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Abstract We investigate the possibility of inducing the cosmological constant from
extra dimensions by embedding our four-dimensional Riemannian space-time into a
five-dimensional Weyl integrable space. Following the approach of the space-time-
matter theory we show that when we go down from five to four dimensions, the Weyl
field may contribute both to the induced energy-tensor as well as to the cosmolog-
ical constant �, or more generally, it may generate a time-dependent cosmological
parameter �(t). As an application, we construct a simple cosmological model in
which �(t) has some interesting properties.

Keywords Five-dimensional vacuum · Integrable Weyl theory of gravity ·
Induced-matter theory

1 Introduction

In a very recent past it appeared that the role played by the cosmological constant in
cosmology was merely historical, mainly connected with Einstein’s attempt to build
a cosmological scenario in which the Universe was static and finite [1]. However,
since the recent discovery of cosmic acceleration there has been a renewed interest in
the role the cosmological constant could play to explain the new data. The evidence
which appears to call for dark energy is perfectly consistent with a cosmological con-
stant. Moreover, the present most popular model of cosmology, the Lambda-CDM
model, tacitly assumes the existence of the cosmological constant [2]. On the other
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hand, some physicists have always argued in favour of the existence of the cosmo-
logical constant as a consequence of the energy density of the vacuum [3].

From the standpoint of cosmological theory it seems then desirable to have a justi-
fication of the cosmological constant on theoretical grounds. This quest has led some
theoreticians to modify Einstein’s gravitational theory, these attempts going back to
the works of Eddington and Schrödinger [4].

Our aim in the present article is to introduce a new approach to this old ques-
tion. We argue that the appearance of the cosmological constant in the equations of
four-dimensional (4D) general relativity might be related to the assumption, made
by some modern spacetime theories, that our Universe may have extra dimensions.
Among such theories are the so-called braneworld scenario [5–8] and the non-
compact Kaluza-Klein theories [9–12], both sharing some basic assumptions con-
cerning the geometry of the fundamental higher-dimensional embedding space. For
example, in these proposals our ordinary spacetime is viewed as a hypersurface em-
bedded in a five-dimensional (5D) manifold (the bulk). On the other hand, mathemat-
ical theorems regulate these embeddings, in particular, the Campbell-Magaard theo-
rem [13, 14] and its extensions specify the conditions under which the embeddings
are possible [15–21].

The possibility of generating matter and fields from a higher-dimensional vacuum
was first realized by Kaluza and Klein, an idea that has been a source of inspiration
for practically all higher-dimensional theories [22–24]. In particular, a mathematical
formalism has been developed by Wesson and Ponce de Leon [25] that permits to “in-
duce” an energy-momentum tensor from the vacuum Einstein field equations in five
dimensions, a schema now known as the induced-matter or space-time-matter (STM)
theory. It has later been shown that from a geometrical point of view such generated
energy-momentum tensor is also related to the extrinsic curvature of the spacetime
hypersurface [26]. Besides, an interesting feature of this mechanism, apart from this
“geometrization” of matter, is that it is also powerful enough to generate a cosmo-
logical constant in four dimensions out of a pure five-dimensional vacuum [27]. It
should be noted that this has already been done in the context of the usual space-
time-matter theory by considering a Riemannian bulk, and, in fact, it has been shown
that it is possible to generate simultaneously the cosmological constant and an in-
duced energy-momentum tensor T

(IM)
αβ that describes macroscopic matter [28–31].

However, it seems interesting to investigate the subject when the geometry of the
embedding space has more degrees of freedom, as in the case of Weyl geometry, per-
haps the simplest generalization of Riemannian geometry [32, 33]. It turns out then
that when we go down from 5D to 4D, as in the space-time-matter theory, the Weyl
field may contribute both to the induced energy-tensor as well as to the cosmological
constant �, or more generally, to a time-dependent cosmological function �(t) [34].

In this paper we shall consider a particular case of Weyl geometry. Conceived by
Weyl in 1918, as an attempt to unify gravity with electromagnetism, in its original
form Weyl’s theory [32, 33] turned out to be inadequate as a physical theory as was
firstly pointed by Einstein soon after the appearance of the theory [35–38]. As is well
known, Einstein’s argument was that in a non-integrable Weyl geometry it would not
be possible the existence of sharp spectral lines in the presence of an electromagnetic
field since atomic clocks would depend on their past history. However, a variant of
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Weyl geometry, namely, the one in which the Weyl field is integrable, does not suffer
from the flaw pointed out by Einstein, and for this reason it has attracted the atten-
tion of some cosmologists [39–42], particularly in the context of higher-dimensional
theories [43]. A Weylian Kaluza-Klein “hybrid” theory has also been studied in con-
nection with Chern-Simons [44, 45] modified gravity and perhaps is of interest to
mathematical physicists due to its rich geometrical structure.

It turns out that in this case if the Weyl field depends only on the extra dimension,
then the embedded spacetime is Riemannian and general relativity holds in the hyper-
surface [42, 46], although the non-Riemannian character of the whole bulk propagates
into the hypersurface in the form of induced matter and a cosmological function.

The paper is organized as follows. We start in Sect. 1 with a brief review of some
fundamental concepts that underlie Weyl geometry. We proceed in Sect. 2 to develop
a five-dimensional Weylian theory of gravity in vacuum, the dynamics of which is
given by a certain action chosen among the simplest ones [39–42]. In the same sec-
tion we set the equations for a particular choice of the five-dimensional metric and
examine the case of a simple cosmological model. In Sect. 3 we illustrate the theory
by going through a simple example taken from Cosmology. Our final remarks are
contained in Sect. 4.

2 Weyl Geometry

The starting point of the new geometry created by Weyl is the assumption that the
covariant derivative of the metric tensor g is not zero, but, instead, is given by

∇agbc = σagbc, (1)

where σa denotes the components of a one-form field σ with respect to a local coordi-
nate basis. This is, of course, a generalization of the idea of Riemannian compatibility
between the connection ∇ and g, which is equivalent to require the length of a vec-
tor to remain unaltered by parallel transport [35–38]. If σ = dφ, where φ is a scalar
field, then we have an integrable Weyl geometry. A differentiable manifold M en-
dowed with a metric g and a Weyl field σ is usually referred to as a Weyl frame. It
is interesting to see that the Weyl condition (1) remains unchanged when we go to
another Weyl frame (M,g,σ ) by performing the following simultaneous transforma-
tions in g and σ :

g = e−f g, (2)

σ = σ − df, (3)

where f is a scalar function defined on M .
A clear geometrical insight on the properties of Weyl parallel transport is given by

the following proposition: Let M be a differentiable manifold with an affine connec-
tion ∇ , a metric g and a Weyl field of one-forms σ . If ∇ is compatible with g in the
Weyl sense, i.e. if (1) holds, then for any smooth curve α = α(λ) and any pair of two
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parallel vector fields V and U along α, we have

d

dλ
g(V,U) = σ

(
d

dλ

)
g(V,U), (4)

where d
dλ

denotes the vector tangent to α.
If we integrate the above equation along the curve α, starting from a point P0 =

α(λ0), then we obtain

g(V (λ),U(λ)) = g(V (λ0),U(λ0))e

∫ λ
λ0

σ( d
dρ

)dρ
. (5)

Putting U = V and denoting by L(λ) the length of the vector V (λ) at an arbitrary
point P = α(λ) of the curve, then it is easy to see that in a local coordinate system
{xa} (4) reduces to

dL

dλ
= σa

2

dxa

dλ
L.

Consider the set of all closed curves α : [a, b] ∈ R → M , i.e., with α(a) = α(b).

Then, we have

g(V (b),U(b)) = g(V (a),U(a))e
∫ b
a σ ( d

dλ
)dλ.

Now, it is the integral
∫ b
a σ ( d

dλ
)dλ that is responsible for the difference between the

readings of two identical atomic clocks following different paths.
It follows from Stokes’ theorem that if σ is an exact form, that is, if there exists a

scalar function φ, such that σ = dφ, then

∮
σ

(
d

dλ

)
dλ = 0

for any loop. In other words, in this case the integral e

∫ λ
λ0

σ( d
dρ

)dρ
does not depend on

the path. Since it is this integral that regulates the way atomic clocks run this variant
of Weyl geometry does not suffer from the flaw pointed out by Einstein, and we have
what is often called in the literature a Weyl integrable manifold.

Our next step is to consider a Weylian theory of gravity. If we consider a Weyl
spacetime the simplest action that gives the dynamics of the gravitational field in the
absence of matter is given by

S =
∫

d4x
√

g[R + ξφa ;a], (6)

where ξ is an arbitrary coupling constant, φa ≡ φ,a is the Weyl field, R is the Weylian
Ricci scalar and the semicolon ( ; ) denotes covariant derivative with respect to the
Weyl connection [39–42]. The extension of this formulation to a higher-dimensional
space is straightforward. In the next section we shall consider a five-dimensional
Weyl integrable space.
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3 A Weyl Integrable Dynamics in Five Dimensions

Let us consider a five-dimensional space M5 endowed with a metric tensor (5)g and
an integrable Weyl scalar field φ. In local coordinates {ya} the five-dimensional line
element of will be denoted by

dS2 = gab(y) dyadyb, (7)

where gab are the components of (5)g. As we have already mentioned the simplest
action that can be constructed for a Weylian theory of gravity in a five-dimensional
vacuum is given by

(5)S =
∫

d5y

√
|(5)g|[(5)R + ξφa ;a

]
, (8)

where ξ is an arbitrary coupling constant, φa ≡ φ,a is the gauge vector associated
with the Weyl field, |(5)g| is the absolute value of the determinant of the metric (5)gab ,
(5)R is the Weylian Ricci scalar. One can easily check that the variation of the action
(8) with respect to the tensor metric and with respect to the Weyl scalar field yields

(5)Gab + φa;b − (2ξ − 1)φaφb + ξgabφcφ
c = 0, (9)

φa ;a + 2φaφ
a = 0, (10)

where (5)Gab denotes the Einstein tensor calculated with the Weyl connection
(5)
a

bc =(5) {a
bc} − (1/2)[φbδ

a
c + φcδ

a
b − gbcφ

a] and {a
bc} are the Christoffel sym-

bols of Riemannian geometry. Equations (9) and (10) are the field equations of the
five-dimensional Weyl gravitational theory and describes the dynamics of a five-
dimensional bulk in vacuum. A better insight may be gained if we recast the field
equations (9) and (10) into its Riemannian part plus the contribution of the Weyl
scalar field. Thus after excluding total derivatives of the scalar field φ the action (8)
can be written as [39–42]

(5)S =
∫

d5y
√

g5

[
(5)R̃ + 1

2
(5ξ − 6)φaφ

a

]
. (11)

The field equations are obtained by taking a variation of the above action with respect
to the pair (gab,φ). We are then led to

(5)G̃ab − 1

2
(6 − 5ξ)

[
φaφb − 1

2
gabφcφ

c

]
= 0, (12)

(5)�̃φ = 0, (13)

where the tilde (∼) is used to denote quantities calculated with the Riemannian part
of the Weyl connection and (5)�̃ denotes the 5D d’Alembertian operator in the Rie-
mannian sense.

At this point let us express the local coordinates {ya} as {xα, l}, denoting by l

the fifth (spacelike) coordinate, and choose for simplicity the line element (7) in the
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form1

dS2 = gαβ(x, l)dxαdxβ − �2(x, l)dl2, (14)

where the function �2(x, l) is the 5D analogue of the lapse function used in canonical
general relativity [49].

As in the space-time-matter theory [25], with respect to this foliation the field
equations (12) can be split into

(5)G̃αβ − 1

2
(6 − 5ξ)

[
φαφβ − 1

2
gαβ

(
φγ φγ − �−2φ2

l

)] = 0, (15)

(5)G̃αl − 1

2
(6 − 5ξ)φαφl = 0, (16)

(5)G̃ll − 1

4
(6 − 5ξ)

[
φ2

l + �2φγ φγ
] = 0. (17)

The five-dimensional Weylian equations we have now obtained assuming the geom-
etry given by (14) supposes that in principle the Weyl scalar field φ depends on all
coordinates, that is, φ = φ(x, l). Some solutions of the above field equations have
been worked out in detail by Novello and collaborators considering different geomet-
ric settings [39–42]. However our interest here is mainly to study a particular case of
these field equations when the four-dimensional spacetime can be embedded in a five-
dimensional ambient space whose dynamics comes from an integrable Weyl theory of
gravity. In fact this is strongly motivated by a recently result concerning the existence
of necessary and sufficient conditions for a Riemannian manifold to be embedded in
a Weyl space [42, 46]. According to these, if the Weyl scalar field depends only on the
extra coordinate l, then each leaf of the foliation l = const has a Riemannian character
and can be locally and isometrically embedded in a five-dimensional Weylian space
whose metrical properties are given by (14). Therefore, this “anti-cylinder” condition
on the Weyl field guarantees that even if the five-dimensional bulk is Weylian, the
geometry of the hypersurface l = const geometry is strictly Riemannian. (In pass-
ing, we should note that an analogous anti-cylinder condition has been used in five-
dimensional models in which quantum confinement of fermions on hypersurfaces are
driven by a scalar field depending only on the extra dimension [50].) Since we regard
the spacetime as one of the leaves of the foliation and given that such embedding
preserves the Riemannian character of the spacetime we proceed to investigate the
four-dimensional field dynamics induced by the five-dimensional space. In much the
same way as in induced-matter theory [25] one would interpret the extra contributions
coming from the extra dimension as macrosocopic matter in 4D.

In view of the above let us assume that φ = φ(l), i.e. the Weyl scalar field depends
only on the extra coordinate l. In this case the field equations (15), (16), (17) and (13)
become

(5)G̃αβ + 1

4
(5ξ − 6)�−2gαβφ2

l = 0, (18)

1We shall adopt the convention diag(+ − −−) for the signature of gαβ .
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(5)G̃αl = 0, (19)

(5)G̃ll − 1

4
(6 − 5ξ)φ2

l = 0, (20)

∂

∂l

[√|g5|�−2φ2
l

] = 0. (21)

To illustrate with an example let the five-dimensional space M5 correspond to a five-
dimensional cosmological model in the form [47, 48] with metric given by

dS2 = dt2 − a2(t)dr2 − e2F(t)dl2, (22)

where dr2 = δij dxidxj is the three-dimensional Euclidian line element, t represents
the cosmic time for co-moving observers, F(t) is a well-behaved real function and
a(t) is the cosmological scale factor. Inserting the metric (22) in (21) it can be easily
seen that the Weyl scalar field in this case is given by

φ(l) = C1l + C2, (23)

where C1 and C2 are integration constants. The field equations (18), (19) and (20)
now give

3H 2 + 3ḞH = 1

4
(6 − 5ξ)C2

1e−2F , (24)

2
ä

a
+ H 2 + 2ḞH + F̈ + Ḟ 2 = 1

4
(6 − 5ξ)C2

1e−2F , (25)

3

(
ä

a
+ H 2

)
= −1

4
(6 − 5ξ)C2

1e−2F , (26)

where H(t) = ȧ/a is the Hubble “constant”. From (25) and (26) we obtain the equa-
tion

F̈ + Ḟ 2 + 2HḞ + 5
ä

a
+ 4H 2 = 0. (27)

In order to simplify the structure of this equation we introduce a new function u(t)

defined by u(t) = a(t)eF(t). In this way (27) becomes

ü + 4

(
ä

a
+ H 2

)
u = 0. (28)

The above equation relates u(t) with a(t) in such a way that the solutions of (28) can
be substituted in (24) yielding a differential equation for a(t), which in principle can
be solved.

4 The Dynamics Induced on the Four-Dimensional Riemannian Hypersurface

As we have mentioned in the previous section one of our aims is to explore the possi-
bility of interpreting the extra contributions of the five-dimensional Weylian bulk to
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the four-dimensional Riemannian hypersurface as four-dimensional matter induced
geometrically. In this section we shall study the four-dimensional dynamics geomet-
rically induced on a generic hypersurface. We recall that we are assuming that the
five-dimensional space is foliated by a family of hypersurfaces {�} defined by the
equation l = const. Clearly, on a particular hypersurface �0 the induced line element
will be given by

dS2
�0

= hαβ(x)dxαdxβ, (29)

where hαβ(x) = gαβ(x, l0) is the induced metric on �0. From the Gauss-Codazzi
equations it is easy to show (see, for instance [43]) that the induced dynamics on the
hypersurface �0 is governed by the four-dimensional field equations

(4)G̃αβ = T
(IM)
αβ + �(x)hαβ, (30)

where T
(IM)
αβ is the usual energy momentum tensor obtained in the space-time-matter

theory, which has the form [25]

T
(IM)
αβ = �α||β

�
+ 1

2�2

{ �

�

�

�
gαβ − ��

gαβ + gλμ �
gαλ

�
gβμ − 1

2
gμν �

gμν

�
gαβ

+ 1

4
gαβ

[
�
g

μν �
gμν + (

gμν �
gμν

)2
]}

, (31)

with the bars (||) denoting covariant derivative in a Riemannian sense and the star
(�) denoting derivative with respect to the fifth coordinate l, and the function �(x) is
given by

�(x) = 1

4
(6 − 5ξ)�−2 φ2

l

∣∣∣
l=l0

. (32)

(We recall that we are assuming that the extra coordinate has a spacelike charac-
ter.) Clearly, both terms T

(IM)
αβ and �(x) comes from the Weylian bulk. The induced

energy-momentum tensor T
(IM)
αβ can be obtained even if the bulk is Riemannian, but

the interesting fact here is that the function �(x) is a new contribution depending
directly on the Weyl scalar field. It is worth mentioning that when the lapse function
� depends only on the time, then �(t) can be interpreted as an induced cosmologi-
cal function, whereas if � is constant then (32) reduces to an induced cosmological
constant.

5 A Simple Application to Cosmology

As a simple application of the ideas developed in the previous section let us have a
quick look into the cosmological scenario that takes place in the four-dimensional
hypersurface �0, whose geometry is induced by the line element (22). In this case
the induced line element (29) becomes

dS2
�0

= dt2 − a2(t)dr2, (33)
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which is nothing more than the line element of a Friedmann-Robertson-Walker
model. The induced energy-momentum tensor (31) reduces to

T
(IM)
αβ = F,α,β + F,αF,β − (4){ γ

αβ}F,γ , (34)

where the (4){γαβ} denote the four-dimensional Christoffel symbols calculated with
the induced metric hμν in (33). Assuming that the induced matter configuration given
by (34) is that of a perfect fluid, as viewed by four-dimensional comoving observers
located at the hypersurface �0, we can define the energy density ρ(IM) and pressure
P(IM) for the induced matter by ρ(IM) = T (IM) t

t and P(IM) = −T (IM)r
r respec-

tively. Thus using (33) the 4D field equations (30) become

3H 2 = ρ(IM) + �(t), (35)

2
ä

a
+ H 2 = −(P(IM) − �(t)), (36)

where according to (32) and (23) the induced varying cosmological “constant” �(t)

is given by

�(t) =
(

C1

2

)2

(6 − 5ξ)e−2F(t). (37)

Introducing the effective energy density ρeff = ρ(IM) + �(t) and the effective pres-
sure Peff = P(IM) − �(t) we define a parameter ωeff associated with the effective
equation of state, which is given by

ωeff ≡ Peff

ρeff
= −

[
1 − Ḟ 2 + F̈ − HḞ

F̈ + Ḟ 2 + �(t)

]
. (38)

By simple inspection it can easily be seen that ωeff depends entirely on the metric
function F(t), which, in turn, can be determined by the bulk dynamics, i.e. by finding
solutions of the system (24)–(26). A particular solution F(t) for a given scale factor
a(t) can be obtained by solving (28). Thus if we look for solutions F(t) in the case
of a power-law expanding universe with the scale factor given by a(t) = a0(t/t0)

p ,
(28) becomes

ü + 4p(2p − 1)

t2
u = 0, (39)

whose general solution is given by

u(t) = A1t
1/2+(1/2)

√
1−32p2+16p + A2t

1/2−(1/2)
√

1−32p2+16p, (40)

where A1 and A2 are integration constants. Moreover, choosing A2 = 0, the corre-
sponding particular solution for F(t) can be written as

F(t) = ln(B1t
γ ), (41)

where B1 = (A1t
p

0 /a0) and γ = (1/2 − p) + (1/2)
√

1 − 32p2 + 16p . Note that if
we want to have real values for the power γ that are compatible with an expanding
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universe (p > 0), the values of p must range in the interval 0 < p ≤ (1/4) + √
6/8.

On the other hand, if we insert (41) into (37) and (38), then the induced variable
cosmological “constant” �(t) and the effective parameter ωeff are given, respectively,
by

�(t) =
(

C1

2

)2

(6 − 5ξ)B−2
1 t−2γ , (42)

ωeff = −
[

1 − γ 2 − γ − pγ

γ 2 − γ + (C1/2)2(6 − 5ξ)B−2
1 t2−2γ

]
. (43)

If we want to have ωeff decreasing with time we must require 2 − 2γ > 0, and this
condition restricts the range of variation of the parameter p to p > 1/3. Finally, if
the former inequality is to be compatible with an expanding universe p must range in
the interval 1/3 < p ≤ (1/4) + √

6/8. One reason for restricting the parameter p to
this interval is that with a suitable choice of p the effective parameter ωeff will tend
asymptotically to −1. We conclude that, in its final state, our model would tend to a
de Sitter universe. Note that in the case when p = 5/9 the induced �(t) given by (42)
becomes a constant, while the value of ωeff is exactly −1. This means that, in such
models, p = 5/9 corresponds to a de Sitter universe. The fact that ωeff is decreasing
with time can perhaps be interpreted as if this model were effectively mimicking
freezing quintessential models [51].

Finally, in order to have an energy density associated to �(t), here denoted by
ρ�(t), which can not be steeper than the energy densities of radiation ρr ∼ t−2 and
matter (ρm ∼ t−2), during the epochs dominated by radiation and matter respectively,
(42) requires the condition γ < 1 to be valid, in and accordance with the condition
2 − 2γ > 0.

6 Final Remarks

In this paper we have considered the idea of generating a cosmological constant, or
rather, a cosmological function, from extra dimensions. Although this has already
been investigated in the context of space-time-matter theory, the novelty of our ap-
proach is to regard the same problem in a more general setting, i.e. by assuming the
geometry of the embedding space to have a Weylian character. Being one of the sim-
plest generalizations of Riemannian geometry, the theory developed by Weyl, in the
opinion of some authors, “contains a suggestive formalism and may still have the
germs of a future fruitful theory” [38]. Two comments are in order here: Firstly, the
embedding space has a prescribed dynamics; secondly, the embedding does not affect
the Riemannian geometry of the spacetime. These features depend on the fact that the
Weyl field is assumed to be integrable and depending only on the extra dimension.

Finally, we think that it would be interesting to compare the expression we have
obtained for �(t) with similar ones found in other theories [52] and also to discuss
some observational consequences of our model. However, we think this would take
us far beyond our main goal, namely, to set up a simple “toy model” to call attention
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to the richness of non-Riemannian geometries, in particular to the Weyl integrable
manifolds, as a way of providing new degrees of freedom that might play a role in
the theoretical framework of higher-dimensional embedding theories of spacetime.
We believe that in this context issues such as the nature of the cosmological constant,
dark energy and other important questions may be investigated from an entirely new
point of view. We leave these subjects for future work.
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