 is returned then apply the transformation that sends X → −X and
Z → Z to the systems in N(k). The new generators are now those of the graph state
for G with the vertex k deleted, along with ±Zk . Compare this to the qubit case,
Proposition 1 of [14]. The effect of X and Y measurements is also analogous to the
qubit case.

6.4 Non-example: Mermin-Peres Square

Having seen all these examples it may tempting to conclude that any feature of the
qubit stabilizer formalism has an analogue in the toy theory. This is not the case. The
Mermin-Peres square [15] of 9 Pauli observables

X1 X2 X1X2

Y2 Y1 Y1Y2

X1Y2 Y1X2 Z1Z2

(13)

has the property that every row and column is a set of commuting observables that
multiply to give I⊗2, except for the last row which gives −I⊗2. Suppose we replace
every observable in the square with some pre-determined value ±1, which is inde-
pendent of how the observable is measured (non-contextual). To agree with quantum
mechanical predictions each row and column of the square must multiply to 1, except
the last row which must multiply to −1. Since this is impossible, we conclude that in
quantum mechanics observables do not have pre-determined non-contextual values.

The square of toy observables corresponding to (13) has the property that every
row and column is a set of commuting observables that multiply to give I ⊗2. Hence
the corresponding values must multiply to 1, and this does not give rise to a contra-
diction. This is to be expected since in the toy theory all toy observables do indeed
have a pre-determined non-contextual value, which could be calculated if the exact
ontic state were known.
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7 Summary

The similarities and differences between the qubit stabilizer formalism and Spekkens’
toy theory can be summarised as follows. States, transformations, and measurements
in their most compressed representation—independent generators, canonical genera-
tor sets, and observables respectively—appear to be identical in both theories and are
manipulated according to the same procedures.

Yet the underlying groups Gn and Pn are by no means identical, and so the results
of “decompression”—calculation of the full subgroup of a state, and the effect of
a transformation on all observables—will usually differ. This is the key difference
between the two theories.

With the notation in hand it becomes much easier to make calculations in the
theory. This enables proofs of two important facts not shown in [1]: that the number
of epistemic states on n elementary systems is equal to the number of stabilizer states
on n qubits, and a similar result for transformations. Whilst dealing with just three
elementary systems was previously very difficult, the stabilizer notation makes the
consideration of states on a arbitrary number of elementary systems tractable.

Acknowledgements I am grateful to my supervisors Terry Rudolph and Jonathan Barrett for many
helpful discussions. I am particularly indebted to Terry for devising the representation of Gn used here.
I acknowledge financial support from the EPSRC.

Appendix A: Proofs

Proof of Lemma 1 The second statement is equivalent to “m(g1),m(g2), . . . ,m(gl)

commute, have linearly independent check vectors, and each square to I⊗n” [5]. By
definition check vectors and commuting conditions are preserved by m. Furthermore
m(g)2 = I⊗n since the only elements of Pn that don’t square to I⊗n are those with
phases α ∈ {i,−i}, which aren’t in the image of m.

Hence the second statement is equivalent to “g1, g2, . . . , gl commute and have
linearly independent check vectors”. The proof is completed by showing that this is
equivalent to the first statement using a similar argument to the qubit case [5]. First
note that g1, g2, . . . , gl commute if and only if 〈g1, g2, . . . , gl〉 commute.

Suppose −I ⊗n ∈ 〈g1, g2, . . . , gl〉. Then the check vector of −I ⊗n can be written
is a linear combination of the check vectors of g1, g2, . . . , gl . But the check vector
of −I ⊗n is 0 and so the check vectors of g1, g2, . . . , gl are linearly dependent. Sup-
pose that the first statement holds but the check vectors of g1, g2, . . . , gl are linearly
dependent. Then the check vector of one of them, say of g1, can be written as a lin-
ear combination of the others. That means that either g1 or −g1 can be written as a
product of the others. The first possibility contradicts the assumption of independent
generators, and since g1(−g1) = −I ⊗n the second contradicts the assumption that
the subgroup does not contain −I ⊗n. �

Lemma 7 An epistemic state is permitted by the toy theory if and only if it corre-
sponds to a toy stabilizer subgroup.
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Proof In order to prove that the toy stabilizer subgroups correspond exactly to the
valid epistemic states of Spekkens’ toy theory, we need a precise formulation of the
valid states for n elementary systems. Define them inductively as follows. An epis-
temic state is a subset of the ontic states (which we assign a uniform probability
distribution over). For n = 1 a valid epistemic state consists of either two or four on-
tic states. Suppose the valid states are defined for n ≤ k. Define a valid measurement
on n ≤ k elementary systems as the discovery of which member of a partition of the
ontic states into valid epistemic states the ontic state lies in. A valid epistemic state
on n = k + 1 elementary systems is such that for any non-trivial partition of the el-
ementary systems into two subsystems A and B , any possible outcome of any valid
measurement of A (which is assumed not to affect the ontic state of B) results in a
valid epistemic state for B .

The definition of the “knowledge balance principle” in [1] is not as mathemati-
cal as the one above. Since the valid epistemic states of an elementary system are
stated explicitly in [1], the definitions certainly agree for n = 1. For n > 1 the induc-
tive structure made explicit above is implicit in [1]: examples are given of particular
epistemic states of a composite system, such that a measurement on one subsystem
leads to an invalid epistemic state for the other. This is always taken as proof that the
epistemic state of the composite system was invalid, the validity of the definitions for
the smaller subsystems is never questioned.

Also implicit in [1] is that for any epistemic state on n elementary systems, there
must exist a canonical set such that the agent is certain about the answers to l of
the questions, and completely ignorant of the remaining 2n − l. Hence the number
of ontic states compatible with the epistemic state must be 2(2n−l). This implicit re-
quirement rules out the epistemic state 1 ∨ 2 ∨ 3. Furthermore, by the knowledge
balance principle we must have l ≤ n. Except for when n = 1, this requirement might
appear to be missing from the above definition. But since the Lemma can be proven
without it, and any state corresponding to a toy stabilizer subgroup certainly satisfies
this requirement, it turns out that there is no need to include it in the definition.

We now proceed with the proof using induction on n. The only toy stabilizer sub-
groups for n = 1 are 〈〉, 〈X 〉, 〈−X 〉, 〈Y 〉, 〈−Y 〉, 〈Z〉 and 〈−Z〉 which correspond to
the 7 valid epistemic states for an elementary system.

Suppose the claim has been proven for all n ≤ k and consider an epistemic state
of an n = k + 1 system. For the “if” part let S be a toy stabilizer subgroup. Con-
sider a non-trivial partitioning into subsystems A and B of sizes nA and nB . Since
nA,nB < k we can assume the lemma holds for each. Therefore some outcome of
some valid measurement of A corresponds to a valid epistemic state and hence a toy
stabilizer subgroup for A, which we denote N ′. Tensor the operators in N ′ with an
I ⊗nB to obtain the corresponding knowledge about the entire system, denoted N .
It is now known that before the measurement the ontic state was in the support of
PNPS = P〈N∪S〉.

〈N ∪ S〉 may not represent a valid epistemic state since we have not yet taken
into account the disturbance to A due to the measurement. But since system B is
not disturbed the new epistemic state for B alone will be given by the subgroup
SB of 〈N ∪ S〉 that applies to B alone. It is useful to note that since Gn is abelian,
〈N ∪ S〉 = {gh|g ∈ N,h ∈ S}.
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Since neither N nor S contain −I ⊗n, the only way −I ⊗n could be in 〈N ∪ S〉
is if there is some g ∈ N with −g ∈ S. But then the measurement would never have
returned the result it did. Hence −I ⊗n /∈ 〈N ∪ S〉.

Let g,h ∈ SB , and decompose g = ab, h = cd with a, c ∈ N and b, d ∈ S. We
have that a commutes with c and b commutes with d . Since a, c ∈ N are results
from a measurement of A alone we can write a = aA ⊗ I ⊗nB and c = cA ⊗ I ⊗nB

with aA, cA ∈ GnA
. Since g,h ∈ SB apply to B alone we must have b = aA ⊗ bB and

d = cA ⊗ dB with bB, dB ∈ GnB
. This demonstrates that a commutes with d and b

commutes with c also. Therefore g and h commute. Hence SB is a toy stabilizer sub-
group, which represents a valid epistemic state by the inductive hypothesis. Therefore
S represents a valid epistemic state.

For the “only if” part consider some valid epistemic state. First I show that the
probability of obtaining an outcome from the measurement of a toy observable is
always either 0, 1

2 or 1. Let g+ be the event of obtaining the +1 outcome from
measuring some g ∈ Gn. Decompose g = a ⊗ b with a ∈ G1 and b ∈ Gn−1. If gv =
v then, writing v = va ⊗ vb we must have ava = va, bvb = vb or ava = −va and
bvb = −vb . Hence

P
(
g+) = P

(
a+ ∩b+)+P

(
a− ∩b−) = P

(
a+)

P
(
b+|a+)+P

(
a−)

P
(
b−|a−)

. (14)

All of the probabilities in the last expression are 0, 1
2 or 1 by the inductive hypothesis

and the fact that measuring a will result in a valid epistemic state for the other subsys-
tem. Hence the only way P(g+) could fail to be 0, 1

2 or 1 is if P(a+) = P(a−) = 1
2

and (P (b+|a+),P (b−|a−)) ∈ {(0, 1
2 ), ( 1

2 ,0), ( 1
2 ,1), (1, 1

2 )}. But by the inductive hy-
pothesis P(b+) ∈ {0, 1

2 ,1}, and we have

P
(
b+) = P

(
b+|a+)

P
(
a+) + P

(
b+|a−)

P
(
a−)

, (15)

which would give a contradiction in each of those four cases.
We now construct a list of independent generators for the toy stabilizer subgroup

corresponding to the valid epistemic state as follows. Identify the first elementary
system as subsystem A and the rest as a subsystem B . Consider an I measurement
on system A, which is valid by the inductive hypothesis. This is certain to return the
outcome 1 and results in a valid epistemic state for B . By the inductive hypothesis this
corresponds to a toy stabilizer subgroup SB , which will have some list of independent
generators. Tensor each element of this list with I to obtain the first generators for S.

Next consider an 〈X 〉 versus 〈−X 〉 measurement on A (i.e. a measurement of
the X toy observable). If we know that only a single outcome, ±1 is possible then
doing the measurement cannot give us any knowledge about system B that we didn’t
already have. Therefore we just need to add ±XA ⊗ I ⊗(n−1) to our generators for S

(it is clear that this commutes with, and has a linearly independent check vector from,
the existing elements of the list).

If either outcome is possible then they must result in valid epistemic states and
hence toy stabilizer subgroups S±

B . Suppose there is a g ∈ S+
B with neither g nor −g in

S−
B . Recall that the measurement of A does not disturb B . Consider a g measurement

on system B and denote the event of the +1 outcome g+. Denote the event of a ±1
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outcome of the X measurement on A by X ±. Then we have

P
(
g+) = P

(
g+|X +)×P

(
X +)+P

(
g+|X −)×P

(
X −) = 1× 1

2
+ 1

2
× 1

2
= 3

4
(16)

contradicting the earlier proof that P(g+) ∈ {0, 1
2 ,1}.

There is a similar contradiction if there is g ∈ S−
B with neither g nor −g in S+

B .
Hence (in the language of Sect. 5) S−

B is a rephasing of S+
B . Therefore either S+

B =
S−

B (in which case the measurement provides no information about B and we do
nothing), or we can write a list of independent generators for S±

B as g1, . . . , gl−1,±gl .
g1, . . . , gl−1 hold for either outcome so they must already be in S. Hence we just need
to add X ⊗ gl to our generators for S. It is clear that the list still commutes and has
linearly independent check vectors.

Now consider a Y measurement on A and repeat the process. If there is a new gl ,
it must anticommute with the old (if present), since otherwise we could measure two
commuting toy observables and determine the value of both X and Y on system A.
Hence the new generator Y ⊗ gl commutes with the one added in the previous step,
and certainly commutes with all the rest and has a linearly independent check vector.

Finally repeat the process for a Z measurement on A, but don’t add a generator
with a check vector linearly dependent on the existing ones. Any such element will
already be in the subgroup.

Consider the measurement of some toy observable g with neither g nor −g in S.
It must either return one outcome with certainty, or either outcome with equal proba-
bility. In the former case it will be possible to find some contradiction with the above
procedure, i.e. to find a reason why g or −g would have been added to S. The latter
case is exactly what is predicted by the toy stabilizer subgroup S.

We have now constructed a toy stabilizer subgroup S whose corresponding epis-
temic state makes identical predictions about the expectation values of all toy observ-
ables. It remains to show that there is only one epistemic state with this property and
hence S represents exactly the epistemic state we began with. This is analogous to
the fact that knowing the expectation values of every Pauli observable uniquely deter-
mines a quantum state, and the proof is similar. We note that the elements G+

n of Gn

that have α = 1 are a basis for the real vector space of real diagonal 4n × 4n matrices.
This is true because there are 4n of them, and they are orthogonal under the trace in-
ner product and hence linearly independent. Hence any probability distribution over
the ontic states, written as a diagonal real 4n × 4n matrix, is a linear combination
of the G+

n where the coefficients are proportional to the expectation values of those
observables. �

Proof of Lemma 3 For one system this can be seen by inspection.
Consider a four-outcome valid measurement on two systems and represent the out-

comes, which are valid epistemic states, by toy stabilizer subgroups S1, S2, S3, S4.
I claim there are three toy observables g,h± with {g,h+}, {g,−h+}, {−g,h−},
{−g,−h−} each contained in one of the Sk . Hence the measurement can be im-
plemented by measuring g, and then, based on the outcome ±1, measuring h±.
For example if S1 = 〈X1 X2, Y1 Y2〉, S2 = 〈−X1 X2,−Y1 Y2〉, S3 = 〈Z1,−Z2〉 and
S4 = 〈−Z1, Z2〉 we can take g = Z1 Z2, h+ = X1 X2 and h− = Z1.
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First note that since the Sk are disjoint and cover all the ontic states

PS1 + PS2 + PS3 + PS4 = I ⊗2. (17)

Denote S1 = {I ⊗2, a, b, ab}, where a and b are independent generators of S1. By (17)
−a, −b and −ab must appear in the other Sk . Suppose without loss of generality that
−a appears in S2 and denote S2 = {I ⊗2,−a, c,−ac}. If c = b then by (17) we have
−b ∈ S3, S4 and so we can take g = b. Similarly if c = −b take g = ab, if c = ab

take g = ab and if c = −ab take g = b. Suppose c is otherwise. Since −b, −c and
−ac must be in S3 or S4, two of them must be in the same subgroup. If −c and −ac

are in the same subgroup then a is also in it and so by (17) we can take g = a. If −b

and −c are in the same subgroup then they must commute. But then {a, b, c} would
be independent generators of a toy stabilizer subgroup, even though the maximum
length of such a list is n = 2. Similarly if −b and −ac being in the same subgroup
creates a contradiction using {a, b, ac}.

Once we have found g, use (17) to verify that g must be in two of the subgroups
and −g must be in the other two. Take the two subgroups with g in. To ensure that
they represent disjoint states there must be some h+ in one with −h+ in the other.
Define h− similarly.

The proofs for a valid measurement with two or three outcomes are simpler, but
use similar observations. �

Proof of Lemma 5 We begin with the “if” part. For any θ ∈ R and l ∈ {1, . . . , n − 1}
we have gl |ψ〉 = |ψ〉 and gl |ψ ′〉 = |ψ ′〉, hence

gl

1√
2

(|ψ〉 + eiθ
∣∣ψ ′〉) = 1√

2

(|ψ〉 + eiθ
∣∣ψ ′〉). (18)

Next calculate the effect of h on |ψ〉. Since T is a stabilizer subgroup h must
commute with g1, . . . , gn−1. But it must anticommute with gn since otherwise
g1, . . . , gn−1, gn,h would be a list of n + 1 independent generators of a stabi-
lizer subgroup, contradicting the maximum length of such a list being n. There-
fore under conjugation by h, S is mapped to S′. Hence h|ψ〉 = eiθ |ψ ′〉 for some
θ ∈ R. Since h is Hermitian and unitary we also have heiθ |ψ ′〉 = |ψ〉. Therefore
h 1√

2
(|ψ〉 + eiθ |ψ ′〉) = 1√

2
(|ψ〉 + eiθ |ψ ′〉), and we have that T stabilizes this state.

Now for the “only if” part. Suppose S′ is not a rephasing of S. Then there exists
some g ∈ S with ±g /∈ S′. Denote |φ(θ)〉 = 1√

2
(|ψ〉 + eiθ |ψ ′〉 and calculate

〈
φ(θ)

∣∣g∣∣φ(θ)
〉 = 〈ψ |g|ψ〉 + 〈ψ ′|g|ψ ′〉 + eiθ 〈ψ |g|ψ ′〉 + e−iθ 〈ψ ′|g|ψ〉

2
= 1

2
, (19)

which contradicts the expectation value of any Pauli observable in a stabilizer state
being −1,0 or 1.

So S′ is a rephasing of S. Since S′ = S we can therefore write S = 〈g1, . . . ,

gn−1, gn〉 and S = 〈g1, . . . , gn−1,−gn〉. It is easy to check that for l ∈ {1, . . . , n − 1}
we have gl |φ(θ)〉 = |φ(θ)〉 and hence gl ∈ T . Therefore we can take g1, . . . , gn−1
as the first n − 1 independent generators of T . Write the final independent generator
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as h. Suppose h ∈ S. Since h /∈ 〈g1, . . . , gn−1〉, and S′ is a rephasing of S, we must
have −h ∈ S. But then h|φ(θ)〉 = |φ(θ + π)〉 contradicting h being a stabilizer of
|φ(θ)〉. Similarly if h ∈ S′. Therefore h /∈ S ∪ S′. �

Proof of Lemma 6 We closely follow the proof of Proposition 1 in [10]. The number
of distinct stabilizer subgroups of the required form is G/A where G is the number
of choices for the final generator h, and A is the number of choices of h giving rise
to the same subgroup.

First we calculate G. Ignoring phases there are 4n choices in Gn. But h must
commute with g1, . . . , gn−1 which gives 4n/2n−1 options. Also, it must not be
in the subgroup generated by g1, . . . , gn−1, which gives 4n/2n−1 − 2n−1. Finally,
it must not be in S or S′, i.e. it cannot be gn multiplied by something gener-
ated by g1, . . . , gn−1. There are two possible overall phases ±1. This gives G =
2(4n/2n−1 − 2n−1 − 2n−1) = 2(4 × 2n−1 − 2 × 2n−1) = 2n+1.

Next we calculate A. Fix a stabilizer subgroup. Then for h we can choose any
of the elements of the stabilizer subgroup not generated by g1, . . . , gn−1. This gives
A = 2n − 2n−1 = 2n−1.

Finally we calculate G/A = 4 as required. �

Appendix B: Relation to Spekkens’ New Formulation

Spekkens’ has previously outlined [8] a new formulation of the toy theory which is
very closely related to the stabilizer notation presented here. The new formulation is
based around “linear functionals” or “canonical variables”. These can be put in 1-to-1
correspondence with the elements of Gn with α = 1. For an elementary system, the
canonical variables are 0, X, P , and X + P which may be taken to correspond to
I , X , Z and Y respectively. The correspondence for composite systems can then be
built up from this, so that X1 + X3 + P3 corresponds to X ⊗ I ⊗ Y and so on. The
toy stabilizer notation combines canonical variables with their values, for example
having X ⊗ Z in a toy stabilizer subgroup represents knowledge that X1 + P2 = 0
whereas −X ⊗ Z represents the knowledge X1 + P2 = 1.

The new formulation’s “Poisson bracket” condition for jointly-knowable variables
is exactly the usual condition on the check vectors of commuting observables.

Measurements in the new formulation determine the value of some set of jointly-
knowable variables, or equivalently a set of commuting toy observables. Therefore
Lemmas 3 and 4 show that for one or two systems the notion of measurement is
identical in both formulations, whereas for three or more systems not all of the mea-
surements in the original formulation are included in the new formulation.

The new formulation can be compared to qubit quantum mechanics by using the
discrete Wigner representation [16, 17] of the latter. From this perspective the differ-
ence between the two theories comes from the fact the discrete Wigner function is
sometimes negative, whereas the toy theory only uses positive probabilities.
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