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Abstract In this work, we have investigated the validity of the generalized second
law of thermodynamics in logamediate and intermediate scenarios of the universe
bounded by the Hubble, apparent, particle and event horizons using and without using
first law of thermodynamics. We have observed that the GSL is valid for Hubble,
apparent, particle and event horizons of the universe in the logamediate scenario of
the universe using first law and without using first law. Similarly the GSL is valid
for all horizons in the intermediate scenario of the universe using first law. Also in
the intermediate scenario of the universe, the GSL is valid for Hubble, apparent and
particle horizons but it breaks down whenever we consider the universe enveloped by
the event horizon.
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1 Introduction

Nowadays, it is widely accepted fact that the universe is experiencing accelerated ex-
pansion driven by dark energy [1–5] characterized by negative pressure p� satisfying
the equation of state parameter w� < −1/3 [6]. Strong observational evidences for
dark energy are available from Type Ia supernova (SN Ia), cosmic microwave back-
ground radiation and Sloan digital sky survey (SDSS) observations [7, 8] that entities
in modern physics. Reviews on dark energy are available in [9–13]. Although obser-
vationally well-established, no single theoretical model provides an eternally com-
pelling framework within which cosmic acceleration or dark energy can provide an
entirely compelling framework within which the dark energy can be well-understood.
Several models for dark energy have been proposed till date. Such models include
quintessence, phantom, quintom, holographic dark energy etc. Discussions on these
models are available in Copeland et al. [9–13]. Determining thermodynamic param-
eters for the expanding (accelerated) universe and verification of the first and the
second law for different cosmological horizons, investigating the relation between
dynamics and thermodynamics of the universe, studying the conditions required for
validity of the generalized second law (GSL) have also been the subjects of interest
in recent years [14–26].

The speculation that there should be some relation between black hole thermody-
namics and Einstein equations is being made since the discovery of black hole ther-
modynamics in 1970’s. In 1995, Jacobson [27] derived Einstein equations by apply-
ing the first law of thermodynamics δQ = T dS together with proportionality of en-
tropy to the horizon area of the black hole. Here δQ and T are the energy flux and Un-
ruh temperature seen by an accelerated observer just inside the horizon. Verlinde [28]
found that the Friedmann equation in a radiation dominated Friedmann-Robertson-
Walker (FRW) universe can be written in an analogous form of the Cardy-Verlinde
formula, an entropy formula for a conformal field theory. The first law of thermody-
namics for the cosmological horizon is given by −dE = T dS, where T = 1

2πl
is the

Hawking temperature, and S = A
4G

is the entropy with A = 4πl2 and G as the cos-
mological horizon area and Newton constant respectively (Cai and Kim in [29–33]).
Einstein’s field equations have been derived from the first law of thermodynamics in
the references given in [29–33]. In [34], the gravitational field equations for the non-
linear theory of gravity were derived from the first law of thermodynamics by adding
some non equilibrium corrections. Profound physical connection between first law of
thermodynamics of the apparent horizon and the Friedmann equation was established
in [35].

In a spatially flat de Sitter space–time, the event horizon and the apparent horizon
of the Universe coincide and there is only one cosmological horizon. When the appar-
ent horizon and the event horizon of the Universe are different, it was found that the
first law and the second law of thermodynamics hold on the apparent horizon, while
they break down if one considers the event horizon [36]. There are several studies
in thermodynamics for dark energy filled universe on apparent and event horizons
[37–43]. Setare and Shafei [44] showed that for the apparent horizon the first law is
roughly respected for different epochs while the second law of thermodynamics is re-
spected. Considering the interacting holographic model of dark energy to investigate
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the validity of the GSL of thermodynamics in a non-flat (closed) universe enclosed
by the event horizon, Setare [45] found that generalized second law is respected for
the special range of the deceleration parameter. The transition from quintessence to
phantom dominated universe was considered and the conditions of the validity of
GSL in transition was studied in [46]. In the reference [47], a Chaplygin gas domi-
nated was considered and the GSL was investigated taking into account the existence
of the observer’s event horizon in accelerated universes and it was concluded that
for the initial stage of Chaplygin gas dominated expansion, the GSL of gravitational
thermodynamics is fulfilled.

In the present work, we study the validity of GSL of thermodynamics in the in-
termediate [51, 52] and logamediate [52] expansions of the universe bounded by the
Hubble, apparent, particle and event horizons. According to the GSL, for our sys-
tem, the sum of the entropy of matter enclosed by the horizon and the entropy of the
horizon must not be a decreasing function of time. We have investigated the GSL
using as well as without using the first law of thermodynamics. While considering
the GSL we have taken into account the Hubble horizon, apparent horizon, particle
horizon and event horizon. At this point it should be stated that some authors first
choose the scale factor in power law, exponential or in other forms and then find out
other variables with some conditions under these solutions. This ‘reverse’ way of in-
vestigations had earlier been used extensively by reference [53] who chose various
forms of scale factor and then found out the other variables from the field equations.
Subsequently, this approach has been adopted by reference [54]. In another study,
Feinstein [55] assumed scale factor in the power law form to model the potential by
an inverse square law in terms of the tachyon field. Campuzano et al. [56] studied
the curvaton reheating assuming the scale factor in the logamediate scenario, where
a(t) = exp(μ(ln t)α) with μα > 0, α > 1 [52]. Such a choice of scale factor has also
been used in the references like [57] and [58]. In the present work we have consid-
ered the GSL of thermodynamics with this choice of scale factor. Another choice of
scale factor that we made in this work pertains to the particular scenario of intermedi-
ate expansion. In this scenario the scale factor of the Friedmann universe evolves as
a(t) = exp(λtβ) with λ > 0; 0 < β < 1 [51, 52]. Study of the GSL of thermodynam-
ics for the said choices of scale factors would be discussed in the subsequent section
using as well as without using the first law of thermodynamics.

2 Generalized Second Law of Thermodynamics

We consider the Friedmann-Robertson-Walker (FRW) universe with line element

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]
(1)

where a(t) is the scale factor and k is the curvature of the space and k = 0,1 and −1
for flat, closed and open universes respectively. For simplicity let us denote d
2

2 =
(dθ2 + sin2 θdφ2) in (1). The metric (1) can be rewritten as

ds2 = habdxadxb + r̃2d
2
2 (2)
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where r̃ = a(t)r , x0 = t , x1 = r and hab = diag(−1, a2/(1 − kr2)). The dynamical
apparent horizon is determined by the relation hab∂ar̃∂br̃ = 0. A simple calculation
gives the radius of the apparent horizon which is denoted by RA and given by

RA = 1√
H 2 + k

a2

(3)

Here, H = ȧ
a

is the Hubble parameter. For k = 0 (i.e. flat universe) we get the
radius of the Hubble horizon. Thus the radius of the Hubble horizon is RH = 1

H
. In

metric (1) if we put ds2 = 0 and d
2
2 = 0 then the cosmological event horizon RE

can be determined as

RE = a

∫ ∞

t

dt

a
(4)

The event horizon exists only for an accelerated expanding universe. As a conse-
quence, for a pure de Sitter universe with k = 0, the apparent horizon, the Hubble
horizon and the cosmological event horizon have the same constant value 1/H . Al-
though the cosmological event horizon does not always exist for all FRW universes,
the apparent horizon and the Hubble horizon always do exist (see Cai and Kim of
[14–26]). If the universe has a finite age, then light travels only a finite distance in
that time and the volume of space from which we can receive information at a given
moment of time is limited. The boundary of this volume is called the particle horizon
[59]. The particle horizon is sometimes distinguished from the event horizon by de-
scribing the particle horizon as a “barrier in space” and the event horizon as a “barrier
in spacetime”. When viewed in comoving coordinates the particle horizon and event
horizon are mirror images of each other. The particle horizon is given by (see Sadjadi
and Honardoost of [14–26, 59])

RP = a

∫ t

0

dt

a
(5)

The Einstein field equations are given by

H 2 + k

a2
= 8πG

3
ρ (6)

and

Ḣ − k

a2
= −4πG(ρ + p) (7)

where ρ and p are energy density and isotropic pressure respectively and H = ȧ
a

is
the Hubble parameter. The energy conservation equation is given by

ρ̇ + 3H(ρ + p) = 0 (8)
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The time derivatives of the horizons RA, RH , RE, RP expressed in (3)–(5) can
be easily obtained as

ṘA = −HR3
A

(
Ḣ − k

a2

)
; ṘH = − Ḣ

H 2
;

(9)
ṘE = HRE − 1; ṘP = HRP + 1;

To study the generalized second law (GSL) of thermodynamics through the uni-
verse we deduce the expression for normal entropy using the Gibb’s equation of ther-
modynamics

TXdSIX = pdVX + dEIX (10)

where, SIX is the internal entropy within the horizon. Here the expression for internal
energy can be written as EIX = ρVX , where the volume of the sphere is VX = 4

3πR3
X .

Using (13) we obtain the rate of change of internal energy as

ṠIX = 4πR2
X

TX

(ρ + p)(ṘX − HRX) (11)

In the following, we shall find out the expressions of the rate of change of total
entropy using first law and without using first law of thermodynamics.

2.1 GSL Using First Law

Issues related to the said horizons in the context of thermodynamical studies are
available in the references given in [48–50]. The unified first law is defined by
dE = Aψ +WdV , where A is the area, W is the work density function, ψ = ψadxa ,
where ψa is the energy supply vector, and E is the total energy inside the surface.
The quantities A, ψ, W and V are discussed in Cai and Kim [14–26] and Debnath
[14–26]. We know that heat is one of the forms of energy. Therefore, the heat flow
δQ through the horizon is just the amount of energy crossing it during the time in-
terval dt . That is, δQ = −dEX is the change of the energy inside the horizon which
the amount of the energy crossing on the horizon. The first law of thermodynamics
(Clausius relation) on the horizon is defined as TXdSX = δQ = −dEX . From the
unified first law, we may obtain the first law of thermodynamics as

TXdSX = 4πR3
XH(ρ + p)dt (12)

where, TX and RX are the temperature and radius of the horizons under consideration
in the equilibrium thermodynamics.

Using (12) we can get the time derivative of the entropy on the horizon as

ṠX = 4πR3
XH

TX

(ρ + p) (13)

Adding (11) and (13) we get the time derivative of total entropy as

ṠX + ṠIX = R2
X

GTX

(
k

a2
− Ḣ

)
ṘX (14)
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In order the GSL to be hold, we require ṠX + ṠIX ≥ 0.

2.2 GSL Without Using First Law

In (14) the time derivative of the total entropy is obtained using the first law of ther-
modynamics. In this paper, we shall also investigate the GSL without using the first

law of thermodynamics. The horizon entropy is SX = πR2
X

G
and the temperature is

TX = 1
2πRX

. In this case, the time derivative of the entropy on the horizon is

ṠX = 2πRXṘX

G
(15)

Therefore, in this case the time derivative of the total entropy is

ṠX + ṠIX = 2πRX

G

[
R2

X

(
k

a2
− Ḣ

)
(ṘX − HRX) + ṘX

]
(16)

In the following sections, we shall investigate the nature of (14) and (16) i.e.,
validity of GSL in two scenarios, namely logamediate and intermediate scenarios.

3 GSL in Logamediate Scenario

Barrow and Nunes [52] introduced the scenario of ‘logamediate’ expansion where
the scale factor a(t) is given by

a(t) = exp(A(ln t)α), Aα > 0, α > 1, t > 1 (17)

Subsequently,

H = Aα

t
(ln t)α−1 (18)

and from (18), we obtain

RH = t (ln t)1−α

Aα
; RA = 1√

e−2A(ln t)α k + A2α2(ln t)−2(1−α)

t2

;

RP = exp(A(ln t)α)

∫ t

0

dt

exp(A(ln t)α)
; (19)

RE = exp(A(ln t)α)

∫ ∞

t

dt

exp(A(ln t)α)

Using (14), (16)–(19) we get the time derivatives of the total entropies to investi-
gate the validity of the GSL in various horizons using and without using first law.
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3.1 GSL in the Logamediate Scenario Using First Law

Here we consider the GSL in the logamediate scenario using the first law of thermo-
dynamics. Using (11) and (16) we get the time derivative of total entropies as follows:

• For Hubble horizon

ṠH + ṠIH

= e−2A(ln t)α (α − 1 − ln t)(ln t)−3α(−kt2(ln t)2 + Aαe2A(ln t)α (ln t)α(α − 1 − ln t))

A3α3GTH

(20)

• For apparent horizon

ṠA + ṠIA = AαeA(ln t)α (ln t)α(kt2(ln t)2 − Ae2A(ln t)αα(α − 1 − ln t)(ln t)α)2

GTA(kt2(ln t)2 + A2e2A(ln t)αα2(ln t)2α)5/2

(21)
• For particle horizon

ṠP + ṠIP

= e−2A(ln t)α R2
P (t ln t + Aα(ln t)αRP )(kt2(ln t)2 − Ae2A(ln t)α α(α − 1 − ln t)(ln t)α)

t3(ln t)3GTP

(22)

• For event horizon

ṠE + ṠIE

= e−2A(ln t)α R2
E(−t ln t + Aα(ln t)αRE)(kt2(ln t)2 − Ae2A(ln t)α α(α − 1 − ln t)(ln t)α)

t3(ln t)3GTE

(23)

In Figs. 1(a)–(d) we have investigated the GSL using the first law of thermo-
dynamics. Here also the time derivative of the horizon entropy is calculated using
the first law of thermodynamics. In Figs. 1(a) and 1(b) we have plotted the time
derivatives of the total entropies against the cosmic time t for the Hubble and ap-
parent horizons in the logamediate scenario. We have computed the total entropy
using the first law of thermodynamics. We see that the rate of change of total en-
tropies are decreasing with time. We find that ṠX + ṠIX > 0 throughout the evolution
of the universe. Thus, the GSL is valid in both of the Hubble and apparent hori-
zons.

In Fig. 1(c), we have plotted the time derivative of the total entropy assuming par-
ticle horizon as the enveloping horizon of the universe. We see that the rate of change
of total entropy is increasing with time. In this figure the time derivative stays at the
positive level. This indicates that the GSL is valid on the particle horizon. Also, in
Fig. 1(d), where the time derivative of the total entropy is plotted for the universe
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enveloped by the event horizon, we see that the rate of change of total entropy is
decreasing with time. We find that ṠE + ṠIE > 0 throughout the evolution of the
universe. This indicates that when we consider the cosmological event horizon as the
enveloping horizon of the universe, the GSL is also valid. So we conclude that the
GSL is always valid for Hubble, apparent, particle and event horizons in the logame-
diate scenario of the universe when we have calculated the horizon entropies using
first law of thermodynamics.

3.2 GSL in the Logamediate Scenario Without Using First Law

Without using the first law, the time derivative of the total entropies in the logamediate
scenario come out as

• For Hubble horizon

ṠH + ṠIH

= 2e−2A(ln t)απt (ln t)1−4α

× (kt2(ln t)2(1 − α + ln t) + Aα(ln t)α(−kt2(ln t)2 + e2A(ln t)α (1 − α + ln t)2))

A4α4G

(24)

• For apparent horizon

ṠA + ṠIA

= 2Ae2A(ln t)απtα(ln t)1+α(kt2(ln t)2 − Ae2A(ln t)αα(α − 1 − ln t)(ln t)α)2

G(kt2(ln t)2 + A2α2e2A(ln t)α (ln t)2α)3

(25)

• For particle horizon

ṠP + ṠIP = 2πR3
P

G

(
ke−2A(ln t)α − Aα(α − 1)(ln t)−2+α

t2
+ Aα(ln t)α−1

t2

)

+ 2πRP

G

(
AαRP (ln t)α−1

t
+ 1

)
(26)

• For event horizon

ṠE + ṠIE = −2πR3
E

G

(
ke−2A(ln t)α − Aα(α − 1)(ln t)−2+α

t2
+ Aα(ln t)α−1

t2

)

+ 2πRE

G

(
AαRE(ln t)α−1

t
− 1

)
(27)

In Figs. 2(a)–(d) we have plotted ṠX + ṠIX based on (24)–(27) against cosmic time
t without using the first law of thermodynamics in the logamediate scenario. Here
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Fig. 1 (Color online)
(a)–(d) show the time
derivatives of the total entropy
for Hubble horizon RH ,
apparent horizon RA , particle
horizon RP and event horizon
RE respectively using first law
of thermodynamics in the
logamediate scenario. The red,
green and blue lines represent
the ṠX + ṠIX for k = −1, 1
and 0 respectively. We have
chosen A = 5, α = 2

(a)

(b)

(c)

also we find similar results to those obtained using the first law of thermodynamics.
From Figs. 2(a)–(d) we find that the GSL is valid in the logamediate scenario without
using the first law for the universe enveloped by the Hubble, apparent, particle and
event horizons.
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Fig. 1 (Continued)

(d)

4 GSL in Intermediate Scenario

Barrow and Liddle [51] proposed a model of ‘intermediate’ expansion, where the
scale factor is given by

a(t) = exp(Btβ), B > 0,0 < β < 1 (28)

This model bears many qualitative similarities to power-law inflation: like power-
law inflation, there is no natural end to inflation and a mechanism must be introduced
in order to bring inflation to an end. Also, as with power-law inflation, intermediate
inflation offers the possibility of density perturbation and gravitational wave spectra
which differ significantly from the usual inflationary prediction of a nearly flat spec-
trum with negligible gravitational waves [51]. Using the above form of scale factor,
we get

H = Bβtβ−1 (29)

Subsequently from (5), we obtain,

RH = t1−β

Bβ
; RA = 1√

ke−2Btβ + B2β2t2(β−1)

;
(30)

RP = B
− 1

β eBtβ (�[ 1
β
] − �[ 1

β
,Btβ ])

β
; RE = B

− 1
β eBtβ �[ 1

β
,Btβ ]

β

Using the above expressions in (14) and (16) we can get the time derivatives of
the total entropies using as well as without using the first law of thermodynamics.

4.1 GSL in the Intermediate Scenario Using First Law

In this subsection we consider the GSL in the intermediate scenario. Using the first
law the time derivatives of the total entropies are
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Fig. 2 (Color online)
(a)–(d) show the time
derivatives of the total entropy
for Hubble horizon RH ,
apparent horizon RA , particle
horizon RP and event horizon
RE respectively without using
first law of thermodynamics in
the logamediate scenario. The
red, green and blue lines
represent the ṠX + ṠIX for
k = −1, 1 and 0 respectively.
We have chosen A = 5, α = 2

(a)

(b)

(c)

• For Hubble horizon

ṠH + ṠIH = e−2Btβ t−3β(β − 1)(−kt2 + Be2Btβ tβ(β − 1)β)

B3β3GTH

(31)
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Fig. 2 (Continued)

(d)

• For apparent horizon

ṠA + ṠIA = BβeBtβ tβ(kt2 − Be2Btβ tβ(β − 1)β)2

GTA(kt2 + B2e2Btβ t2ββ2)5/2
(32)

• For particle horizon

ṠP + ṠIP

= B
− 3

β

(
�

[
1

β

]
− �

[
1

β
,Btβ

])2

× (kt2 − Be2Btβ tβ(β − 1)β)(B
1
β t + BeBtβ tβ(�[ 1

β
] − �[ 1

β
,Btβ ]))

t3β2GTP

(33)

• For event horizon

ṠE + ṠIE

= B
− 3

β

(
�

[
1

β
,Btβ

])2

× (kt2 − Be2Btβ tβ(β − 1)β)(−B
1
β t + BeBtβ tβ�[ 1

β
,Btβ ])

t3β2GTE

(34)

In Figs. 3(a)–(d) we have investigated the GSL for the intermediate scenario us-
ing the first law of thermodynamics using (31)–(34). Like the logamediate scenario,
the GSL in this situation is valid for the universes enveloped by Hubble, apparent
and event horizon. Also, in all these cases, the time derivatives of the total entropy
are falling with the passage of cosmic time. However, in the case of the universe en-
veloped by the apparent horizon, the time derivative of the total entropy is positive
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Fig. 3 (Color online)
(a)–(d) show the time
derivatives of the total entropy
for Hubble horizon RH ,
apparent horizon RA , particle
horizon RP and event horizon
RE respectively using first law
of thermodynamics in the
intermediate scenario. The red,
green and blue lines represent
the ṠX + ṠIX for k = −1,
1 and 0 respectively. We have
chosen A = 5, α = 2

(a)

(b)

(c)

and increasing throughout the evolution of the universe. In this case also the GSL is
satisfied. So we may conclude that the GSL is valid for all horizons in intermediate
scenario of the universe using first law.
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Fig. 3 (Continued)

(d)

4.2 GSL in the Intermediate Scenario Without Using First Law

The time derivatives of the total entropies are also calculated without using the first
law of thermodynamics in the intermediate scenario as follows:

• For Hubble horizon

ṠH + ṠIH = 2πe−2Btβ t1−4β(Be2Btβ tββ(β − 1)2 − kt2(β − 1(1 + Btβ)))

B4β4G
(35)

• For apparent horizon

ṠA + ṠIA = 2πβBe2Btβ t1+β(kt2 − Be2Btβ tβ(β − 1)β)2

G(kt2 + B2β2e2Btβ t2β)3
(36)

• For particle horizon

ṠP + ṠIP = 2πB
− 1

β eBtβ (�[ 1
β
] − �[ 1

β
,Btβ ])

β3G

×
[
β2 + B

1− 1
β β2eBtβ tβ−1

(
�

[
1

β

]
− �

[
1

β
,Btβ

])

+ B
− 2

β

(
k − Be2Btβ tβ−2(β − 1)β

(
�

[
1

β

]
− �

[
1

β
,Btβ

])2)]

(37)

• For event horizon

ṠE + ṠIE = 2πB
− 3

β eBtβ �[ 1
β
,Btβ ]

t2β3G

×
[
βBeBtβ tβ

(
βB

1
β t + (β − 1)eBtβ �

[
1

β
,Btβ

])
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Fig. 4 (Color online)
(a)–(d) show the time
derivatives of the total entropy
for Hubble horizon RH ,
apparent horizon RA , particle
horizon RP and event horizon
RE respectively without using
first law of thermodynamics in
the intermediate scenario. The
red, green and blue lines
represent the ṠX + ṠIX for
k = −1, 1 and 0 respectively.
We have chosen A = 5, α = 2

(a)

(b)

(c)

− t2
(

β2B
2
β + k

(
�

[
1

β
,Btβ

])2)]
(38)
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Fig. 4 (Continued)

(d)

Time derivatives of the total entropies are calculated based on (35)–(38) and are
plotted against the cosmic time t . Figures 4(a)–(c) show the staying of the time deriva-
tive of the total entropy at positive level throughout the evolution of the universe. This
indicates the validity of the GSL in the universes enveloped by Hubble, apparent and
particle horizons. However, it fails to stay at positive level in the case of the universe
enveloped by the event horizon. This indicates the breaking down of the GSL without
using the first law of thermodynamics in the intermediate scenario.

5 Discussions

In the present work, our endeavor was to investigate the validity of the generalized
second law of thermodynamics in the logamediate and intermediate scenarios of the
universe bounded by the Hubble, apparent, particle and event horizons. We have in-
vestigated the generalized second law using two different approaches namely, (i) us-
ing the first law of thermodynamics and (ii) without using the first law of thermody-
namics.

As previously stated, the basic aim is to investigate whether ṠX + ṠIX i.e. the time
derivative of the sum of the entropy of the universe bounded by the horizons and
the normal entropy remains at non-negative level. To do the same, we have consid-
ered the universe enveloped by Hubble, apparent, particle and event horizons. The
logamediate as well as intermediate scenarios have been investigated for the nature
of the time derivative of the total entropy for four of the said horizons. With suit-
able choice of the model parameters, we have seen from Figs. 1(a)–(d) that if we use
the first law to derive the time derivative of the total entropy, the generalized second
law is valid for all of the four horizons irrespective of the curvature of the universe.
Similar situation happens (see Figs. 2(a)–(d)) when we ignore the first law to get the
time derivative of the total entropy. While considering the intermediate scenario we
find from Figs. 3(a)–(d) that the generalized second law based on first law is always
valid for all types of enveloping horizons and the curvature of the universe. However,
if we ignore the first law, we find that in intermediate scenario the generalized sec-
ond law breaks down (see Fig. 4(d)) for open, flat and closed universe enveloped by
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the event horizon. The generalized second law without the first law in this scenario
is valid if the enveloping horizons are Hubble, apparent and particle horizons (see
Figs. 4(a)–(c)). The validity of the generalized second law occurs irrespective of the
use of the first law of thermodynamics in calculating the time derivative of the total
entropy.
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