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Abstract We discuss the concepts of Weyl and Riemann frames in the context of
metric theories of gravity and state the fact that they are completely equivalent as far
as geodesic motion is concerned. We apply this result to conformally flat spacetimes
and show that a new picture arises when a Riemannian spacetime is taken by means
of geometrical gauge transformations into a Minkowskian flat spacetime. We find out
that in the Weyl frame gravity is described by a scalar field. We give some examples
of how conformally flat spacetime configurations look when viewed from the stand-
point of a Weyl frame. We show that in the non-relativistic and weak field regime
the Weyl scalar field may be identified with the Newtonian gravitational potential.
We suggest an equation for the scalar field by varying the Einstein-Hilbert action re-
stricted to the class of conformally-flat spacetimes. We revisit Einstein and Fokker’s
interpretation of Nordström scalar gravity theory and draw an analogy between this
approach and the Weyl gauge formalism. We briefly take a look at two-dimensional
gravity as viewed in the Weyl frame and address the question of quantizing a confor-
mally flat spacetime by going to the Weyl frame.

Keywords Conformally flat spacetime · Conformal transformation · Weyl frame ·
Riemann frame · Scalar gravity

1 Introduction

It is well known that the concept of geodesics plays a role of fundamental importance
in general relativity as well in any metric theory of gravity. Indeed, an elegant aspect
of the geometrization of the gravitational field lies in the geodesics postulate, that
is, the statement that light rays and particles moving under the influence of gravity
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alone follow spacetime geodesics. This fact means that a great deal of information
about the motion of particles in a given spacetime is promptly available once one
knows its geodesic structure, i.e the set of all geodesics admitted by that spacetime.
In general relativity, geodesics are completely determined by the metric properties
of the spacetime since it is also assumed that the spacetime geometry has a Rieman-
nian character. (Let us recall that in general relativity the geodesic postulate is not an
independent postulate as it follows logically from the Einstein field equations. See,
for instance [1].) However, in many other metric theories of gravity one distinguishes
between metric geodesics and affine geodesics, and so in these theories one must
be careful, from the outset, to clearly specify to which kind of geodesics does the
geodesic postulate refer (For a nice review of alternative theories of gravity see [2]).
In any case, it is by analyzing the behaviour of timelike and null geodesics, the later
determining the light-cone structure, that one is able to predict a series of relativistic
phenomena, such as, the existence of the perihelium precession of Mercury’s orbit,
the deflection of the light by the Sun, the gravitation redshift of light and the grav-
itational time delay (Shapiro effect). In addition to these, almost all the physics of
black holes is obtained by studying the properties of geodesics near the spacetime
event horizon. Finally, to explain the existence of a cosmological redshift, the accel-
eration of the Universe, and many other empirical facts of cosmology all we need is to
know the mathematical behaviour of the geodesics corresponding to the underlying
cosmological model.

In view of the above, we may conclude that as far as the information conveyed
by the geodesic lines of a certain spacetime is concerned one has a certain degree
of freedom in the choice of the geometry associated with that space. For instance, in
a certain sense it does not seem that the concept of Riemannian curvature is essen-
tial for the geometrical description of the gravitational and cosmological phenomena
just mentioned. Two distinct geometries sharing the same geodesic structure will give
exactly the same description of geodesic-related phenomena, being for this reason in-
distinguishable from the observational point of view. In this sense the two geometries
may be regarded as equivalent. If, in addition, they are related by some kind of math-
ematical transformation, it may happen that one of them is preferable to the other
when we need to do some calculations, or if we want to get a simpler or different pic-
ture of physical processes going on. In this paper, we would like to develop further
these ideas by considering a kind of interplay between two different frameworks: the
geometries of Riemann and Weyl. As we will see, there are circumstances in which it
is possible to switch from one to the other while keeping some basic geometric struc-
ture invariant. The key notion to understand how such correspondence works is that
of geometrical gauge transformation, a concept introduced by H. Weyl in 1918 [3, 4].
The theory developed by Weyl is regarded by many as an elegant generalization of
Riemannian geometry, and, in the opinion of some authors, “contains a suggestive
formalism and may still have the germs of a future fruitful theory” [5].

This paper is organized as follows. In Sect. 2, we give a brief introduction to
Weyl geometry and introduce the notion of Riemann and Weyl frames. We proceed
in Sect. 3 to consider how the class of conformally spacetimes is described in the
Weyl frame. In Sect. 4, we show that in the weak field regime the scalar field that
appears in the Weyl frame may be identified with the Newtonian gravitational poten-
tial. Then, in Sect. 5, we suggest an equation for the Weyl scalar field which may
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be deduced by varying the Einstein-Hilbert action with respect to the restricted class
of conformally flat metrics. Section 6 contains a brief discussion of the analogy be-
tween the dynamics of the Weyl scalar field and the approach followed by Nordström
scalar theory of gravity. In Sect. 7 we take a brief look at two-dimensional gravity as
viewed in the Weyl frame. Finally, in Sect. 8, we address the question of quantizing
a conformally flat spacetime by going to the Weyl frame where the problem may be
reduced to the quantization of a scalar field in flat spacetime. We summarize our work
in Sect. 9.

2 Weyl Geometry

Conceived by Weyl in 1918, as an attempt to unify gravity with electromagnetism, in
its original form Weyl’s theory [3, 4] turned out to be inadequate as a physical theory
as was firstly pointed by Einstein soon after the appearance of the theory [6, 7]. As
is well known, Einstein’s argument was that in a non-integrable Weyl geometry it
would not be possible the existence of sharp atomic spectral lines in the presence of
an electromagnetic field since atomic clocks would depend on their past history, an
effect known as the second clock effect. However, a variant of Weyl geometry, namely,
the one in which the Weyl field is integrable, does not suffer from this flaw [8], and,
for this reason, has been used in some approaches to gravitation and cosmology in
varied contexts [9–20]. Interest in Weyl geometry among physicists has also been
increased by the constructive-axiomatic formulation of spacetime theory developed
by Ehlers, Pirani and Schild, who demonstrated that if certain axioms, suggested by
experience, are satisfied, then one is naturally led to Weyl geometry [21]. On the
other hand, there are arguments based on quantum mechanics that seems to rule out
non-integral Weyl geometry as a viable [22, 23] framework to describe spacetime,
although this point remains controversial [8].

Let us now discuss what kind of geometry Weyl discovered. The essential differ-
ence between the Riemann geometry and the Weyl geometry is that in the former one
makes the assumption that the covariant derivative ∇agbc of the metric tensor g is
zero, while in the latter ∇agbc is given by

∇agbc = σagbc (1)

where σa denotes the components of a one-form field σ with respect to a local co-
ordinate basis. This represents a generalization of the Riemannian condition of com-
patibility between the connection ∇ and g, which is equivalent to require the length
of a vector to remain unaltered by parallel transport [6, 7]. If σ is an exact form, i.e.
σ = dφ, where φ is a scalar field, then we have what is called an integrable Weyl
geometry. The triad (M,g,σ ) where M is a differentiable manifold endowed with a
metric g and a Weyl field σ will be referred to as a Weyl frame. It is interesting to note
that the Weyl condition (1) remains unchanged when we go to another Weyl frame
(M,g,σ ) by performing the following simultaneous transformations in g and σ :

g = e−f g, (2)

σ = σ − df (3)

where f is a scalar function defined on M .
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Quite analogously to Riemannian geometry, the condition (1) is sufficient to com-
pletely determine the Weyl connection ∇ in terms of the metric g and the Weyl one-
form field σ . Indeed, a straightforward calculation shows that one can express the
components of the affine connection with respect to an arbitrary vector basis com-
pletely in terms of the components of g and σ :

�α
βγ = {αβγ } − 1

2
gαμ[gμβσγ + gμγ σβ − gβγ σμ] (4)

where {abc} represents the Christoffel symbols.
A clear geometrical insight on the properties of Weyl parallel transport is given by

the following proposition: Let M be a differentiable manifold with an affine connec-
tion ∇ , a metric g and a Weyl field of one-forms σ . If ∇ is compatible with g in the
Weyl sense, i.e. if (1) holds, then for any smooth curve α = α(λ) and any pair of two
parallel vector fields V and U along α, we have

d

dλ
g(V,U) = σ

(
d

dλ

)
g(V,U) (5)

where d
dλ

denotes the vector tangent to α.
If we integrate the above equation along the curve α, starting from a point P0 =

α(λ0), then we obtain

g(V (λ),U(λ)) = g(V (λ0),U(λ0))e

∫ λ
λ0

σ( d
dρ

)dρ
. (6)

Putting U = V and denoting by L(λ) the length of the vector V (λ) at an arbitrary
point P = α(λ) of the curve, then it is easy to see that in a local coordinate system
{xa} (5) reduces to

dL

dλ
= σα

2

dxα

dλ
L.

Consider the set of all closed curves α : [a, b] ∈ R → M , i.e, with α(a) = α(b).
Then, we have the equation

g(V (b),U(b)) = g(V (a),U(a))e
∫ b
a σ ( d

dλ
)dλ.

Now, it is the integral
∫ b

a
σ ( d

dλ
)dλ that is responsible for the difference between the

readings of two identical atomic clocks following different paths. It follows from
Stokes’ theorem that if σ is an exact form, that is, if there exists a scalar function φ,
such that σ = dφ, then

∮
σ

(
d

dλ

)
dλ = 0 (7)

for any loop. In other words, in this case the integral
∫ b

a
σ ( d

dρ
)dρ does not depend on

the path. Since it is this integral that regulates the way atomic clocks run this variant
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of Weyl geometry does not suffer from the flaw pointed out by Einstein, and we have
what is often called in the literature a Weyl integrable manifold.

Another way to look at (7) is the following. From Frobenius’ theorem we know
that σ is an exact form if and only if dσ = 0. In local coordinates where σ = σαdxα

this condition reads Fαβ = σα,β− σβ,α = 0. The quantity Fαβ = σα,β− σβ,α , which
is non-vanishing in general, is easily shown to be gauge invariant and was interpreted
by Weyl as the electromagnetic field in his attempt to geometrize electromagnetism
[3, 4]. The 2-form F = Fαβdxα^dxβ is called length curvature, so a Weyl integrable
manifold is one in which the length curvature F vanishes. Finally, if there is a frame
(M,g,σ ) in which σ = 0, then obviously the geometry of Weyl reduces to Riemann
geometry in that frame.

An important feature of Weyl geometry, which will be explored in this paper, is
the following mathematical fact. Consider the (affine) geodesic equations

∇V V = 0 (8)

in a certain frame (M,g,σ ), where V denotes the tangent vector to the geodesic
curve. In local coordinates (8) has the form

d2xμ

dλ2
+ �

μ
αβ

dxα

dλ

dxβ

dλ
= 0 (9)

where �
μ
αβ denotes the components of the connection ∇ , λ is an affine parameter and

xμ = xμ(λ) represents local parametric equations of the geodesic. Suppose that we
change from the frame (M,g,σ ) to another frame (M,g,σ ) by performing a gauge
transformation in accordance with (2) and (3). It is clear that in each frame the com-
ponents of ∇ , i.e �

μ
αβ and �

μ

αβ , may be expressed in terms of the Christoffel symbols

{αβγ }, {αβγ } and the Weyl fields σ and σ , respectively, as in (4). Because ∇ is kept un-
altered by the gauge transformations, if xμ = xμ(λ) is a solution of (8) in the frame
(M,g,σ ), then it is also a solution of that equation in the other frame (M,g,φ).
The geodesic equations are gauge invariant because �

μ
αβ = �

μ

αβ , and the truth of this
statement can be easily verified by explicitly using (4).

3 Conformally Flat Spacetimes and the Weyl Gauge Field

In the light of the concepts just discussed let us consider in this section the class of
all conformally flat spacetimes. As we know, a significant number of spacetimes of
physical interest predicted by general relativity belong to this class. For instance, it
is well known that all Robertson-Walker cosmological models are conformally flat.
Explicit conformal transformations taking these to flat spacetime were first given
by Infeld and Schild [24]. Let us consider more generally a certain conformally flat
spacetime M with a metric g = eφη, where η denotes the Minkowski metric and φ

is a scalar function. If the geometry of M is Riemannian we have no Weyl field,
and so the components of the affine connection �

μ
αβ are identical to the Christoffel

symbols {μαβ}. On the other hand, this geometrical configuration is clearly equivalent
to the one described in terms of Weyl geometry as long as we confine ourselves to the
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frame (M,eφη,0), to which we will refer as the Riemann frame. Suppose now that we
make the gauge transformation (2) and (3) with f replacing φ. In doing so, we arrive
at a frame, namely (M,η,−dφ), which will be called the Weyl frame. As we have
seen, with respect to the Weyl affine geodesics both frames are completely equivalent.
Nevertheless, in many aspects the geometry defined by them are entirely distinct.
For instance, from the point of view of the Riemannian curvature they are obviously
distinct. In effect, in the Riemann frame (M,eφη,0) the manifold M is endowed
with a metric that leads to non-zero curvature, while in the Weyl frame (M,η,−dφ)

we have a flat spacetime (in the Riemannian sense). Another difference concerns
the length of non-null curves or other metric-dependent geometrical quantities since
in the two frames we have distinct metric tensors. Null curves, on the other hand,
are mapped into null curves. This implies that the light geometry of a conformally
flat spacetime is identical to that of Minkowski spacetime, a well known feature of
conformal transformations. It is here that the geometrical framework conceived by
Weyl comes into play.

As we have already remarked, from the standpoint of geodesics and the lightcone
structure we can characterize any cosmological model whose geometry is conformal
purely in terms of an integrable Weyl field σ = dφ defined in Minkowski spacetime.
It turns out that the passage from the frame (M,eφη,0) to the frame (M,η,−dφ)

provides us with a new geometrical picture. For instance, cosmological phenomena,
such as the redshift of galaxies or the expansion of the Universe, cease to be necessar-
ily explained by the action of a dynamical curved spacetime. Instead, the dynamics
of the Cosmos becomes, in this picture, entirely governed by a gauge field living in a
fixed and static spacetime. It is this gauge field, by the way, that controls a new law
of parallel displacement and also determines the behaviour of clocks and measuring
devices. In other words, to each conformal Riemannian spacetime we can associate
a Weyl gauge field in Minkowski spacetime, whose dynamics is ultimately the sole
responsible for the motion of particles and light rays. Let us illustrate this point by
explicitly calculating the Weyl field from some simple cosmological models.

Consider a Robertson-Walker metric g corresponding to a homogeneous and
isotropical cosmological model, written in the form1

ds2 = dt2 − A2(t)

(
dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
, (10)

where k = 0,±1. Taking, for simplicity, the case of flat spatial section (k = 0), and
defining the so-called conformal time dt = dt

A(t)
, we can rewrite the metric (10) in the

conformally flat form

ds2 = S2(t)(dt
2 − dr2 − r2dθ2 − r2 sin2 θdϕ2), (11)

1Throughout this paper, except in Sect. 4, we set c = 1. We are also adopting the following convention in
the definition of the Riemann and Ricci tensors: Rα

μβν = �α
βμ,ν − �α

μν,β + �α
ρν�

ρ
βμ − �α

ρβ�
ρ
νμ; Rμν =

Rα
μαν . In this convention, we will write the Einstein equations as Rμν − 1

2 Rgμν − �gμν = −κTμν , with

κ = 8πG
c4 .
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where we have defined S(t) = A(t(t)). By carrying out the transformations (2)
and (3) with ef = S2(t), we can pass from the Riemann frame (M,g,0) to the
Weyl frame (M,η,σ ) = (M,η, −d(2 lnS(t)). In this frame, the Weyl gauge field
is given by the 1-form σ = −2

S
dS
dt

dt , whose components in the coordinate basis are

σμ = (−2
S

dS
dt

,0,0,0). In the case of some spatially flat Friedmann models, we have
A(t) = A0t

p , where A0 is a constant. This functional form of A(t) includes the so-
called matter-dominated (p = 2

3 ) and the radiation-dominated (p = 1
2 ) universes, and

a possible choice for the conformal time is t = 1
A0(1−p)

t1−p (p �= 1). The expression
for the Weyl scalar field φ as a function of t then becomes

φ(t) = −2 lnA(t(t)) = −2 ln(a0t)
p

1−p ,

where we have defined a0 = (1 − p)(A0)
1
p . Thus, for the matter-dominated and the

radiation-dominated universes, the Weyl scalar field φ(t) will be given, respectively,
by φ(t) = −4 lna0t and φ(t) = −2 lna0t . We note that in both cases φ(t) has a
singularity at t = 0.

Another simple example is given by the de Sitter-Lemaître cosmological model,

whose metric is given by (10), with k = 0 and A(t) = A0e

√
�
3 t , where � is a positive

constant. If we choose the conformal time as t = − 1
A0

√
3
�

e
−

√
�
3 t , then the scalar field

will be given by

φ(t) = −2 ln

(
−

√
�

3

1

t

)
.

In local coordinates, we have σμ = ( 2
t
,0,0,0).

It has been shown recently that the metric of all Robertson-Walker (RW) models
(k = 0,±1) is conformally flat [26]. For each of these we may apply the above proce-
dure to obtain the Weyl scalar field φ, hence the gauge field σ = dφ, and for k = ±1
both will be a function of r and t .

In view of the above, we see that in the Weyl frame’s picture the kinematical
behaviour of galaxies in any Robertson-Walker cosmological model is totally deter-
mined by the Weyl scalar field φ while spacetime remains fixed. On the other hand,
φ, now looked upon primarily as the conformal factor of a conformally flat spacetime
in the Riemann frame, may be considered as a gauging function determining the be-
haviour of clocks and measuring rods in a Minkowski spacetime. This second view
was noted long ago by Infeld and Schild [24]. A similar scenario was conceived more
recently in which the role of the scalar field is replaced by space and time variation
of particle masses. In any of these pictures, the interesting fact is that it is possible to
conceive a new scenario, in which the Riemannian curvature ceases to determine the
cosmic expansion and other cosmological phenomena, which in our case is the sole
responsibility of a scalar field φ.

4 Gravity in the Weyl Frame

As we have seen, when we go from one frame (M,g,σ ) to another frame (M,g,σ )

through the gauge transformations (2) and (3), the pattern of affine geodesic curves
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does not change. In particular, the metric geodesics corresponding to a conformally
flat spacetime in the Riemann frame (M,eφη,0) are completely indistinguishable
from the affine geodesics in the Weyl frame (M,η,−dφ), although in the latter a
quite different geometrical picture arises as these curves now lie in a fixed and flat
spacetime. This change of perspective might lead, in some cases, to new insights in
the description of gravitational phenomena. In the case of a conformally flat space-
time going to the Weyl frame leads to a scenario in which the gravitational field is not
associated with a tensor, but with a geometrical scalar field φ living in a Minkowski
background. We can get some insight on the amount of physical information carried
by the scalar field φ, in the Weyl frame, by investigating the behaviour of φ, in the
regime of weak gravity in the Riemannian frame, where φ plays the role of a confor-
mal factor. This is the question we want to examine in this section.

Let us recall that a metric theory of gravity is said to possess a Newtonian limit
in the non-relativistic weak-field regime if one can derive the Newtonian second law
from the geodesic equations as well as the Poisson’s equation from the gravitational
field equations. Since in Newtonian physics the space geometry is Euclidean, a weak
gravitational field in a geometric theory of gravity should manifest itself as a met-
ric phenomenon through a slight perturbation of the Minkowskian spacetime metric.
Thus we consider a time-independent metric tensor of the form

gμν � ημν + εhμν, (12)

where nμν is the Minkowski tensor, ε is a small parameter and the term εhμν repre-
sents a very small time-independent perturbation due to the presence of some matter
configuration. For a conformally flat spacetime we have gμν = eφημν � (1 + φ)ημν .
If we adopt the Minkowski coordinates of special relativity we can write the line
element defined by (12) as

ds2 = (1 + φ) [(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2], (13)

where, as usual, x0 = ct . Let us now consider the motion of a test particle in the
spacetime (13). Since we are working in the non-relativistic regime we will suppose
that the velocity V α = dxα

dt
of the particle along the geodesic is much less then c, so

that the βα = V α

c
will be regarded as very small; so in our calculations only first-order

terms in ε and β will be kept. Note that in this approximation φ is regarded as being
static and small, i.e. of the same order as ε.

Let us now consider the geodesic equations (9)

d2xμ

ds2
+ �

μ
αβ

dxα

ds

dxβ

ds
= 0, (14)

in the Riemann frame (M,eφη,0), with �
μ
αβ given by (4). Because �

μ
αβ is invariant

with respect to the gauge transformations (2) and (3) the above equations look exactly
the same in the Weyl frame (M,η,−dφ). On the other hand, in view of the fact that
in this frame {abc} = 0 we have, to first order in φ,

�α
μν = 1

2
nαλ[nλμφ,ν + nλνφ,μ − nμνφ,λ]. (15)
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Recalling that in this approximation

(
ds

dt

)2 ∼= c2(1 + εh00) = c2(1 + φ), (16)

it is not difficult to see that, unless μ = ν = 0, the product �
μ
αβ

dxα

ds
dxβ

ds
is of order βφ

or higher. In this way, the geodesic equations (14) become, to first order in φ and β

d2xμ

ds2
+ �

μ
00

(
dx0

ds

)2

= 0.

By taking into account (16) again, the above equation may be written as

d2xμ

dt2
+ c2�

μ
00 = 0. (17)

Clearly, for μ = 0 (17) reduces to an identity. On the other hand, if μ is a spatial

index a simple calculation gives �i
00 = − ηij

2
∂φ

∂xj , and the geodesic equation in this
approximation becomes, in three-dimensional vector notation

d2−→X
dt2

= −c2

2
−→∇ φ, (18)

which is simply Newton’s equation of motion in a classical gravitational field pro-
vided we identify the scalar gravitational potential as

U = c2

2
φ. (19)

Therefore, as regards to the equation of motion of a test particle, we see that, because
(18) also holds in the Weyl frame, the scalar field φ, when viewed in this frame, plays
the role of the Newtonian gravitational potential.

Our next step is to obtain, still in the weak field approximation, a field equation
for φ. In order to do that we start with the Einstein equations

Rμν − 1

2
gμνR = −κTμν, (20)

and find the expressions for Rμν and R when we take gμν = eφημν . Note that because
the Einstein tensor is invariant under Weyl transformations the left-hand side of (20)
is identical in both frames. In this way we get2

∂μ∂νφ − ημν �φ − 1

2
∂μφ∂νφ − 1

4
ημν∂αφ∂αφ = −κTμν, (21)

2In N dimensions, for a conformally flat metric g = eφη the Ricci tensor Rαβ and the scalar curvature R

are given by Rαβ = 1
2 ηαβ�φ + (N−2)

2 (∂α∂βφ + 1
2 ηαβ∂σ φ∂σ φ − 1

2 ∂αφ∂βφ) and R = e−φ [(N −1)�φ +
1
4 (N − 1)(N − 2)∂σ φ∂σ φ].
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where � denotes the d’Alembertian operator in Minkowski spacetime and ∂αφ =
ηαβ∂βφ. At this point let us note that (21) may be regarded as a dynamical equation
for a certain scalar field φ defined in a flat spacetime background. From the standpoint
of the Weyl frame observers this could be a perfectly possible interpretation. Note
that, although in this frame the Riemannian curvature has been removed away, no
information has been lost with regard to geodesic motion.

Let us return to the question of the weak field approximation. Again, recalling that
in this approximation φ is considered static and small, hence neglecting quadratic
terms in the derivatives of φ, (21) reduces to

∂μ∂νφ − ημν �φ = −κTμν.

On the other hand, for a perfect fluid configuration (defined in Minkowski spacetime)
we have Tμν = (ρc2 +p)VμVν −pημν , where ρ, p and V μ denotes, respectively, the
proper rest mass density, pressure and velocity field of the fluid. In a non-relativistic
regime we also neglect p with respect to ρ, which implies that T00 � ρc2. For μ =
ν = 0 the above equation gives

∇2φ = −κρc2.

From (19) and substituting κ = 8πG

c4 we obtain

∇2U = −4πGρ,

which is Poisson’s equation of Newtonian gravity. This seems to suggest that the
scalar field φ contains, in fact, all information regarding gravity in both Riemannian
and Weyl frames. One may think that the fact that Poisson’s equation appears in
this context is not surprising since conformally flat spacetimes would have trivial
dynamics as the Weyl tensor vanishes. This, however, would be true only if there
is no matter content, since in this case the Einstein equations would imply that the
Ricci tensor and scalar curvature would vanish, and in consequence the Riemann
tensor would also vanish.

The Einstein equations written in the form of (21) may be useful to obtain exact
solutions for conformally flat spacetimes once we know the energy-momentum tensor
corresponding to a given matter configuration. Although it is tempting to regard them
as dynamical equations for a scalar field φ in Minkowski spacetime there is a strong
objection to such an interpretation: those equations cannot be derived from an action
principle. Clearly, a scalar field must obey a scalar equation, while (21) are tensor
equations. There is, however, a scalar equation naturally associated with φ, which
can be obtained by contracting (21) with the Minkowski metric ημν . This leads to

�φ + 1

2
φ,μφ,μ = κ

3
T , (22)

where T = ημνTμν denotes the trace of Tμν with respect to Minkowski metric ημν .
Of course, the above equation is equivalent to the scalar equation R = κT , obtained
by taking the trace of (20) with respect to gμν = eφημν . It is interesting that this
equation can also be derived from an action principle, as we will show next.
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5 A Scalar Equation for the Weyl Scalar Field

Let us leave general relativity for a while and speculate how one would formulate a
strict scalar field theory of gravity in which the Weyl scalar field, a purely geometrical
entity that defines the affine connection, would play the role of the gravitational field
in a Minkowski background. We have seen in the previous section that, as long as we
restrict ourselves to conformally flat spacetimes, gravity may effectively be described
by a scalar field in Minkowski spacetime. An interesting approach to this question
would be to start with the formulation of general relativity in terms of a variational
principle. Thus, let us consider the Einstein-Hilbert action of the gravitational field in
the presence of matter

S =
∫

�

√−g (R + κLm)d4x, (23)

where R is the scalar curvature, Lm denotes the Lagrangian density of matter, κ is the
Einstein constant and � is a regular domain in M . The duality between the Riemann
frame (M,eφη,0) and the Weyl frame (M,η,−dφ) seems to suggest that in the
variation of the functional (23) we should consider only variations δgμν restricted to
the class of conformally flat spacetimes, that is, variations of the form

δgμν = δ(eφημν) = eφημνδφ. (24)

It is then not difficult to verify that the variation δS in the action induced by (24) will
be given by

δS = −
∫

�

eφ

(
Rμν − 1

2
gμνR + κTμν

)
ημνδφd4x, (25)

where we have taken into account that gμν = e−φημν , δgμν = −e−φημνδφ,
√−g =

e2φ and, as usual, the energy-momentum tensor Tμν is defined by δ
∫
�

√−gLmd4x =∫
�

√−gTμνδg
μνd4x. Since δφ is arbitrary, the condition δS = 0 implies

R = κT , (26)

where T = gμνTμν = e−φημνTμν denotes the trace of the energy-momentum tensor
with respect to the metric gμν . We see, then, that we can derive (26) by just taking
the variation of (23) with respect to φ in the restricted class of conformally spacetime
metrics. On the other hand, if we express the curvature scalar R in terms of φ we get

R = 3e−φ

(
�φ + 1

2
φ,μφ,μ

)
, (27)

where we are now using the notation φ,μ = ∂μφ and φ,μ = ημνφ,ν . Substituting (27)
into (26) yields again

�φ + 1

2
φ,μφ,μ = κ

3
T , (28)



Found Phys (2012) 42:224–240 235

where, as before, T = ημνTμν denotes the trace of Tμν with respect to Minkowski
metric ημν . We now can look at this equation from the point of view of the Weyl
frame (M,η,−dφ) and regard it as a dynamical field equation for the scalar field φ.

Finally, we note that if we define the new scalar field variable ψ = e
φ
2 we can get rid

of the quadratic term 1
2φ,μφ,μ, and hence (22) may be put in the simpler form

�ψ

ψ
= κ

6
T . (29)

At this point, we think it is worth mentioning that the scalar equation (22) may be
derived from varying the action

S =
∫

d4xeφ

[
∂μφ∂μφ + 2

3
κT

]
, (30)

with respect to the scalar field φ. Likewise, it is easy to verify that (29) comes from
the action

S =
∫

d4x

[
∂μψ∂μψ + κ

6
T ψ2

]
.

It is also interesting to note that scalar gravity does not couple with a purely radiating
electromagnetic field since in this case T = 0, which is consistent with the fact that in
the Riemann frame spacetime is conformally flat, and so null geodesics representing
light rays consist of straight lines.

We would like to conclude this section with two comments. First, let us note that
(22) is a direct consequence of the Einstein’s field equations

Rμν − 1

2
gμνR = −κTμν, (31)

which for conformally flat spacetimes in the Riemann frame takes the form of (21).
Therefore, any solution of the Einstein equations is also a solution of (22) since this
equation comes from (26). Nevertheless, the converse is not true, and this implies that
the class of solutions of (22) is larger than the class of solutions of (21). However,
because (22) is much easier to solve, it may sometimes be helpful in getting solutions
of (21).

Finally, let us note that if we include the cosmological constant � in the Einstein
equations (31), then (21) and (22) will become, respectively,

∂μ∂νφ − ημν �φ − 1

2
∂μφ∂νφ − 1

4
ημν∂αφ∂αφ − �ημνe

φ = −κTμν,

�φ + 1

2
φ,μφ,μ + 4

3
�eφ = κ

3
T .

(32)

It is not difficult to see that in terms of ψ = e
φ
2 (32) reads

�ψ + 2

3
�ψ3 = κ

6
ψT .
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Incidentally, we note that in vacuum (T = 0) the above equation is a non-linear Klein-
Gordon equation, which has exact solutions in the form of a travelling wave [27, 28].

Let us conclude this section with the following remark. Equation (22), which was
obtained from the variation of the Einstein-Hilbert action with respect to the scale
factor is not equivalent to the set of Friedmann equations that are usually obtained
from the variation with respect to the metric. In fact, as was pointed out previously, the
scalar field equation corresponds to the trace of the full Einstein equations. If we had
considered also variations with respect to the Minkowski metric, then we would have
obtained a set of equations for the scalar field, as in (32) with � = 0, corresponding
to the usual Friedmann equations, and, in this case, by properly combining them, we
would obtain a first order equation for the scalar field.

6 Weyl Frames and Scalar Theories of Gravity

As is well known, scalar theories of gravity first appeared with the work G. Nord-
ström [29–31], in his attempts to formulate a special relativistic theory of gravitation
(for a review of special-relativistic theories of gravitation, see [32]). In the second of
these attempts, he postulates the following equation for the gravitational field:

�� = −4πG�ηαβTαβ, (33)

where Tαβ is the energy-momentum tensor of the matter content and spacetime is flat.
(Here we consider a slightly different version of Nordström’s theory given in [33].)
Nordström also assumed that the motion of test particles would obey the equation

V̇α = −∂α� − �̇Vα, (34)

where dot denotes derivative with respect to proper time in Minkowski space. This
theory, as was shown by Einstein and Fokker [34], may be formulated in terms of a
metric theory of gravity whose field equation is

R = −24πGT ,

with T as defined in the previous section. There is a supplementary condition, namely
that the Weyl tensor constructed from gαβ vanishes or, equivalently, that spacetime is
conformal. In the Einstein-Fokker approach, the equation of motion (34) is replaced
by a geodesic equation with respect to the metric gαβ = �2ηαβ , which also defines
proper time in this curved space. It is interesting to note that both approaches may
be formally considered as leading to the same theory formulated in different frames:
Einstein’s in the Riemann frame (M,�2η,0), and Nordström’s in the Weyl frame

(M,η,− 2
�

d�). Note that by putting � = e
φ
2 = ψ we see that (33) is equivalent to

(22) or to (29).

7 Weyl Frames and Two-Dimensional Gravity

It is a well known result of differential geometry that in two dimensions all spaces are
conformally flat. This fact makes the duality between the Riemann and Weyl frames
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in two dimensions completely general. In other words, geometrical phenomena taking
place in a curved two-dimensional space may be described in a flat space endowed
with a Weyl connection by simply changing frames. This feature of two-dimensional
geometry may perhaps be explored in the context of two-dimensional gravity models.
In this section, we would like to glimpse gravity in this dimensionality in a Weyl
frame.

Lower-dimensional theories of gravity, mainly in connection with the quantiza-
tion of the gravitational field program, have attracted the attention of many physicist
during the last forty years ([35], and references therein). One of the most popular
versions of two-dimensional gravity, which reduces to Newtonian gravity in two-
dimensional in non-relativistic and weak field regime, postulates the field equation
[36]

R + � = 8πGT . (35)

Because in two dimensions the Riemann tensor is completely determined by the cur-
vature scalar R, the above equation seems to be the natural analogue of the Einstein
equations with the cosmological constant �. Let us note that in this theory the con-
servation laws T

μν
ν = 0 cannot be deduced from the field equation (35) and has to be

separately postulated.
For a conformally flat metric g = eφη the curvature scalar R is given, in two

dimensions, by R = e−φ�φ. We thus can write (35) as

�φ + eφ� = 8πGT (36)

where, as in (22) and (32), T = ημνTμν denotes the trace of Tμν with respect to
Minkowski metric ημν . As before, in the Weyl frame (36) may be interpreted as a
dynamical equation for the Weyl scalar field φ, which again plays the role of the
gravitational field. Incidentally, in the absence of the cosmological constant (36) be-
comes

�φ = 8πGT

which is a wave equation with source term.

8 Weyl Frames and Quantum Gravity

As a mathematical tool conformal transformations have been widely used in general
relativity, particularly in the theory of asymptotic flatness [37]. They also have been
employed in connection with scalar-tensor theories of gravity. In fact there has been
a long debate on whether different frames related by conformal transformations have
equivalent physical meaning [38–41]. In different conformal frames, the description
of physical phenomena may look different, though they are related to each other by
a mathematical transformation. To our knowledge this debate has, apparently, being
restricted to the context of classical physics. In this section we would like to very
briefly discuss some ideas on the subject of quantization of the gravitational field in
connection with the notion of Weyl frames. Surely we are not considering the problem



238 Found Phys (2012) 42:224–240

of quantum gravity in its generality as we are restricted to the class of conformally
flat spacetimes.

Quantum gravity is widely recognized as one of the most difficult and challenging
problems of theoretical physics. There is currently a vast body of knowledge which
includes several approaches to this area of research, but as far as we know none of
them has been entirely successful to date. Among the most popular of these are string
theory [42] and loop quantum gravity [43, 44]. There is, however, a feeling among
theorists, that a final theory of quantum gravity, if indeed there is one, is likely to
emerge gradually and will ultimately be a combination of different theoretical frame-
works. In this spirit let us indulge ourselves for a while in raising some questions
concerning the possibility of using of the concept Weyl frame as a way of looking at
the problem of quantization of the gravitational field in some particular cases.

We begin by considering the class of all conformally flat spacetimes, i.e. those for
which Cαβμν = 0, where Cαβμν denote the components of Weyl’s conformal tensor.
This condition reduces the number of independent metric components to only one,
and also implies that g = eφη, where φ is a scalar field. Now, this kind of geometry,
whose number of degrees of freedom has been drastically reduced and fixed a priori
is an example of what has been called a prior geometry [33]. For such spacetimes all
information about the gravitational field is encoded in the scalar field φ, so it seems
not unreasonable to expect that any quantum aspect emerging in the process of quan-
tization of the gravitation field should somehow involve this field, even though it may
be objected that gravitons generated by φ would be spin-0 particles. Moreover, one
would also expect that the correspondence between the Riemann and Weyl frames,
which holds for conformally flat spacetimes at the classical level, would be preserved
at the quantum level. If this is true, then it would make sense to carry over the scheme
of quantization from the Riemann frame to the Weyl frame. Nevertheless, although
in the Weyl frame the spacetime geometry has no longer any degrees of freedom,
the scalar field φ is still a repository of physical information. It would then seem
plausible to treat φ as a physical field. We then are left with a situation which is typ-
ical of the ones considered by quantum field theory in flat spacetime. In fact this is
not so unusual as in perturbative string theory spacetime is also treated as an essen-
tially classical background [42], not to mention that Feynman used to hold the view
that a quantum theory of gravitation should lead to massless spin-2 quanta coupled
to matter in flat Minkowski spacetime [45]. Let us suppose that we succumb to the
temptation of pursuing this analogy more seriously and proceed to the quantization
of the Weyl scalar field in Minkowski spacetime. Many questions would arise at this
point. For instance, to quantize the scalar field φ we need to know the dynamics of φ.
We have seen that the dynamical equations of φ are given by (21), of which (22)
is a consequence. What would happen, however, if we provisionally regarded (22),
which may be derived from the action (30), as the fundamental equation to be quan-
tized? Finally, it may be asked whether this quantization procedure is meaningful
since quantum fluctuations of the metric would break its conformal flatness. How-
ever, we would like to stress that the quantization might be carried out in a frame
where the metric is not dynamical and all the degrees of freedom are contained in the
Weyl scalar field. It should be mentioned that quantization of conformally flat space-
times has been discussed by T. Padmanabhan some year ago [46]. We leave this and
other questions for future work.
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9 Conclusion

In this paper we have developed the idea that there is a connection between two dif-
ferent geometrical descriptions of conformally flat spacetimes. With the help of con-
cepts borrowed from Weyl geometry we have shown that some geometrical phenom-
ena taking place in a Riemannian curved spacetime may be described in Minkowski
flat space, in such a way that the curvature of the first is replaced, in the second, by
a dynamical scalar field φ. This field has a geometrical character as it gives rise to a
non-Riemannian affine connection in the flat space. We are thus left with two differ-
ent pictures. Accordingly, we can reinterpret the essential facts of Robertson-Walker
cosmology in terms of a flat spacetime cosmology, in which the motion of galaxies
takes place in Minkowski spacetime and is determined by a scalar field. A similar
scenario was conceived some years ago, but in a different context in which there is
no scalar field but the particle masses may depend on space and time [25]. We have
also discussed other concrete situations in which the two mathematically equivalent
descriptions seem to lead to different physical pictures, and these are scalar gravity
and two-dimensional gravity. Finally, we slightly touch on the possibility of investi-
gating whether one could apply the mathematical formalism connecting conformally
flat spacetimes and scalar fields to the quantization of gravity in Minkowski space-
time.
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