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Abstract An effective formalism is developed to handle decaying two-state systems.
Herewith, observables of such systems can be described by a single operator in the
Heisenberg picture. This allows for using the usual framework in quantum informa-
tion theory and, hence, to enlighten the quantum features of such systems compared
to non-decaying systems. We apply it to systems in high energy physics, i.e. to oscil-
lating meson–antimeson systems. In particular, we discuss the entropic Heisenberg
uncertainty relation for observables measured at different times at accelerator facili-
ties including the effect of C P violation, i.e. the imbalance of matter and antimatter.
An operator-form of Bell inequalities for systems in high energy physics is presented,
i.e. a Bell-witness operator, which allows for simple analysis of unstable systems.

Keywords Meson–antimeson systems · Bell inequalities · Heisenberg’s uncertainty
relation · Entropy

1 Introduction

The theoretical framework introduced in this paper can be applied in general to a
broad variety unstable systems, however, the focus is on meson–antimeson systems
and their information theoretic interpretations of certain quantum features of single
and bipartite (entangled) systems. In particular, we discuss meson–antimeson sys-
tems, e.g. the neutral K-meson or B-meson system, which are very suitable to discuss
various quantum foundation issues (see e.g. Refs. [1–23]). Neutral kaons are popular
research objects in Particle Physics as they were the first system that was found to
violate the C P symmetry (C . . . charge conjugation; P . . . parity), i.e. the imbalance
of matter and antimatter. They are also well suited to investigate a possible violation
of the C P T symmetry (T . . . time reversal); see e.g. Refs. [21, 22].

Neutral meson–antimeson systems are oscillating and decaying two-state systems
and can also be described as bipartite entangled systems opening the unique possi-
bility to test various aspects of quantum mechanics also for systems not consisting of
ordinary matter and light.

The purpose of this paper is twofold. Firstly to enlighten that these systems pro-
vide different insights into quantum theory which are not available in other quantum
systems via exploring e.g. the Heisenberg uncertainty relation in its entropic formu-
lation or Bell inequalities which prove that there are correlations stronger than those
obtainable in classical physics. Secondly, we introduce a comprehensive and sim-
ple mathematical framework which is close to the usual framework to handle stable
systems and, therefore, allows for developing novel tools and potential applications.

In Sect. 2 we introduce how the time evolution of neutral kaons are usually ob-
tained. In Sect. 3 we discuss what kind of questions can be raised to the quantum
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system at accelerator facilities and what is measured at such facilities. In particular,
we outline that there are two different measurement procedures not available to other
quantum systems. Then the effective formulation of the observables corresponding to
a certain question raised to the quantum system is introduced (Sect. 4), which is our
main result. Then we analyze different measurement settings and their uncertainty
(Sect. 5). In particular, we show that C P violation introduces an uncertainty in the
observables of the mass eigenstates and thus, in the dynamics. Last but not least we
proceed to bipartite entangled systems and present the generalized Bell–CHSH in-
equality for meson–antimesons systems [28] in a witness form (Sect. 6). This allows
to derive the maximal and minimal bound of the Bell inequality by simply computing
the eigenvalues of the effective Bell operator, i.e. without relaying on optimizations
over all possible initial states.

2 The Dynamics of Decaying and Oscillating Systems

The phenomenology of oscillation and decay of meson–antimeson systems can be
described by nonrelativistic quantum mechanics effectively. This is because the dy-
namics are rather depending on the observable hadrons than on the more fundamental
quarks. A quantum field theoretical calculation showing negligible corrections can
e.g. be found in Refs. [22, 23].

Neutral mesons M0 are bound states of quarks and antiquarks. As numerous ex-
periments have revealed the particle state M0 and the antiparticle state M̄0 can decay
into the same final states, thus the system has to be handled as a two state system
similar to spin 1

2 systems. In addition to being a decaying system these massive parti-
cles show the phenomenon of flavor oscillation, i.e. an oscillation between matter and
antimatter occurs. If e.g. a neutral meson is produced at time t = 0 the probability to
find an antimeson at a later time is nonzero.

The most general time evolution for the two state system M0 − M̄0 including all
its decays is given by a vector in an infinite-dimensional Hilbert space

|ψ̃(t)〉 = a(t)|M0〉 + b(t)|M̄0〉 + c(t)|f1〉 + d(t)|f2〉 + · · · , (1)

where fi denote all decay products and the state is a solution of the Schrödinger
equation (� ≡ 1)

d

dt
| ˜ψ(t)〉 = −iĤ | ˜ψ(t)〉, (2)

where Ĥ is the Hamiltonian of an infinite-dimensional Hilbert-Schmidt space. There
is no method known how to solve this infinite set of coupled differential equations
affected by strong dynamics. The usual procedure is based on restricting to the time
evolution of the components of the flavour eigenstates, a(t) and b(t). Then one uses
the Wigner-Weisskopf approximation to write down the effective Schrödinger equa-
tion

d

dt
|ψ(t)〉 = −iH |ψ(t)〉, (3)
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where |ψ〉 is a two dimensional state vector and H is a non-hermitian Hamiltonian.
Any non-hermitian Hamiltonian can be written as a sum of two hermitian operators
M,� which commute, i.e. H = M + i

2�, where M is the mass-operator, covering
the unitary part of the evolution and the operator � describes the decay property. The
eigenvectors and eigenvalues of the effective Schrödinger equation, we denote by

H |Mi〉 = λi |Mi〉 (4)

with λi = mi + i
2�i . For neutral kaons the first solution (with the lower mass) is

denoted by KS , the short lived state, and the second eigenvector by KL, the long lived
state, as there is a huge difference between the two decay constants �S � 600�L.

Certainly, the state vector is not normalized for times t > 0 due to the non- hermi-
tian part of the dynamics. Different strategies have been developed to cope with that.
We present here a particular one which is based on the open quantum formalism, i.e.
we show that the effect of decay is a kind of decoherence.

In quantum information theory and in experiments one often has to deal with sit-
uations where the system under investigation unavoidable interacts with the environ-
ment which is in general inaccessible. In this case only the joint system evolves uni-
tarily according to the Schrödinger equation. The dynamics of the system of interest
then is given by ignoring all degrees of freedom of the environment, by tracing them
out. Such systems are called open quantum systems and under certain assumptions
they may be described by a so called master equation.

In Ref. [24] the authors showed that systems with non-hermitian Hamiltonians
generally can be described by a master equation. As time evolves the kaon interacts
with an environment which causes the decay. In this formalism the time evolution
of the neutral kaon system is generated via the interaction of system of interest with
the environment and then tracing out all degrees of freedom of the environment. No
modelling of the environment has to be done, only the generators have to be defined
(modelled) describing the effect of the interaction. In particular the time evolution of
neutral kaons can be described by the master equation (found by Lindblad [25] and,
independently, by Gorini, Kossakowski and Sudarshan [26])

d

dt
ρ = −i[H, ρ] − D[ρ], (5)

where the dissipator under the assumption of complete positivity and Markovian
dynamics has the well known general form D[ρ] = 1

2

∑
j (A†

j Aj ρ + ρA†
j Aj −

2Aj ρA†
j ) with Aj are the generators. The density matrix ρ lives on Htot = Hs

⊕
Hf

where s/f denotes “surviving” and “decaying” or “final” components, and has the
following decomposition

ρ =
(

ρss ρsf

ρ
†
sf ρff

)

, (6)

where ρij with i, j = s, f have dimHs = dimHf = 2. The Hamiltonian H is the
mass matrix M of the effective Hamiltonian H extended to the total Hilbert space
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Htot and � of Heff defines a Lindblad operator by � = A†A, i.e.

H =
(

H 0
0 0

)

, A =
(

0 0
A 0

)

with A : Hs → Hf .

Rewriting the master equation for ρ, (6), on Htot

ρ̇ss = −i[H,ρss] − 1

2
{A†A,ρss}, (7)

ρ̇sf = −iHρsf − 1

2
A†Aρsf , (8)

ρ̇ff = AρssA
†, (9)

we notice that the master equation describes the original effective Schrödinger equa-
tion (3) but with properly normalized states (see Ref. [24]). By construction the time
evolution of ρss is independent of ρsf , ρf s and ρff . Further ρsf , ρf s completely
decouples from ρss and thus can without loss of generality be chosen to be zero
since they are not physical and can never be measured. With the initial condition
ρff (0) = 0 the time evolution is solely determined by ρss—as expected for a spon-
taneous decay process—and formally given by integrating the components of (9). It
proves that the decay is Markovian and moreover completely positive.

Explicitly, the time evolution of a neutral kaon is given in the lifetime basis,
{KS,KL}, by (ρij = 〈Ki |ρ|Kj 〉, ρSS + ρLL = 1):

ρ(t) =

⎛

⎜
⎜
⎝

e−�StρSS e−i�mt−�tρSL 0 0
ei�mt−�tρ∗

SL e−�LtρLL 0 0
0 0 (1 − e−�Lt )ρLL 0
0 0 0 (1 − e−�St )ρSS

⎞

⎟
⎟
⎠ .

(10)

Note that, formally, one also obtains off-diagonal contributions in the ρff component,
but as they cannot be measured we set them to zero without loss of generality. With
this approach based on the Wigner-Weisskopf approximation and linear generators of
the “decoherence” we have added the loss of available information due to decay to
the density matrix. Together with the accordingly constructed operators this leads to
experimental testable observables (see next Sect. 3).

The extension to bipartite systems is straightforward, i.e. by

H −→ H ⊗ 1 + 1 ⊗ H

A0 −→ A0 ⊗ 1 + 1 ⊗ A0. (11)

However, we will not need to use this as our introduced effective formalism for single
particles (Sect. 4) since it generalizes simply for any multipartite systems, i.e. in the
usual way via a tensor product structure.
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3 What Can be Measured at Accelerator Facilities?

There are obviously two different questions that in principle can be raised to the
quantum system evolving in time:

– Are you a certain quasispin |kn〉 at a certain time tn or not?
– Or: Are you a certain quasispin |kn〉 or its orthogonal state |k⊥

n 〉 (〈k⊥
n |kn〉 = 0) at a

certain time tn?

where we denote by a quasispin kn any superposition of the mass eigenstates which
are the solutions of the effective Schrödinger equation (3).

For non-decaying systems these questions are equivalent. However, for decaying
systems the second question means that you ignore all cases in which the neutral
kaons decayed before the measurement, thus one does not take all information avail-
able into account. For studying certain quantum properties of these systems neglect-
ing this kind of information is of no importance, however, e.g. if one is interested to
show that there exists no explanation in terms of local hidden parameters for bipar-
tite entangled decaying states, one is not allowed to selected only the surviving pairs,
because one would not test the whole ensemble (consult Refs. [27–29] for more de-
tails).

In the following we stick to the first question, for which the developed formalism
based on the master equation in the Sect. 2 is appropriate.

Let us here also remark on what is meant by a measurement at a certain time tn.
Indeed, one does not measure time, but a certain final decay product or an interac-
tion taking place at a certain position, point in space, in the detector. To be precise,
one detects often only secondary reaction products and with the energy-momentum
signature reconstructs the final states. Knowing the production point and thus the dis-
tance traveled as well as the momentum one can infer the proper time passed between
production and decay or interaction.

There are in principle two different options which are denoted as an active mea-
surement procedure and a passive measurement procedure, for reasons which may
become clear in a moment, how to obtain the quasispin content of neutral mesons.
This is a remarkable difference and gives raise to two further options of quantum
erasure [31, 32] proving the very concept of a quantum eraser, i.e. sorting events to
different available information. This kaonic quantum eraser is also in the future work
programme of the upgraded KLOE detector which will start in 2011 (for a detailed
program see Ref. [1]).

For neutral kaons there exist two physical alternative bases. The first basis is the
strangeness eigenstate basis {|K0〉, |K̄0〉}. It can be measured by inserting along the
kaon trajectory a piece of ordinary matter. Due to strangeness conservation of the
strong interactions the incoming state is projected either onto K0 by K0p → K+n

or onto K̄0 by K̄0p → �π+, K̄0n → �π0 or K̄0n → K−p. Here nucleonic matter
plays the same role as a two channel analyzer for polarized photon beams.

Alternatively, the strangeness content of neutral kaons can be determined by ob-
serving their semileptonic decay modes (see (27)). Obviously, the experimenter has
no control over the kaon decay process, neither of the mode nor of the time. The
experimenter can only sort at the end of the day all observed events in proper decay
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modes and time intervals. We call this procedure opposite to the active measurement
procedure described above a passive measurement procedure of strangeness.

The second basis {KS,KL} consists of the short- and long-lived states having well
defined masses mS(L) and decay widths �(S)L, which are the solution of the Hamilto-
nian under investigation. It is the appropriate basis to discuss the kaon propagation in
free space, because these states preserve their own identity in time. Due to the huge
difference in the decay widths the short lived states KS decay much faster than the
long lived states KL. Thus in order to observe if a propagating kaon is a KS or KL at
an instant time t , one has to detect at which time it subsequently decays. Kaons which
are observed to decay before � t +4.8τS have to be identified as short lived states KS ,
while those surviving after this time are assumed to be long lived states KL. Misiden-
tifications reduce only to a few parts in 10−3 (see also Refs. [31, 32]). Note that the
experimenter does not care about the specific decay mode, she or he records only a
decay event at a certain time. This procedure was denoted as an active measurement
of lifetime.

Neutral kaons are famous in Particle Physics as they violate the C P symmetry,
where C stands for charge conjugation, i.e. interchanging a particle with an antipar-
tice state and P for parity. So far no violation of the combined symmetry C P T has
been found (see e.g. Refs. [33–36]). Conservation of the C P T symmetry requires
that the time reversal symmetry T has to be broken. The break of the T invariance
is far from being straightforwardly to be proven experimentally, because for a decay
progress A −→ B + C practical considerations prevent one from creating the time
reversed sequence B +C −→ A. The CPLEAR collaboration was able to experimen-
tally prove the T violation [37, 38]. At the first sight it might be surprising that one
finds a T violation in a framework which is completely controlled by non-relativistic
quantum mechanics. The apparent paradox is resolved by remembering that the dy-
namics of a quantum system is given by the equation of motions and the boundary
conditions. In particular, the fact that the relative weights of the mass eigenstates
are different for the states of the two strangeness states leads to the observable ef-
fects. Or differently stated, the T violation follows from the C P asymmetry in the
initial states. Certainly, to understand and handle these symmetry violations we have
to use the framework provided by relativistic quantum field theories. The author of
Ref. [39] argued that the measured T violation at accelerator facilities introduce de-
structive interference between different paths that the universe can take through time,
she concludes that only two possible paths are surviving, one forward in time, the
other one backward in time.

Since the neutral kaon system violates the C P symmetry (which will be discussed
in Sect. 4.2) the mass eigenstates are not strictly orthogonal, 〈KS |KL〉 
= 0. However,
neglecting C P violation—it is of the order of 10−3—the KS ’s are identified by a
2π final state and KL’s by a 3π final state. One denotes this procedure as a passive
measurement of lifetime, since the kaon decay times and decay channels used in the
measurement are entirely determined by the quantum nature of kaons and cannot be
in any way influenced by the experimenter.

We have introduced two conceptually different procedures -active and passive- to
measure two different observables of the neutral kaon systems: strangeness or life-
time. The active measurement of strangeness is monitored by strangeness conserva-
tion in strong interactions while the corresponding passive measurement is assured by



Found Phys (2012) 42:778–802 785

the �S = �Q rule, i.e. the change of the strangeness number and the change of the
charge in a process. Active and passive lifetime measurements are efficient thanks to
the smallness of �L

�S
and the C P violation parameter, respectively. This will be deeper

analyzed in terms of the Heisenberg uncertainty relation in the entropic version in
Sect. 5.

Active measurements are possible due to a huge difference in lifetime of the two
mesons and, therefore, in practice are available. Thus the neutral kaon system is spe-
cial concerning its natural constance of the dynamic and, therefore, we mostly stick
to this system.

The set of passive measurements is not solely limited to the two above described
basis choices, but are all possible decay modes of neutral mesons which e.g. single
out different C P violation mechanisms. These decay modes can always be related to
a certain quasispin at the moment of decay. Let us assume we find the final state f at
a time tn and we produced at time t = 0 a quasispin km, the decay rate which is the
derivative of the probability is given as an integral over the amplitude squared

�(km(tn) −→ f ) =
∫

dph(p)|〈fp|T|km(t)〉|2, (12)

where T is the transition operator, p is the momentum and the integral is taken over
the phase space. To connect the quasipin with the final state, we have to require

〈k⊥
n |kn〉 != 0 and 〈fp|T|k⊥

n 〉 != 0 −→ Pf + Pf ⊥ = 1, (13)

where P are the probabilities obtained by integrating the decay rates over time.
Therefore any final decay product corresponds to a certain quasispin, i.e. a certain
superposition of the mass eigenstates, e.g. a two pion event corresponds to the qua-
sispin

|Kπ0π0〉 ≡ |kn〉 = α00|KS〉 + β00|KL〉. (14)

Summarizing, we have for neutral kaons different conceptual measurement proce-
dures if we neglect C P violation. Active measurements are e.g. required when testing
Bell inequalities (see Sect. 6) while the existence of these two procedures opens new
possibilities for kaonic quantum erasure experiments which have no analog for any
other two-level quantum systems [31, 32] and are in the experimental programme
of the KLOE-2 collaboration [1]. If one is interested in other features of the quan-
tum system under investigation or including C P violation one can consider all decay
channels. For example we will calculate the Heisenberg uncertainty due to C P vio-
lation in the case of two pion events (see Sect. 5). If not stated differently we neglect
C P violation.

4 Effective Operators–A Heisenberg Picture for Decaying Systems

To develop an effective formalism to derive any expectation value for the questions
“Are you in the quasispin kn at time tn (Yes) or not (No)” of decaying systems
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E(kn, tn) = P(Yes : kn, tn) − P(No : kn, tn)

P (No:kn,tn)+P(Yes:kn,tn)=1= 2P(Yes : kn, tn) − 1 (15)

we have to derive the probability to find a certain quasispin kn at time tn for a general
initial state ρ, i.e.

P(Yes : kn, tn) = Tr

(( |kn〉〈kn| 0
0 0

)

ρ(tn)

)

= ρSS · cos2 αn

2
e−�Stn + ρLL · sin2 αn

2
e−�Ltn

+ ρSL · cos
αn

2
sin

αn

2
ei(φn−tn) · e−�tn

+
(

ρSL · cos
αn

2
sin

αn

2
ei(φn−tn) · e−�tn

)∗
, (16)

where we used the following parameterizations

|kn〉 = cos αn

2 |KS〉 + sin αn

2 · eiφn |KL〉, (17)

and ρ(t) is derived from the master equation (5). Moreover, we used a convenient
re-scaling, i.e. �m := 1 and, consequently the decay constants are re-scaled by the
same factor �i := �i

�m
.

From that we can extract a time-dependent effective operator in dimensions 2 × 2

E(kn, tn) = Tr(Oeff (αn,φn, tn)ρ), (18)

where ρ is any initial state which can be taken in dimensions 2 × 2 as at t = 0 the
decay products have not be taken into account. Herewith, we found for general de-
caying systems an effective operator in the Heisenberg picture which has besides
the computational and interpretative advantage a conceptual one (discussed in the
following sections), i.e. it generalizes for multipartite systems simply by the usual
tensor product structure

E(kn1 , tn1; kn1, tn1; . . . ; knk
, tnk

) (19)

= Tr(Oeff (αn1 , φn1 , tn1) ⊗ Oeff (αn2 , φn2 , tn2) ⊗ . . . ⊗ Oeff (αnk
, φnk

, tnk
)ρ).

Deriving these expectation values is rather cumbersome, e.g. for bipartite systems
one has to derive the following four probabilities (Pi = |ki〉〈ki |)

P(Yes : kn, tn;Yes : km, tm) = TrA(Pn�
single
tn

[TrB [Pm�
bipartite
tm

[ρ]]])
P (Yes : kn, tn;No : km, tm) = TrA(Pn�

single
tn

[TrB [(1 − Pm)�
bipartite
tm

[ρ]]])
P (No : kn, tn;Yes : km, tm) = TrA((1 − Pn)�

single
tn

[TrB [Pm�
bipartite
tm

[ρ]]])
P (No : kn, tn;No : km, tm) = TrA((1 − Pn)�

single
tn

[TrB [(1 − Pm)�
bipartite
tm

[ρ]]])
(20)
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to obtain the expectation value E(kn, tn; km, tm) = P(Yes : kn, tn;Yes : km, tm) +
P(No : kn, tn;No : km, tm)−P(Yes : kn, tn;No : km, tm)−P(No : kn, tn;Yes : km, tm),
where �single and �bipartite are the Liouville operators of the two master equations
(5), respectively (tn > tm).

4.1 What Observables are in Principle Accessible in Decaying Systems?

Explicitly, the effective operator for a two state decaying system decomposed into the
Pauli matrices σ is given by

Oeff (αn,φn, tn) = −n0(αn, tn)1 + n(αn,φn, tn)σ (21)

with �� = �L−�S

2

n(αn,φn, tn) = e−�tn

⎛

⎜
⎝

cos(tn + φn) sin(αn)

sin(tn + φn) sin(αn)

sinh(��tn) + cosh(��tn) cosαn

⎞

⎟
⎠ (22)

and n0(αn, tn) = 1 − |n(αn,φn, tn)|. For spin 1
2 systems, the most general observ-

able is given by nσ where any normalized quantization direction (|n| = 1) parame-
terized by polar angles αn and φn can be chosen. In case of decaying systems we
can choose in principle αn and φn but for tn > 0 the “quantization direction” is
no longer normalized and its loss results in an additional contribution in form of
“white noise”, i.e. the expectation value has a contribution independent of the initial
state.

E(αn,φn, tn) = Tr(Oeff (αn,φn, tn)ρ)

= −n0(αn, tn) + Tr(n(αn,φn, tn)σρ). (23)

One recognizes the involved role of the time-evolution: It is damping the
“Bloch” vector n by e−�tn and is responsible for the rotation or oscillation in
the system, represented by the polar angle � = tn + φn in the x, y equato-
rial plane (x and y component of the “Bloch” vector n corresponding to the
strangeness eigenstates). In case of �� 
= 0 the time dependence of the z com-
ponent is more involved. This complex behaviour is responsible for certain quan-
tum features of the system which we will analyze in the following part of the pa-
per.

Let us discuss the eigenstates of the effective operator in order to gain a more
physical intuition. For that we derive its spectral decomposition

O
eff
n ≡ Oeff (αn,φn, tn) (24)

= (2|n(αn,φn, tn)| − 1) · |χ(αn,φn, tn)〉〈χ(αn,φn, tn)|
+ (−1) · |χ(αn + π,φn + 2tn,−tn)〉〈χ(αn + π,φn + 2tn,−tn)|



788 Found Phys (2012) 42:778–802

with

|χn〉 ≡ |χ(αn,φn, tn)〉 (25)

= 1√
N(αn, tn)

{
cos

αn

2
· e− �S

2 tn |KS〉 + sin
αn

2
ei(tn+φn) · e− �L

2 tn |KL〉
}

with N(αn, tn) = |n(αn,φn, tn)|2.
The first eigenvector can be interpreted as a quasispin kn evolving in time ac-

cording to the dynamics given by the non-hermitian Hamiltonian and normalized to
surviving kaons, i.e. to

|χn〉 ≡ |kn(tn)〉

= 1√
N(αn, tn)

{

cos
αn

2
eiλ∗

S tn |KS〉 + sin
αn

2
eiφn · eiλ∗

Ltn |KL〉
}

. (26)

The second eigenvector related to the time-independent eigenvalue can be interpreted
(besides being orthogonal to the normalized quasispin kn) as a quasispin evolving
backward in time, but with no phase changes, which we discuss in the next Sect. 4.2
in more detail.

4.2 C P Violation in Mixing and the Effect on the Time Evolution

In 1964 Cronin and Fitch discovered in a seminal experiment that in the neutral kaon
system the symmetry C P , where C stands for charge conjugation, i.e. interchanging
a particle state by an antiparticle state, and P is parity operator, is broken, for which
they got the Nobel Prize in 1980. The C P violation (for a review see e.g. Ref. [40])
and its origin is still a hot discussed subject in particle physics. These open questions
are addressed by recently approved projects as KLOE-2 and NA-62 for kaons and
SuperBelle and SuperB for B-mesons.

The C P violation in mixing is e.g. measured by the semileptonic decay channels,
i.e. a strange quark s decays weakly as constituent of K̄0:

Due to their quark content the kaon K0(s̄d) and the anti-kaon K̄0(sd̄) have the
following definite decay channels:

K0(ds̄) −→ π−(dū)l+νl where s̄ −→ ūl+νl

K̄0(d̄s) −→ π+(d̄u)l−ν̄l where s −→ ul−ν̄l ,
(27)

with l either muon or electron, l = μ,e. Here the validity of the �S = �Q rule is
assumed. The Standard Model predicts negligible violations of this selection rule.
When studying the leptonic charge asymmetry

δ = �(KL → π−l+νl) − �(KL → π+l−ν̄l)

�(KL → π−l+νl) + �(KL → π+l−ν̄l)
, (28)
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we notice that l+ and l− tag K0 and K̄0, respectively, in the KL state, and the leptonic
asymmetry (28) is expressed by the probabilities |p|2 and |q|2 of finding a K0 and a
K̄0, respectively, in the KL state

δ = |p|2 − |q|2
|p|2 + |q|2 , (29)

i.e. the mass eigenstates and strangeness eigenstates are connected by

|KS〉 = 1

N

{
p|K0〉 − q|K̄0〉}, |KL〉 = 1

N

{
p|K0〉 + q|K̄0〉}. (30)

The weights p = 1 + ε, q = 1 − ε with N2 = |p|2 + |q|2 contain the complex C P
violating parameter ε with |ε| ≈ 10−3. C P T invariance is assumed (T . . . time re-
versal). The short-lived K-meson decays dominantly into KS −→ 2π with a width or
lifetime �−1

S ∼ τS = 0.89 × 10−10 s and the long-lived K-meson decays dominantly
into KL −→ 3π with �−1

L ∼ τL = 5.17 × 10−8 s. However, due to C P violation we
observe a small amount KL −→ 2π . Therefore, CP violation expresses that there is
a difference between a world of matter and a world of antimatter.

Let us now derive the change due to C P violation to the effective observable.
Firstly note that the length of the Bloch vector n can be rewritten by the sum of two
probabilities, i.e.

|n| = 1 − n0 = |〈kn|KS(tn)〉|2 + |〈kn|KL(tn)〉|2. (31)

The symmetry violation C P results in a non-orthogonality of the mass eigenstates,
i.e. each amplitude leads to an interference term

|〈kn|KS(tn)〉|2 = e�Stn

∣
∣
∣
∣cos

αn

2
+ δ · sin

αn

2
e−iφn

∣
∣
∣
∣

2

|〈kn|KL(tn)〉|2 = e�Ltn

∣
∣
∣
∣δ · cos

αn

2
+ sin

αn

2
e−iφn

∣
∣
∣
∣

2
(32)

and, therefore, changes the oscillation behaviour of the system but as well the loss
in the decaying system. Note that C P violation may as well change the state under
investigation, i.e. the expectation value gets as well a “contribution” of the symmetry
violation from the initial state.

The effective operator changes in detail by (we suppress the dependence on the
parameters αn,φn, tn)

nC P
1 = n1 − e−�tn(2δ · cos tn + δ2 · sinαn cos(tn − φn))

nC P
2 = n2 − e−�tn(2δ · sin tn + δ2 · sinαn sin(tn − φn))

nC P
3 = n3 − (δ · (e−�Stn − e−�Ltn) sinαn cosφn

+ δ2 · 1

2
(e−�Stn − e−�Ltn − (e−�Stn + e−�Ltn) cosαn). (33)
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The spectral decomposition shows that the time dependent eigenvalue is changed by
C P violation, confirming its observable character, but it has the same dependence
from the Bloch vector as in case of C P conservation (compare with (24))

λC P
1 = −1 + 2|nC P | = 1 − 2nC P

0

λC P
2 = −1.

(34)

The two eigenvectors of the effective observable change accordingly

|χ C P ,1
n 〉 = 1√

N(t)

{〈KS |kn〉 · eiλ∗
S tn |K1〉 + 〈KL|kn〉 · eiλ∗

Ltn |K2〉
}

|χ C P ,2
n 〉 = 1√

N(−t)

{−〈KL|kn〉∗ · eiλS tn |K1〉 + 〈KS |kn〉∗ · eiλLtn |K2〉
}

with N(t) = e−�Stn |〈KS |kn〉|2 + e−�Ltn |〈KL|kn〉|2. (35)

Note that if we parameterize the quasispin in the C P basis, |kn〉 = cos αn

2 |K1〉 +
sin αn

2 · eiφnt |K2〉, we find that the weights do not add up to one generally

N(0) = |〈KS |kn〉|2 + |〈KL|kn〉|2 = 1 + δ · sinαn cosφn. (36)

5 The Entropic Uncertainty Relation for Single and Bipartite Systems

The entropic uncertainty relation of two non-degenerate observables is given by (in-
troduced by D. Deutsch [41], improved in Ref. [42] and proven by Ref. [43])

H(O
eff
n ) + H(O

eff
m ) ≥ −2 log2

(
max
i,j

{|〈χi
n|χj

m〉|}
)

(37)

where

H(O
eff
n ) = −pn log2 pn − (1 − pn) log2(1 − pn) (38)

is the binary entropy for a certain prepared pure state ψ and the p(n)’s are the prob-
ability distribution associated with the measurement of O

eff
n for ψ , hence pn(i) =

|〈χi
n|ψ〉|2. This is a reformulation of the famous uncertainty principle by Robert-

son [44], which can be found in most textbooks on quantum theory

(�O
eff
n )ψ · (�O

eff
m )ψ ≥ 1

2

∣
∣〈ψ |[Oeff

n ,O
eff
m

]|ψ〉∣∣, (39)

where (�A)2
ψ = 〈A2〉ψ − 〈A〉2

ψ are the mean square deviations. Choosing, the op-
erators, position x̂ and momentum p̂, the Robertson relation turns into the famous
Heisenberg relation

�x̂ · �p̂ ≥ 1

2
. (40)
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The maximal value of the right hand side of the entropic uncertainty relation is
obtained for

max
i,j

|〈χi
n|χj

m〉| = 1√
2
, (41)

in this case the two observables are commonly called complementary to each other
(their eigenvalues have to be nondegenerate), e.g. if the operators are σx and σz. In
general a non-zero value of the right hand side of (37) means that the two observables
do not commute, i.e. it quantifies the complementarity of the observables. The binary
entropies on the left hand side quantify the gain of information on average when we
learn about the value of the random variable associated to O

eff
n . Alternatively, one

can interpret the entropy as the uncertainty before we obtain the result of the random
variable.

The reformulation of the Heisenberg relation (37) has—besides its different
information-theoretic interpretation and its stronger bound [45]—the advantage that
the right hand side of the inequality is independent of the prepared state and only
depends on the eigenvectors of the observables, hence puts a stronger limit on the
extent to which the two observables can be simultaneously peaked.

Remarkably, the right hand side of the entropic uncertainty relation also does not
depend on the eigenvalues (except to test the non-degeneracy), this means that if the
state is prepared in an eigenstate say of O

eff
n then the two eigenvalues of O

eff
m are

equally probable as measured values, i.e. the exact knowledge of the measured value
of one observable implies maximal uncertainty of the measured value of the other,
independent of the eigenvalues.

5.1 An Information Theoretic View on Measurements at Different Times
at Accelerator Facilities

Particle detectors at accelerator facilities detect or reconstruct different decay prod-
ucts at different distances from the creation point, usually by a passive measurement
procedure, more rarely by an active measurement procedure. Let us here discuss what
is learnt by finding a certain quasispin |kn〉 at a certain time tn or not which can cor-
respond to a certain decay channel, compared to the situation to find a km at the cre-
ation point tm = 0 or not. Certainly, this result also quantifies our uncertainty before
we learn the result (Yes, No) at tn and (Yes, No) at tm. In particular, if we compare
observables of same quasispin at different time, we obtain the uncertainty due to the
time evolution.

Differently stated, we can view it in the following way [46], two experimenters,
Alice and Bob, choose two different measurements corresponding to the observables
O

eff
n ,O

eff
m . Alice prepares a certain state ψ and sends it to Bob. Bob carries out one

of the two measurements O
eff
n ,O

eff
m and announces his choice n or m to Alice. She

wants to minimize her uncertainty about Bob’s measurement result. Alice’s result is
bounded by (37).

In case of unstable systems the right hand side of the entropic uncertainty relation
(37), for which we have to find the maximum, is given by

max
{〈χ1

m|χ1
n 〉, 〈χ1

m|χ2
n 〉, 〈χ2

m|χ1
n 〉, 〈χ2

m|χ2
n 〉} (42)
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Fig. 1 (Color online) Here the lower bound of the entropic quantum uncertainty inequality (37) is plot-
ted in case of a strangeness event at t = 0 compared to a strangeness event at a later time, i.e. for the
observables A = Oeff (

π
2 , φn,0) and B = Oeff (

π
2 , φm, t) with φn = φm = 0,π for (a) �S and (b) �≈�L

including �S = �L = 0. The solid blue line shows when the eigenvectors both propagating forward in time
or both propagating backward in time overlap maximally, whereas the red dashed line shows the case when
forward and backward propagating quasipins overlap. Figure (b) shows the case of a slow decaying system
or all other meson systems, i.e. Bd,Bs , except maybe the D meson system for which not much precise
data is available. If the decay constants are considerably different there is always missing information in
the system

with |χ1
n 〉 = |χ(αn,φn, tn)〉 and |χ2

n 〉 = |χ(αn + π,φn + 2tn,−tn)〉 being the eigen-
vectors of the effective operators or the quasispin propagating forward or backward
in time, respectively. Any product derives to

〈χ(αn,φn, tn)|χ(αm,φm, tm)〉

= cos αn

2 cos αm

2 + sin αn

2 sin αm

2 ei(tm−tn+φm−φn) · e−��(tn+tm)

1
2

√
1 + e−2��tn + cosαn(1 − e−2��tn)

√
1 + e2��tm − cosαm(1 − e2��tm)

.

(43)

In Fig. 1 we plotted the complementarity for the observable asking the question
“Is the neutral kaon system in the state |K0〉 or not at time t = 0” compared to the
question “Is the neutral kaon system in the state |K0〉 or not at time t”, i.e. comparing
the complementary introduced by the time evolution in the case of strangeness mea-
surements. Here Fig. 1(a) refers to the neutral kaon case and (b) to a slowly decaying
system (�S → 100�S ) or any of the other meson systems �� = 0. One notices that
for times being odd multiples of π

2 the complementarity of the two observables be-
comes maximal, while for even multiples it minimizes.

Asking about the mass-eigenstates we find no complementary of the observables
for any time, this certainly only changes if we include CP violation. The uncertainty,
i.e. the overlap of the measurement of a short lived state at a later time point to that
at time zero, is moderated by δ, i.e. for small times the maximum is obtained by the
overlap of the first two eigenvalues (35)

|〈χ C P ,1(KS, tn)|χ C P ,1(KS, tm = 0)〉| = |e− �S
2 tn + δ2e−itn · e− �L

2 tn |
√

(1 + δ2)(e−�Stn + δ2e−�Ltn)
(44)

and the maximum uncertainty −2 log2 max{|〈χi
n|χj

m〉|} is reached for the overlap 1√
2

for tn = 11.4τS and choosing the C P violation parameter δ = 3.322 × 10−3 (world
average [47]). This is just the case when the overlaps of all possibilities are equal, i.e.
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Fig. 2 (Color online) This graphs depict the lower bound of the entropic quantum uncertainty inequality
(37) by comparing measurements at time t = 0 to measurements at later times t for (a) short lived state
(t = 0) versus short lived state at t , (b) long lived state (t = 0) versus short lived state at t , (c) short lived
state (t = 0) versus long lived state at t and (d) long lived state (t = 0) versus long lived state at t . This
shows the uncertainty introduced by breaking the C P symmetry in the time evolution. If Alice and Bob
agree to ask about a short lived state at the complementary time t = 5.4[t�m] ≡ 11.4τS the uncertainty
becomes the maximal possible value. In case Alice and Bob agree to ask for any time t > 0 for a long lived
state, the uncertainty is nonzero

the two bases are mutually unbiased bases (MUBS). The same complementary time
tn = 11.4τS is obtained when we compare the measurement of the long lived state at
time tm = 0 and a measurement of the short lived state. For the two other options the
maximal uncertainty can never be reached. Initially, the uncertainty is zero in case of
measuring long lived states and then oscillates due to δ and reaches after tn = 11.4τS

a constant value close to zero. This is summarized in Fig. 2.
Certainly, at this time the probability to find a short lived state is for all practical

purposes zero. Remember that we have chosen for active measurements of lifetime a
time of 4.8τS , which is the time when the probability of not finding a short lived state
when it was produced as a short lived state equals the probability to find a long lived

state when it was produced as a long lived state, i.e. 1 − e−�St != e−�Lt . This time is
by more than a factor 2 different to the complementary time which strongly depends
on the amount of C P violation. We can revert the issue and ask how big δ needs to
be in order that the two times would be equal: it would need to be 25 times the value
of δ. Therefore, active and passive measurements of lifetime are efficient.

5.2 The Uncertainty of Measurement Settings for Bipartite Kaons

The effective operator formalism guarantees that the tensor product structure is con-
served, i.e. the most general expectation value of a bipartite system is given by

E(kn, km) = T r(O
eff
n ⊗ O

eff
m ρ) (45)
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Fig. 3 (Color online) The right hand side of the entropic quantum uncertainty inequality (37)
for the two observables (a) Oeff (

π
2 ,0,0) ⊗ Oeff (

π
2 ,0, t) versus Oeff (

π
2 ,0, t1) ⊗ Oeff (

π
2 ,0,0) and

(b) Oeff (
π
2 ,0,0) ⊗ Oeff (

π
2 ,0, t) versus Oeff (

π
2 ,0,0) ⊗ Oeff (

π
2 ,0, t1) for t1 = 0, t/4, . . . , t is plotted,

where t1 = 0 is the dashed line. One recognizes that one can increase or decrease the maximal uncertainty
if the role of the first and second observable in the tensor product, i.e. Alice and Bob’s role, is changed

for any initial bipartite state ρ. In this case one studies e.g. symmetry violations or
Bell inequalities where one compares measurements of different quasispins at dif-
ferent times. In this section we want to investigate the uncertainty of such different
measurement settings and herewith obtain a different view and intuition on how cer-
tain properties of quantum states are revealed, in particular we will then proceed to
analyze the maximum violation of a Bell inequality.

To compute the right hand side of the entropic uncertainty relation we have to find
the maximum of all eigenvectors of the operator On ⊗ Om which is straightforward
as it is simply the product of the eigenvectors of the single operators On/m of Alice
and Bob, respectively

max
{〈χi

m|χj
n 〉 · 〈χk

m|χl
n〉

}
with i, j, k, l = 1,2. (46)

In Fig. 3 we show how the uncertainty is changed for different observables in the
bipartite kaons system, which gives an intuition when a certain Bell operator may
yield a violation (see next Sect. 6).

6 The Bell-CHSH Inequality

In accelerator experiments one can produce a spin singlet state, e.g. by the decay
of a � meson at the DAPHNE machine. One has the same scenario as Einstein,
Podolsky and Rosen considered in 1935 which we write down for different quantum
systems (spin– 1

2 , ground/excited state, polarisation, K-meson, B-mesons, molecules
arriving early/late [48] or single neutrons in an interferometer) to show its similar-
ity:

|ψ−〉 = 1√
2

{|⇑〉l ⊗ |⇓〉r − |⇓〉l ⊗ |⇑〉r
}

= 1√
2

{|0〉l ⊗ |1〉r − |1〉l ⊗ |0〉r
}
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= 1√
2

{|H 〉l ⊗ |V 〉r − |V 〉l ⊗ |H 〉r
}

= 1√
2

{|K0〉l ⊗ |K̄0〉r − |K̄0〉l ⊗ |K0〉r
}

= 1√
2

{|B0〉l ⊗ |B̄0〉r − |B̄0〉l ⊗ |B0〉r
}

= 1√
2

{|late〉l ⊗ |early〉r − |early〉l ⊗ |late〉r
}

= 1√
2

{|I 〉l ⊗ |⇑〉r − |II 〉l ⊗ |⇓〉r
}

= · · · . (47)

Analog to entangled photon systems for these systems Bell inequalities can be
derived, i.e. the most general Bell inequality of the CHSH-type is given by (see
Ref. [49])

Skn,km,kn′ ,km′ (t1, t2, t3, t4) = ∣
∣Ekn,km(t1, t2) − Ekn,km′ (t1, t3)

∣
∣

+ |Ekn′ ,km(t4, t2) + Ekn′ ,km′ (t4, t3)| ≤ 2. (48)

Here Alice can choose on the kaon propagating to her left hand side to raise the ques-
tion if the neutral kaon is in the quasispin |kn〉 = cos αn

2 |K0〉 + sin αn

2 eiφn |K̄0〉 or not,
and how long the kaon propagates, the time tn. The same options are given to Bob
for the kaon propagating to the right hand side. As in the usual photon setup, Alice
and Bob can choose among two settings.

Differently to commonly investigated systems one has more options. One can vary
in the quasispin space or vary the detection times or both.

With our effective framework we can rewrite the Bell-CHSH-inequality in a wit-
ness type, i.e. with the Bell operator

Belleff = O
eff
n ⊗ (O

eff
m − O

eff
m′ ) + O

eff
n′ ⊗ (O

eff
m + O

eff
m′ ) (49)

any local realistic hidden parameter theory has to satisfy

|Tr(Belleff ρ)| ≤ 2. (50)

This operator form of the generalized Bell-CHSH inequality [28] gives us the oppor-
tunity to find for a given choice of Bell settings without optimization over all possible
initial states whether the Bell inequality can be violated. In particular, the eigenvalues
of the Bell operator give us the upper and lower bound that can be reached for the
optimal initial state, i.e. the one which maximizes or minimizes the Bell inequality.
Determining whether a Bell inequality is preserved or violated for a given state ρ is in
general a high-dimensional nonlinear constrained optimization problem. In Ref. [50]
a numerical method was shown by introducing a proper parameterization of unitary
matrices [51] to derive bounds on Bell inequalities for any qudit system (d-level sys-
tem). This certainly is a benefit of our introduced effective formalism as optimization
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in this case is not needed. In any numerical optimization there is no guarantee that
the global extremum was reached.

We present first a generalized Bell inequality which has been discussed in litera-
ture [28, 29, 49, 52] and shows a relation between C P violation and the nonlocality
detected by the above Bell inequality. Then we proceed to a Bell setting that can be
realized in a direct experiment.

6.1 A Bell Inequality Sensitive to C P Violation

Let us choose all times equal zero and choose the quasispin states kn = KS,km =
K̄0, kn′ = km′ = K0

1 where K0
1 is the C P plus eigenstate.

In Ref. [49] the authors showed that after optimization the CHSH–Bell inequality
can be turned for an initial spin singlet state into

δ ≤ 0, (51)

where δ is the C P violating parameter in mixing, (28). Experimentally, δ corresponds
to the leptonic asymmetry of kaon decays which is measured to be δ = (3.322 ±
0.055)×10−3. This value is in clear contradiction to the value required by the CHSH-
Bell inequality above, i.e. by the premises of local realistic theories! The result can
be also made stronger by changing the Bell setting by KS −→ KL, then one obtains
δ ≥ 0, thus both CHSH-Bell inequalities require

δ = 0, (52)

i.e. any local realistic hidden variable theory is in contradiction to C P violation, a dif-
ference of a world of particles and antiparticles. In this sense the violation of a sym-
metry in high energy physics is connected to the violation of a Bell inequality, i.e.
to nonlocality. This is clearly not available for photons, they do not violate the C P
symmetry.

We also want to remark that the considered Bell inequality, since it is chosen at
time t = 0 is connected to a test of contextuality rather than nonlocality. Noncontextu-
ality, the independence of the value of an observable on the experimental context due
to its predetermination—a main hypothesis in hidden variable theories—is definitely
ruled out! So the contextual quantum feature is demonstrated for entangled kaonic
qubits.

Although the Bell inequality (51) is as loophole free as possible, the probabilities
or expectation values involved are not directly measurable, because experimentally
there is no way to distinguish the short-lived state KS from the C P plus state K0

1
directly.

6.2 A Bell Inequality Sensitive to Strangeness

Let us now proceed to another choice for the Bell inequality (48), i.e. all quasispins
equal K̄0, but we are going to vary all four times
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SK̄0,K̄0,K̄0,K̄0(t1, t2, t3, t4) = |E(K̄0, t1; K̄0, t2) − E(K̄0, t1; K̄0, t3)|
+ |E(K̄0, t4; K̄0, t2) + E(K̄0, t4; K̄0, t3)|

≤ 2. (53)

This has the advantage that it can in principle be tested in experiments. Alice and Bob
insert at a certain distance from the source (corresponding to the detection times) a
piece of matter forcing the incoming neutral kaon to react. Because the strong in-
teraction is strangeness conserving one knows from the reaction products if it is an
antikaon or not. Note that different to photons a NO event does not mean that the
incoming kaon is a K0 but also includes that it could have decayed before. In prin-
ciple the strangeness content can also be obtained via decay modes, but Alice and
Bob have no way to force their kaon to decay at a certain time, the decay mechanism
is a spontaneous event. However, a necessary condition to refute local realistic theo-
ries are active measurements, i.e. exerting the free will of the experimenter (for more
details consult [27]).

In Refs. [27, 49] the authors studied the problem for an initial maximally entangled
Bell state, i.e., ψ− � K0K̄0 − K̄0K0, and found that a value greater than 2 cannot
be reached, i.e. one cannot refute any local realistic theory. The reason is that the
particle–antiparticle oscillation is too slow compared to the decay or vice versa, i.e.,
the ratio of oscillation to decay x = �m

�
is about 1 for kaons and not 2 necessary for

a violation.
A different view is that the decay property acts as a kind of “decoherence” as we

introduced in Sect. 2. From studies of decoherence it is known that some states are
more “robust” against a certain kind of decoherence than others. This leads to the
question if another maximally entangled Bell state or a different non maximal initial
state would lead to a violation. In Ref. [29] it was indeed shown that such states exist.
This shifts the problem to finding methods to produce these initial states leading to
a violation of the generalized CHSH–Bell inequality. This is still an open problem.
In Ref. [29] also the interplay between entanglement and entropy was studied and
as also shown by the authors of Ref. [30], who studied the dynamics of two qubits
interacting with a common zero-temperature non-Markovian reservoi, the picture that
entanglement loss due to environmental decoherence is accompanied by loss of the
purity of the state of the system does not apply to these systems.

Given our effective operator formalism we can answer the question how much
nonlocality is there for the given Bell setting if we vary the times. In Fig. 4 we plot-
ted the eigenvalues of the Bell operator for different choices corresponding to the
maximal/minimal value of the Bell inequality as well as the uncertainty. We find only
a small amount of violation (about 2.1) but huge time regions of possible violations.
Moreover, we notice an asymmetric behaviour of the minimal and maximal eigen-
values of the Bell operator which is due to the two different decay constants, as also
plotted in Fig. 5 for a slow decaying system and for the B-meson system.

In Ref. [53] the authors showed that the maximal violation of the CHSH–Bell
inequality is reached when the two operators in the sum of the Bell operator, (49),
commute. This fact the authors used to construct other relevant Bell inequalities for
two-qubit systems. However, the operator O

eff
m ±O

eff
m′ does not necessary describe an

observable obtainable in a single measurement.
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Fig. 4 (Color online) The maximal violations of the Bell inequality, i.e. the maximal and minimal eigen-
values of the operator (49) for strangeness questions for time choices (a) {tn = tm = tn′ = tm′ = t},
(b) {tn = 0, tm = t, tn′ = t, tm′ = 0} and (c) {tn = t, tm = 0, tn′ = 0, tm′ = t} are plotted (red big dots).
Green dots (smaller dots) represent a lower bound on the entropic uncertainty relation (37) between the
two summands of the Bell operator which is zero for t = 0 and then immediately jumps to a certain value
and is equal for the time settings (b) and (c). The dashed blue lines are the upper bounds on the CHSH-Bell
inequality, i.e. ±2

√
2, and the solid blue line represent the bound ±2 given by local realistic theories. One

notices that even for long times a violation can be found, though the short lived component can no longer
directly be measured

7 Summary and Conclusions

We studied the phenomenology of decaying two-state systems and discussed quan-
tum features from an information theoretic view. For that we developed an effective
formalism which allows to handle unstable two-state systems with the usual well
developed formalism in Quantum Information Theory. We applied it to the neutral
kaon system including the C P violation, the observed imbalance between matter and
antimatter in our universe.

We presented the effective operator in decomposition of the Pauli-matrices and the
unity, which shows the complicated change of the Bloch vector in time. The spectral
decomposition shows that only one eigenvalue depends on measurement settings and
that the corresponding eigenvectors can be interpreted as quasispins evolving in (for-
ward and backward) time normalized to surviving pairs. The second eigenvalue is
always −1, i.e. it does not depend on the chosen measurement settings. This ex-
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Fig. 5 (Color online) The maximal violations of the Bell inequality, i.e. the maximal and minimal eigen-
values of the operator (49) for flavor questions for time choices {tn = 0, tm = t, tn′ = t, tm′ = 0} or
{tn = t, tm = 0, tn′ = 0, tm′ = t} for (a) �S = �L and (b) �1 = �2 = 1/0.776 are plotted (red big dots).
Here (a) shows the violation if both mass eigenstates were long lived in the neutral kaon system and (b) the
values for the B-meson system

presses the fact that we are only interested in quantum features intrinsic to neutral
kaons and not the properties of the different decay channels.

The lower bound on the binary entropies of two chosen observables is given by
maximal overlap of the eigenvectors of both observables and encodes the limitations
on the available information obtainable by the chosen observables. To obtain this
Heisenberg uncertainty in time for meson–antimeson systems we compared mea-
surement settings at time t = 0 to the same measurement settings at a later time t . We
find for flavor measurements that the uncertainty becomes maximal for times which
are odd multiples of π

2 , while for times which are multiples of π only in the case
both decay rates are equal the uncertainty becomes zero again as it is the case for
non-decaying systems. For considerably different decay constants as in the neutral
kaon system the uncertainty never vanishes for any measurements later in time, i.e.
introducing a persisting lack of information; this is depicted in Fig. 1.

Due to imbalance of matter and antimatter we derived a maximal uncertainty for
short lived measurements at a “complementary” time depending on the precise values
of the C P violating parameter δ. This “complementary” time is more than twice the
time of the time duration for which the probability to misidentify a long lived state as
a short lived state or vice versa is equal. In case of long lived measurements the lower
bound on the uncertainty relation is constant (about the amount of the C P violating
parameter). This is illustrated in Fig. 2 and shows the effect of indirect C P violation
on the states persisting their nature in the time evolution.

Then we proceed to entangled bipartite systems. The effective observables sim-
ply generalize for multipartite systems by the usual tensor product structure which is
a clear advantage to the open quantum approach. The uncertainty for bipartite sys-
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tems is straightforwardly obtained as it is the maximum of the product of the scalar
products of the eigenvectors of the single effective operator.

Due to the developed effective formalism Bell inequalities, i.e. inequalities decid-
ing whether a local realistic view for kaons is valid, can be formulated in a mathe-
matically more simple form, i.e. as a witness operator. Herewith, we do not need to
optimize over the state space parameters and the four different measurement settings,
but can simply compute the eigenvalues of the Bell operator to obtain the maximal
possible value given by the quantum theory. In case of strangeness measurements we
find that the violation is not large, but can be obtained for long time regions. Indeed,
also for times when the short lived component has already died out for all practical
purposes, i.e. no oscillation can be seen, but since the probability is still nonzero,
non-negligible contributions in the Bell operator exist.

We believe that with the presented information theoretic view we could enlighten
the quantum features of unstable two-state systems and, especially, meson–antimeson
systems. In particular, we illustrated the threefold role of time, being responsible for
strangeness oscillations, oscillation due to C P violation and decays.
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