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Abstract We develop a geometro-dynamical approach to the cosmological constant
problem (CCP) by invoking a geometry induced by the energy-momentum tensor of
vacuum, matter and radiation. The construction, which utilizes the dual role of the
metric tensor that it structures both the spacetime manifold and energy-momentum
tensor of the vacuum, gives rise to a framework in which the vacuum energy induced
by matter and radiation, instead of gravitating, facilitates the generation of the gravi-
tational constant. The non-vacuum sources comprising matter and radiation gravitate
normally. At the level of classical gravitation, the mechanism deadens the CCP yet
quantum gravitational effects, if strong, can keep it existent.
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1 Introduction and Motivation

The matter-free spacetime is strictly flat, more precisely Ricci-flat, unless its fabric is
endowed with an intrinsic curvature Ag. The ensuing spacetime curvature is governed
by

1
Rop(I") = S 8ap R(I") = — A0 8up ey

where Ry is the Ricci tensor, R the Ricci scalar, and

1
Ty = 58" (Bagpp + 9p8pa — 0y 8ap) ©)
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is the Levi-Civita connection. The constant curvature term Ao, Einstein’s cosmolog-
ical constant [1], represents an incalculable source of curvature, independent of the
entirety of matter and forces but gravity. As it stands, it is a constant of Nature the
value of which is to be determined empirically.

In the presence of matter and radiation, the matter-free gravitational field equations
(1) change to

1
Rap(I') = 5 8ap R(I") = = A0 8ap + 87 G Tup 3

which is nothing but augmentation of (1) by the energy-momentum tensor T of
matter and radiation [2]. The prime idea in passing from (1) to (3) is that gravitational
field is described by Poisson equation in the Newtonian limit.

In general, T,g is computed from the quantum effective action for a given back-
ground metric gy which necessarily metamorphoses into a dynamical variable
through (3). On general grounds, energy-momentum tensor assumes the generic form

Taﬁ =—Egaup + tap 4

where E stands for the energy density of the vacuum state, and tg does for the con-
tributions of matter and radiation, collectively. Replacement of this decomposition of
Typ into (3) gives rise to an effective cosmological constant

Acss = Ao+ 87 GNE (5)
which must nearly saturate the expansion rate of the Universe
Acss S H; ©®)

since the non-vacuum mass contained in tyg is a small fraction of the critical den-
sity. A number of independent observations [3—10] have determined Hp to measure
approximately 73.2 Mpc ™! s~! km. This observational result provides an experimen-
tal determination of Agss:

ASP ~ 87 G yESHP (7

where E®*P ~ 3.25 x 10747 GeV* [3, 8, 9] which, by just numerical coincidence,
equals approximately mﬁ with m, ~ 1073 eV being the neutrino mass.

If it were Ag not Acs¢, the bound (6) would furnish, through the observational
value of Hy quoted above, an empirical determination of Ay, as for any other funda-
mental constant of Nature. The same does not apply to A.r¢, however. The reason is
that the vacuum energy density E, equaling the zero-point energies of quantum fields
plus enthalpy released by various phase transitions, turns out to be characteristically
much larger than AZF7/87 G y. That this is the case can be illustrated by consider-
ing, for instance, the electron which weighs next to neutrinos. The electron loop gives
sizeable contributions to E. The smallest energy density it gives is electron mass per
its cubic Compton wavelength, and it is already much larger than Ai’f(? /87 G . Much
grosser than this is that the electron loop contributes to E by additional terms growing
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quadratically and quartically with the ultraviolet cutoff. Consequently, the known,
experimentally confirmed fields and forces down to the terascale, My ~ TeV, are
expected to induce a vacuum energy density of order M4W—equaling the sum to-
tal of energies deposited by parton-hadron and electroweak phase transitions and
by the quantal zero-point energies of fields. This energy density, by itself, gives
rise to a centimeter-size Universe unless it is neutralized by the A( contribution
in (5)—a severe tuning of numbers up to at least sixty decimal places. This immense
tuning worsens if the standard model of strong and electroweak interactions extends
beyond Fermi energies without a suppression mechanism for E. One thus concludes
that, enforcement of Acrf to obey (6) gives rise to the biggest naturalness problem
plaguing both particle physics and cosmology—the cosmological constant problem.
The CCP is a highly inextricable perplexity a resolution of which is likely to be found
outside the framework set by the gravitational field equations (3).

Over the decades, since its first solidification in [11, 12], the CCP has been ap-
proached by putting forth various proposals and interpretations, as listed and critically
discussed in [13, 14] (see also the review volumes [15-19] and references therein).
They each involve necessarily a certain degree of speculative aspect in regard to going
beyond (3). These aspects involve postulating novel symmetry arguments, relaxation
mechanisms, modified gravitational dynamics and statistical interpretations (see [20-
68] for a partial list of recent work) as discussed in [13, 14]. Excepting the nonlocal,
acausal modification of gravity implemented in [69, 70] and the anthropic approach
[71], most of the solutions proposed for the CCP seem to overlook the already ex-
isting vacuum energy density O(TeV*) induced by the known physics down to the
terascale [72-74]. Indeed, any resolution of the CCP, irrespective of how speculative
it might be, must, in the first place, provide an understanding of how this existing
energy component to be tamed.

Having stated the problem, we are at the stage to lay out the germ of the mecha-
nism to be proposed in the present work. The alleged mechanism rests on finding a
sensible answer to the question: Can one excogitate a way, different than in (3), of
incorporating T, into the matter-free gravitational field equations (1) while keeping
all the successes of the Einstein field equations for non-vacuum sources tqg yet nat-
uralizing the effects of the vacuum energy E? The answer is affirmative. The method,
as will be described in Sect. 2 below, involves incorporation of matter and radiation
into (1) by replacing the metric gog by a general tensor field Tqg—to be related to
the energy-momentum tensor T,g. In Sect. 3 it will be shown that the dynamics in
Sect. 2 follow from an action principle. Section 4 is devoted to a critical discussion
of the method analyzed in Sect. 2. In Sect. 4 we conclude.

2 An Alternative Route

For incorporating matter and radiation into (1) in a way desirably free of the CCP, we
propose an alternative approach wherein the vacuum energy density E is offloaded
from the effective cosmological constant A in (5). We lay out the proposal by
moving from abstract to concrete, where concreteness will be judged on the basis
of the physical relevance of the resulting dynamical equations in regard to (3). The

@ Springer



1410 Found Phys (2009) 39: 1407-1425

‘propositions’ below should not be taken in strict mathematical sense; they are merely
a logically complete set of physical statements which will form the mechanism pro-
posed.

The primary statement of the proposal is as follows.

Proposition 1 Let
TO{ﬂ = Agaﬂ + @aﬂ (8)

be a generic tensor field with A being a nonzero constant and Oug a symmetric
tensor field with well-defined matrix inverse. Then replacement of the metric tensor
8up In the matter-free gravitational field equation (1) by Ty gives rise to a novel
field equation possessing the fundamental property that the A term in Ty does give
no contribution, additive or otherwise, to the original curvature source Ay.

Proof The proof starts with the field equations

A
Aoy

1
Raﬂ(g)—ETaﬂ(T_l)WRW(Q)Z 1 Top

©))
arising from (1) after replacing gqg therein by (8). It is worthy of noting that this
equation uniquely reduces to (1) as ®yg — 0. In fact, the factor of 1/A at the right-
hand side arises for this very reason.

As a direct consequence of (8), the connection changes from the Levi-Civita con-
nection (2) to

L
Ok = 5T DY 04 Tpy + 9pTva — 0 Tup) = Ty + Al (10)
where
A 1 —1\Av
Agp = E(T )" (Vo Tpy + VgToa — Vi Tap) (1D
is a tensor field involving covariant derivatives with respect to FaAﬂ. This tensorial
connection identically vanishes when ®yg = 0. Therefore, it is a sensitive probe of

the covariantly-nonconstant part ®&yg of Tyg. As suggested by (11), Agﬁ exhibits a
rather specific dependence on @,g and A:

A » (@
Aap(©, 4) = Agg| — (12)
from which it follows that deviations from the decomposition of Ty defined in (8),
Oup — S Agup + @(;ﬁ, (13)

with 6 A being a constant increment in A, is reflected as

) o’
A A
Aaﬂ(Z) — Aaﬁ<A HA) (14)
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which bears no structural change compared to (12).

The geometry induced by Teg is manifestly non-Riemannian, as explicated by the
split structure of {}2 5 in (10). In fact, in response to this structure, the curvature tensor
in (9) parts into two

Rap(() = Rap(I') + Rap(A) (15)
which differs from Ryg(1") operating in (1) by
Rap(A) = VﬂAgﬁ — VAl + Al Agp — AgvA‘;m (16)

which is a symmetric tensor field induced by A alone. This is a quasi-curvature ten-
sor in that it is not generated by commutators of V or VQ, and hence, it does not obey
the Bianchi identities. The functional dependence of A on @, given in (12), guar-
antees that Rqg(A) depends solely on &yg/A and its derivatives. More important,
however, is the fact that Rog(A), by any means, does neither possess nor develop any
covariantly-constant part due to the scaling property of A in (14).

Consequently, given the structure of Rqg(A), and given also the scaling prop-
erty (14) of the tensorial connection Af;ﬁ, one arrives at the firm conclusion that the
field equations (9) possess one and only one covariantly-constant source which is
Agp. Therefore, the matter-free field equation (1) and the proposed one (9) do have
the same cosmological term. In other words, presence of matter and radiation, ir-
respective of how large a vacuum energy density is deposited, does not change the
cosmological constant Ay.

This completes the proof of Proposition 1. U

The field equations (9) is an abstract one in that it bears no indicant of any con-
nection to the gravitational field dynamics in the presence of matter and radiation. It
is just a dynamical equation for Tyg. For it to gain a concrete overtone, one must, in
the first place, determine the requisite relation between Ty and T,g. To this end, it
proves convenient to rearrange (9) by using (15) to get

Rep(I) — ~gus R = =0T — Lgupe” = Tag (TR (I)
ap zgaﬁ A ap Zgotﬂg ap iy

1
- [Raﬂ(A) - ETaﬂ(T_l)ﬂvRuv(A)] 7)

whose right-hand side, upon an appropriate relation between Tyg and Tyg, must re-
duce to that of (3), excluding the vacuum contribution, at least as the leading structure.
The dynamical equations resulting from (17) will be judged on the basis of physical
consistency and phenomenological relevance.

Before ascertaining the appropriate relation between Tyg and Tyg, one notes a
fundamental aspect of (17):

Proposition 2 The matter-nonfree gravitational field equations which will spring
from (17) will have Aq as the only source for cosmological constant. Therefore, A
remains isolated and is empirically determined from cosmological observations, and
this determination involves no fine-tuning of distinct energy sources.
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Proof The proof relies on Proposition 1 itself. The gravitational field equations,
whether they are admissible or not, will contain Ag as the only covariantly-constant
curvature source, and matter sector will give no contributions to it thanks to (14) as
well as the Ag/A factor at the right-hand side of (17). As A receives no contribu-
tion from matter sector, it is by itself the cosmological term, and it must saturate the
observational result

Ag ~ 87t GNES*P (18)
where ES¥P ~~ mﬂ, as indicated by the astrophysical observations [3—10]. The curva-
ture source Ag which continues to be the only cosmological term with (as in (17))
or without (as in (1)) matter and radiation, its empirical determination from obser-
vations, no different than fixing Newton’s constant or gauge couplings or any other
model parameter by using the experimental data, involves no tuning of parameter
values.

This completes the proof of Proposition 2. 0

If the field equation (17) for Typ is to have anything to do with the gravitational
field dynamics in the presence of matter and radiation, Tog and T,g must be put in
relation in an appropriate way. There is no a priori telling of what this alleged relation
should be. It could be a local as well as a nonlocal relation. It could be a linear as
well as a nonlinear relation. There are all sorts of variations one can consider. In this
work, consideration will be on two classes of relations between Tyg and Tyg: local
and nonlocal relations. As will be proven below, these two will reveal fundamental
aspects of the desired relation.

Proposition 3 [t is impossible to achieve a resolution for the CCP through a local,
linear relation if Ay is to saturate the experimental result (7), and if the gravitational
constant is to be generated correctly. The nonlinear, local relations, on the other
hand, fail to yield correct gravitational dynamics due to the presence of higher powers
and derivatives of Tyg in the resulting equations.

Proof The proof starts by taking
Tag =CiTyp (19)

with which the right-hand side of (17) becomes a function of Tyg alone. C; is a con-
stant. For recovering correct gravitational dynamics in the sense of (3), one imposes
Ao >~ AZER and, by using —(Ag/A)Oup = (Ag/E)tag, equates the coefficient of
teg, Ao/E, to 8w G . This requires E >~ E®*P ~ mﬂ, independent of C;. Startlingly,
this result is nothing but the CCP itself [11, 12, 72, 73].

For breaking this impasse, one can try a more general structure [ f(7)]yg instead
of the linear one (19). Expanding this tensor structure in powers of T, around the
origin and identifying the coefficient of tg with the gravitational constant, one finds

EexXp

T
Top =[f(T)lap =Cn [GXP{ - ” (20)
af
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where C,, is a constant. It is obvious that unless, in size, Tyg is small compared to
ES*P ~ mi this function does not admit a power series expansion. In fact, what it
clearly shows is that, unless the CCP is solved, construction of an admissible local
relation between Tyg and Tyg is difficult if not impossible. The situation gets even
worse if one enforces the right-hand side of (17) to have vanishing divergence as its
left-hand side is divergence-free by the Bianchi identities. Indeed, inclusion of this
condition would greatly reduce the admissible relations between Tyg and Tyg. To
see how serious this condition is, one notes that both (19) and (20) have vanishing
divergence; however, neither of them can nullify the divergence of the right-hand side
of (17).

This completes the proof of Proposition 3. U

Proposition 4 A linear, causal, nonlocal relation between Typg and Tyg, in the limit
of large A, gives rise to correct gravitational dynamics up to a nonlocal O(1/A?)
remainder. This remainder is not divergence-free, and hence, causes inconsistency in
regard to Bianchi identities. This inconsistency can be cured by a nonlocal, nonlinear
relation which might be constructed by perturbing the linear relation order by order
inl/A.

Proof The proof follows the view point that the linear-in-t g term, necessary for re-
covering (3), can actually come from the third term in (17), which involves Ryg(A),
and hence, derivatives of ®yg. The cosmological constant is still fed by the first term
in (17); however, its ®yg part becomes subdominant due to 1/A suppression in front.
In accord with Proposition 4, when A is much larger than ®g in size, the third term
in (17) takes the form

— 1 —1yuv _ L -1 LV
R(xﬁ(A) ZTotﬂ(T ) RMV(A) = A (G )aﬁ;wT

VOVEe 6VVe
+O< VR ) (21)
where, at the right-hand side, the operator acting on T*" reads as
(G (VDapuv = Vi Vasip + Vi Vv — Vi Vugap
- Vavﬂg;w - Dguagvﬁ + Dguvgocﬂ (22)

up to the additive terms needed for symmetrization with respect to («, 8) and (i, v).
This operator is clearly the inverse of the massless spin-2 field propagator Gygy. (V)
in the background metric gqp [75, 76]. For recovering the Einstein field equations (3),
one must require (21) to be proportional to the energy-momentum tensor of mat-
ter and radiation tqg (as it cannot involve any covariantly-constant piece involving
E gqp), and we take it, on the basis of linearity, to be equal to —tqg/2A, that is,

(G (V)T = —top (23)

where the minus sign is necessitated by (17). Integration of this relation neces-
sarily involves a constant of integration in the sense of covariant derivatives. This
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covariantly-constant tensor must be proportional to the vacuum energy-momentum
tensor —Egqg. Consequently, the requisite relation between Typg and T,g, within the
linearized regime in (21), turns out to be

Top = —L*Egap — Gapuv (V) EM (24)
from which it follows, in view of (8), that
=-1’E, Oup = —Gopur(V)EH (25)

where L2, an algebraic area scale, necessarily arises for dimensionality reasons. From
(24) it directly follows that Teg is related to Tyg linearly by the construction, nonlo-
cally by the fact that Tyg at a given point involves t, in entire spacetime as prop-
agated by Gggpuv, and causally by the fact that Gugy,, is causal in chronologically
structured spacetimes. The nonlocality here reminds one at once the one arising in
[69, 70]; however, one notices that dynamical structure here is entirely different in
regard to (17).
Having the relation (24) at hand, the equation of motion (17) takes the form

1 1 Ag 1 1
RaB(F) - Eg(xﬂR(F) = ataﬁ — Ao&up + 7 @aﬂ - Eg @Mvgaﬂ

+O<F@ ,F@ ’ﬁ@t (26)
whose first term, proportional to tqg, manifestly imposes the identification

1 1
mGy=—=— 27
N M?z T (27

so that the entire material existence, excluding the vacuum, gravitates, as in General
Relativity, via the Einstein field equations (3). This definition of the Newton’s con-
stant, through (24), inherently presumes that L? and E are of the same sign. Moreover,
it is obvious that the power series expansion in ® /A, employed to obtain (21), and in
turn, to get (26) from (17), is fully justified.

The gravitational field equations (26) possess certain features deserving a separate,
detailed discussion.

1. The area scale L is determined by the vacuum energy density through (27). It
possesses the physical extrema

1
m2
m\)

1

E~ My, = L* ~
(28)

ExMp —L"~ —

Mp,

which directly follow from (27). These limiting values show that the length scale

L ranges from the neutrino Compton wavelength down to the Planck length. The
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vacuum energy density cannot fall below M’ {‘,‘V significantly, if electroweak break-
ing is to generate the observed gauge boson masses. Its value gets stabilized at or
above M 3[, if contributions of higher-frequencies are nullified by some mechanism
such as the global supersymmetry [13, 14]. In case Nature does not utilize such

a mechanism, vacuum energy density rises to M;‘)l and, correspondingly, L falls
down to the Planck length. This particular value of vacuum energy density gives
rise to a theory with a single parameter, M p;. This elegant setup, tantalizingly,
corresponds to the worst case in General Relativity: In the framework of (3), with

Ex~ M; ;» the fine-tuning needed to satisfy (6) rises to 120 decimal places.

2. The nonlocal nature of (24) spreads all over the right-hand side of (17). Though
the leading linear-in-tqg term in (26) is inherently local, the subleading ones are
not. The violation of locality, under (27) and (18), turns out to be exceedingly
small, however. The reason is that the third term in (26), which is clearly nonlocal,

is dressed by extreme O (m? /Mil) suppression. The remaining O(1/A?) terms,
which involve derivatives of ®,g, also give nonlocal contributions. These sources
of nonlocality are exceedingly small, and thus, the world as we see behaves local
to a good approximation.

3. The divergence of the left-hand side of (3) vanishes by the differential Bianchi
identity, and that of its right-hand side vanishes by energy-momentum conser-
vation. This feature is geometrical for the left-hand side and kinematical for the
right-hand side. This is the situation in General Relativity. In the present approach,
however, the problem gains a dynamical nature in regard to (17); the divergence
of its right-hand side involves gradients of Tyg, Ry (I") and Rqp(A) with no ob-
vious telling of how it can identically vanish. Given this variety in the structures
involved, enforcing the divergence to vanish gives rise to non-trivial constraints
on Tyg. Typ must be related to Typ in such a way that the right-hand side of (17)
becomes divergence-free. Obviously, one can find a wiser solution which already
satisfies this constraint at the exact, nonlinear level. Leaving aside this possibil-
ity, all one can do is to iterate expansion in & /A to higher powers and impose
vanishing of divergence order by order in perturbation theory. That this procedure
can work is already revealed by (26) wherein the lowest order terms, the first two
terms at the right-hand side, possess vanishing divergence. For making divergence
to vanish at the next order in /A, one iterates the linear relation between Tyg
and Typ in (24) to include O(1/A) terms

, 1
Tap = Tap (in 24) + —-Qup (29)

where Qqp is an appropriate tensor structure which makes O(1/ A?) terms
divergence-free. Clearly, Qyp develops both local and nonlocal dependencies on
Typ. This iteration continues to higher powers of Ty by including local as well as
nonlocal contributions according to the terms arising in the expansion (21). This
iterative procedure, as has also been discussed in [69] for a similar problem, can
make the right-hand side of (17) divergence-free order by order in perturbation
theory. The final result is that Ty develops a nonlocal and nonlinear relation with
Typ, and the right-hand side of (26) is still nonlocal yet divergence-free.
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The analysis above completes the proof of Proposition 4. |

The equations of motion (9) have been obtained from the matter-free gravitational
field equations (1) by simply replacing the metric tensorgeg by Typ. This pragmatic
approach is eventually justified a posteriori via the propositions stated and proven
above. Nevertheless, it is desirable to derive (9) from an invariant action, as discussed
below.

Proposition 5 The equation of motion (9) for Tyg follows from an action principle.

Proof The proof proceeds by explicit construction. The requisite action, which does
not need to be unique, may be modeled as

I = N/d4x ﬁ[A(ﬁ_l)“ﬂRaﬂ(ﬁ) — 24

+ g (T = TP (T — T + Inasser[g, V] (30)

where N is a normalization constant, A, is a Lagrange multiplier, Tog is as defined
in (8), ¥ collectively denotes the matter fields, and Iqsrer[g, W1 is the quantum
effective action for the matter sector. The matter action, constructed on the back-
ground metric gyg, involves quantum corrections from matter loops as well as non-
renormalizable interactions from physics at short distances. It should be emphasized
that the matter action, at the classical level, possesses no single term without the mat-
ter fields, that is, it vanishes identically for vy = 0. This restriction does, of course,
not modify interactions of fields with the background geometry: They can interact via
their kinetic terms and other means such as non-minimal coupling of scalar fields to
curvature scalar R(I") of the background geometry. These interactions are as in the
General Relativity.

The gravitational sector in (30) can be augmented by the curvature invariants
(T_l)“ﬂRaﬁ, (T_l)““(T_l)ﬁ”RaﬁRW, and the like. These higher-derivative con-
tributions are to be suppressed by some large mass scale, and in fact, they must be
absent if the ghosts are to be eliminated from the spectrum.

The action above is constructed within the Palatini formulation [77, 78] in that

LT - . . ..
connection () «p @nd metric Tog are completely independent geometrical quantities to
start with. In fact, as it stands, it is a generalization of the Born-Infeld action [79].
Extremization of the action with respect to Ag;, gives

Tap = Tup 31)
in accord with (8). On the other hand, its extremization with respect to (T~HP re-
=
turns precisely the equations of motion (9), and the one with respect to {j B gives

V?(«/T(T’l)“ﬁ) =0 (32)

which is directly solved by the connection coefficients in (10). Finally, extremization
of the whole action with respect to gug returns the energy-momentum tensor 7yg, and
the one with respect to matter fields v gives the usual field equations, as they must.
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One notices that the action functional above does not encode the relation between
Tup and Typ. The functional method above presumes that the alleged relation must
be supplied externally in order to get an admissible gravitational dynamics, as in
Proposition 4.

This completes the proof of Proposition 5. g

Throughout the Propositions 1-5, gravity has been assumed to be an inherently
classical phenomenon whose primary role being establishment of the background
geometry for the quantal matter. However, for integrity and completeness, it is nec-
essary to determine if the whole mechanism, in particular, the setup in (26) is stable
under quantum gravitational effects.

Proposition 6 The CCP-solving setup in (26) receives only nonviolent quantum grav-

. . . . —4
itational corrections, and the vacuum energy density E picks out a value around M p,
unless one disproves the conjectures that the de Sitter gravity is essentially classical
and de Sitter space does not support supersymmetry.

Proof The proof starts by noting that Ay > 0 by the astrophysical observations [3,
8, 9], and thus, the background geometry, described by (1) which coincides with
(26) in the matter-free regime, is de Sitter space. The de Sitter space, having its
asymptotia in the past and future with no notion of spatial infinity, possesses the
curvature radius £ = (3 /Ao)l/ 2. The area of the horizon seen by causal observers
is A =4m¢*> = 1271/A¢. Consequently, the entropy of the empty de Sitter space is
S =A/4Gy =371 /(G Ap), and it is conjectured that this entropy continues to be
the maximal one when matter and radiation are present [80]. In accord with statistical
mechanical interpretation, this entropy must equal to the logarithm of the number of
quantum microstates of the de Sitter space, and hence, the cosmological constant Ao,
which receives no contribution from the matter sector according to previous proposi-
tions, is nothing but a measure of the dimension of the Hilbert space of the quantum
de Sitter gravity [81, 82]. For nonvanishing Ao, as enforced by astrophysical obser-
vations [3, 8, 9], the dimension of the Hilbert space is finite, and this implies that de
Sitter gravity cannot be quantized [82, 83]; it must result from a more fundamental
theory that predicts Ag. However, there are arguments that classical de Sitter space
cannot arise from compactifications of string or M theories [82, 84]. In other words,
for the experimental value of A in (7), Gy Ap = 10~120 45 sufficiently small to admit
a perturbative string theory or supergravity description yet there is no known example
of compactification of these theories into de Sitter space. Besides, having no classical
compactification it is not clear how it can exist at the quantum level [82]. Never-
theless, there are indications that semiclassical de Sitter space (suppressed quantum
fluctuations) can originate from quantum excitations at the Planck scale, nonpertur-
batively [85, 86]. These arguments, at least in perturbative regime, guarantee that
the de Sitter gravity is essentially classical, and thus, there arise no tensor fluctua-
tions to induce a quantum gravitational vacuum energy. Consequently, the setup of
(26) remains unchanged or does not change violently since neither the matter nor the
gravitational sector can contribute to Ao, and its determination from astrophysical
observations involves thus no fine adjustments of distinct energy sources. In fact, as
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argued in [81], Ag is not a calculable effective parameter of the theory, instead it is
the multiplicative inverse of the number of degrees of freedom in the fundamental
theory.

A highly important property of the de Sitter spacetime is that energy is not posi-
tive definite everywhere; even if it is positive in some portion of the spacetime it is
negative in some other portion. This very feature guarantees that de Sitter space does
not support supersymmetry [81]; any dynamical theory on it is necessarily nonsuper-
symmetric [82]. Hence, the vacuum energy density induced by the matter sector E is

around M p,. This corresponds to the worst case, that is, the case with highest fine-
tuning in General Relativity [11-13]. Startlingly, however, this very scale for E, in
view of (27), gives rise to the most natural scheme for the mechanism. More explic-

itly, both the vacuum energy E and L? ~ 1 /Mi ; are determined by the Planck scale,
as was already studied in (28).
These discussions complete the proof of Proposition 6. g

Having stated and proven the Propositions 1-6, it could be useful to give a com-
pact overview of the mechanism. This is done in Fig. 1. It provides a comparative
schematic summary of the mechanism. Shown at the top of the figure is matter-
and radiation-free spacetime with intrinsic curvature A¢. The emanating gravitational
field is described by (1). Depicted in the middle of the figure is the Riemannian frame-
work where switching on of the energy-momentum tensor 7,8 of matter and radia-
tion gives rise to gravitational field equations (3). This is the description in General
Relativity, which suffers from the CCP. The bottom of the figure describes the non-
Riemannian framework proposed in the present work. The response of the matter-free
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[Gas (1) = Ras (1) - R(T) 05
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]
=
o]
1
Y
QL
=
<
=1

Tap = —E@ag + tap

= - (Ao + S‘NGNE) Gap + SWGNtnﬁ
‘ h [Aeﬂ = Ag +87GNE,
Aot = 8mGNE*™® —> immense fine-tuning ! (CCP)]
Tap = —Egap + ta
A= Gap P ,,,3 (F = —Angﬂﬁ + 2L,2Et03 +0 (I/L‘EZ)
‘ h [A.,ﬂ = Ao, 167Gy = 1/L7E,
Aegtr = BrGNE®™ = no fine-tuning
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Fig. 1 A schematic summary of the mechanism (bottom) in comparison with General Relativity (middle)
with respect to the matter-free configuration (fop) having the cosmological constant Ag.
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configuration to the inflow of the energy-momentum tensor of matter and radiation
is such that (i) the cosmological constant remains as in the matter-free configura-
tion, and thus, confrontation with observational results involves no fine-tuning, and
(i1) matter and radiation gravitate as in General Relativity up to Planck-suppressed
nonlocal terms.

3 Yet More on the Mechanism

Having formulated the mechanism, for completeness, it might be useful to discuss its
a few important aspects, as we do below:

1. Propositions 1 and 5 give a detailed account of wherefrom the fundamental dy-
namical equation (9) arises. It describes the dynamics of Tyg. By similarity to
the matter-free gravitational field equation (1), this dynamical equation can well
be regarded as ‘matter-free gravitational field equation’ in a hyper-manifold with
metric tensor Tyg and connection coefficients {}gﬁ The connection () is nothing

but the Levi-Civita connection on this manifold. In other words, Qf;ﬂ is compatible
with Tyg, as clearly indicated by (10). Essentially, what the proposed mechanism
does is to map the spacetime manifold into this hyper-manifold

Mg, I') — M(T, ) (33)

such that the two metrics are related through the energy-momentum tensor of mat-
ter on the spacetime manifold: Tyg = Teg[T']. It is this relation which generates
the gravitational field equations (26) through (24) in way free of the CCP, when
gravity is classical. The geometries of the manifolds are completely described
by their metric tensors. The geometry of the hyper-manifold is defined by the
energy-momentum distribution of matter and radiation on the spacetime manifold.
The whole mechanism would take a firm dynamical basis if the hyper-manifold
M(T, () and the underlying functional mapping Tog[7'] can be constructed ex-
plicitly in a more fundamental theory i.e. string or M theories. Wishfully, it sounds
appealing that the CCP becomes tameable in a geometry defined by the energetics
of matter and radiation.

2. Proposition 6 argues that the de Sitter spacetime is essentially classical, and thus,
there cannot be any violent quantum gravitational corrections to (26). However,
this claim can break down if the arguments backing it are falsified. A question that
readily comes to mind is this: Can the falsification originate from some properties
of the mechanism proposed? The answer is negative, to a high possibility. The
reason is that the mechanism is based on the dynamical equation (9) whose solu-
tion is obviously the de Sitter space. In other words, both manifolds M (T, {§) and
Mg, I') are de Sitter spacetimes with their own metrics, and thus, it is expected
that the arguments pertaining to de Sitter space in Proposition 6 will continue to
hold for the proposed mechanism. Therefore, as for the General Relativity, the
present mechanism seems to involve essentially classical gravitation unless the
arguments in Proposition 6 are falsified.
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Let us suppose, for a moment, that either a way of quantizing the de Sitter
gravity is found or de Sitter space is shown to stem from string theory (as in,
for instance, [85, 86]). Then, the arguments backing Proposition 6 break down.
The most important consequence of this will be the deposition of a new vacuum
energy component by the quantum fluctuations of graviton. This vacuum energy
component arises either from the graviton tadpole in quantum de Sitter gravity
or from the quantum fluctuations in string or M-theoretic structures that com-
pactify down to de Sitter space. In any case, the vacuum energy density will be
a quartically-divergent one indifferent from those generated by the matter loops,
and it regenerates the CCP with the same perplexity mentioned below (5):

Ay — Ag + 8T GNETTEY (34

where E972V varies with the quartic power of the ultraviolet cutoff, and it be-
comes unacceptably large compared to E<*® for cutoffs above the neutrino mass
scale. Therefore, if de Sitter gravity is of quantum nature then the mechanism con-
structed in Sect. 2 is capable of taming only the violent contributions of matter and
radiation. In the presence of quantum fluctuations of graviton, the impact of the
present mechanism is limited to modifying the CCP to be a naturalness problem
‘pertaining to the gravitational sector’ alone; the contribution of the matter sector
is utilized to generate to the gravitational constant. In General Relativity, E972V
gets embedded into E in the sense of (5). Besides, attempts at solving the CCP do
not discuss ‘gravitational CCP’ at all, simply because gravity is assumed to be a
classical phenomenon to start with [11-15, 17].

In quantized gravity, the ‘gravitational CCP’ in (34) is to be tamed to achieve
the naturalness. To this end, one might consider a generalization of the mechanism
in Sect. 2 where it can cover violent contributions from not only the matter but
also the gravitational sector. However, it is not clear if this can be done by a direct
generalization. Another possibility would be to embed an appropriate mechanism
into the quantum theory of gravity itself, that is, the string theory so that graviton
loops or graviton-matter loops do not generate unacceptably large contributions
[18]. One here notes that the de Sitter space nonperturbatively arising from quan-
tum fluctuations at the Planck scale possess small quantum fluctuations [85, 86],
and violent contributions as in (34) may not exist at all.

3. Proposition 4 brings up a novel length scale, L, not found in General Relativity.
This parameter defines the gravitational constant Gy via (27). It is inversely pro-
portional to the total vacuum energy E induced by the matter sector. The mecha-
nism proposed treats it just as a parameter with no telling of its origin and possible
connection with energetics and dynamics. According to Proposition 6, it turns out
to be of Planckian size in the de Sitter space induced by Ag. In one viewpoint, one
can envision L? as a cross sectional area through which the covariantly-constant
part of the energy-momentum tensor on M (g, I') is reflected to the metric tensor
on M(T, (). This implies that L2 might be associated with compactified dimen-
sions in a higher dimensional formulation though it is not clear if such an ap-
proach, if any, can bring any new insight into the problem. In another viewpoint,
one can consider it as a varying distance parameter that maintains the strength of
gravitation against variations of the vacuum energy density E. Indeed, in course
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of the evolution of the Universe, E should have changed due to a series of phase
transitions, the last one being the parton-hadron transition. The parameter L thus
works as a compensator for the changes in E so that variations in the gravitational
constant remains within the observational limits in cosmology. Though the role of
L is rather clear in regard to (27), its origin is left unexplained by the mechanism.
Needless to say, a proper understanding of L will be possible if a more fundamen-
tal, possibly string theoretic, formulation of the mechanism is accomplished.

4. Proposition 4 establishes gravitational field dynamics in the limit of small & /A.
This is an excellent approximation for physical phenomena at ordinary energies.
Indeed, even for ultra-high-energy cosmic rays with energies in excess of 10! eV,
contribution of the remainder in (26) is around 10719 of the leading tgg term.

For energetic systems, as energetic as to wander in the Planckian territory,
the small ® /A approximation breaks down, and one is left with the exact equa-
tions (9). An immediate example of such ultra-high-energy systems is provided by
cosmic inflation. Inflation, exponential magnification of Planckian-size spacetime
patches into regions some twenty orders of magnitude larger than the observable
part today, is the most celebrated mechanism for explaining the flatness, homo-
geneity and isotropy of the Universe. The requisite outward pressure is provided
by the inflaton field ¢ (whose energy density determines the expansion rate of the
universe) which rolls extremely slowly towards its minimum (due to the friction
induced by the expansion rate of the universe). For successful inflation, energy
density of the inflaton must start at Planckian values and diminish slowly as in-
flaton rolls down to its minimum. The fact that inflaton acquires Planckian values
is already a serious naturalness problem in General Relativity: the nonrenormaliz-
able interactions are as important as the renormalizable ones, and it is difficult to
develop a consistent field-theoretic picture for inflaton dynamics [87, 88].

The inflationary epoch offers a novel arena for studying the proposed mecha-
nism in a regime in which the energy-momentum tensor of matter is of Planck-
ian size. In the present approach, a constant inflaton potential cannot inflate the
Universe; it is used up for generating the gravitational constant as discussed in
Propositions 4 and 6. For an analysis of the inflation, instead of considering the
exact equations (9), one may stick to (26) by including higher powers in ®&/A
to determine if the formalism respects the slow-roll regime of the inflationary
epoch. To this end, for a slowly-rolling homogeneous inflaton field, one finds, af-
ter expanding ¢ (¢) in Taylor series in ¢, that contributions of O(1/A?) terms at the
right-hand side of (26) involve repeated derivatives V (¢) with respect to ¢. There-
fore, in (26), the remainder cannot alter significantly the flatness of the potential.
Though having ¢ ~ M p; continues to be a naturalness problem, the nonlocal con-
tributions in view of the linear relation (24) can hardly modify the inflationary
nature of the potential. One further notes that, letting ¢ develop a nonminimal
coupling to R(I") in I,y441er[g, Y] in (30), where the resulting equation of motion
for ¢ will be identical to that in General Relativity, may improve the naturalness
and other features[89, 90].

This brief analysis, which obviously needs furthering for a precise determina-
tion of the model-dependent effects on the inflationary epoch, can be extended

. . —4 . . .
to cover the super-Planckian regime, V (¢) 2 M p1» Wherein the spacetime foam is
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expected to form. Though it requires quantum gravity to understand such turbulent
quantal spacetime structures, one may still extract information about the behavior
of the mechanism proposed beyond the linear approximation (24) via a detailed
analysis of (9).

The points highlighted here should be taken as some representative topics which need
further exploration. There is actually a whole list of phenomena that must be dealt
with within the present formalism: black holes, spacetime foam, grand unification,
stringy scenarios, astrophysical phenomena and many more. Essentially, having set
up a framework where the CCP can have a resolution consistently gives rise to novel
effects in other phenomena where gravitational interactions are important.

4 Conclusion

Since its first solidification in [11], the CCP has caused a huge literature avalanche.
The problem is a deeply perplexing one, and a resolution seems unlikely to be found
in the framework of quantum field theory and General Relativity. The literature is
widespread in terms of topics, scopes and methods of the attempts at understanding
the CCP. To mention a few of the main strategies, one notes various works utilizing
symmetry-based arguments [13, 14, 18, 24, 25, 27, 30-32, 34, 35, 45, 53, 57, 61, 68],
relaxation mechanisms [13, 15-19, 26, 28, 29, 36, 41, 42, 47-49, 52, 65-67], and
modified gravitational theories [13, 15, 19-21, 23, 33, 37, 38, 44, 50, 51, 55, 56, 58—
60, 62-64, 69, 70]. Given the well-understood part of Nature down to the terascale, a
fundamental measure of the validity of any proposition is its capability to degravitate
the vacuum energy density (O(M f}v) or higher) induced by the matter sector. There-
fore, each attempt at solving the CCP can be judged upon this minimal requirement
plus its validity and generality. Quite expectedly, any change designed for solving
the CCP must give rise to novel effects in quantum field theoretic and gravitational
contexts, and it is via these effects that one can hint in the true mechanism behind the
tiny cosmological constant measured [3—10].

Compared to the existing literature, the present work brings up a novel, geometro-
dynamical mechanism for a resolution of the CCP. The mechanism, based on the six
propositions stated and proven in Sect. 2, enables one to distinguish between Ein-
stein’s cosmological constant Ay and the vacuum energy deposited by the quantal
matter and radiation. Thus, the vacuum energy of matter sector, instead of gravitat-
ing, facilitates the generation of the gravitational constant. If gravity is a classical
phenomenon, as has been claimed for the de Sitter space generated by Ag, then the
proposed mechanism can be regarded to have naturalized the CCP since determina-
tion of Ag, in isolation, from cosmological observations involves no fine-tuning at
all. On the other hand, if gravity is quantized, then CCP gets revived due to graviton
loops, and the mechanism proposed here is simply halted to offer any solution. In this
particular case, all that the present method can do is to modify the nature of the CCP
in that it becomes a naturalness problem pertaining to the gravitational sector, only.
Quantum gravity becomes the main obstacle in searching for a way to suppress vio-
lent corrections from quantum fluctuations. However, if de Sitter gravity remains as a
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purely classical structure in accord with various claims then the mechanism proposed
in this work gains a decisive status for the CCP.

The fundamental equations hypothesized are free of the CCP to start with. Re-
production of correct gravitational dynamics, in a way free of the CCP, has been
accomplished by constructing a new geometry whose metric tensor is a linear, causal
and nonlocal functional of the energy-momentum tensor of the matter and radiation.
If the covariantly-constant part of this metric is large enough to facilitate a power
series expansion, at the lowest order, gravitational field equations are obtained by
an appropriate definition of the gravitational constant. Nevertheless, the original lin-
ear relation must be modified order by order in perturbation theory to reach Bianchi
consistency. The subleading terms obtained this way contain nonlocal pieces whose
effects can be crucial for description of Nature at super-Planckian energies where
the aforementioned power series expansion necessarily breaks down. For physical
phenomena at ordinary energies, however, the resulting dynamical equations are in-
distinguishable from the ones in General Relativity to an excellent approximation.
In heart, the mechanism makes critical use of the dual nature of the metric tensor: It
defines both the spacetime geometry and energy-momentum tensor of the vacuum.
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