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Abstract Based on the notion of time translation, we develop a formalism to deal
with the logic of quantum properties at different times. In our formalism it is possi-
ble to enlarge the usual notion of context to include composed properties involving
properties at different times. We compare our results with the theory of consistent
histories.
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1 Introduction

The absence of determinism is one of the main differences of the quantum theory
with the classical one. Nevertheless, it is necessary in quantum theory to deal in a
consistent way with expressions involving different properties of the system at differ-
ent times. For example, it is necessary to relate a property of a microscopic system at
a given time, previous to a measurement, with a property of an instrument when the
measurement is finished. Moreover, in the famous double slit experiment it is argued
about the impossibility to say which slit a particle passed before producing a spot on
a photographic plate [1].

In a series of papers starting in 1984, an approach to quantum interpretation known
as consistent histories, or decoherent histories, has been introduced by R. Griffiths
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[2], R. Omnès [3], M. Gell-Mann and J. Hartle [4]. In their approach, the notion of
history is defined as a sequence of properties at different times. The probability for
a history is also defined through a formula motivated by the path integral formalism,
but with no direct relation with the Born rule. A consistency condition should be
satisfied by the possible different histories which can be included in a legitimate
description of the system, therefore the name of consistent histories. For a given
physical system the possible sets of consistent histories depend on the state. This
is not entirely satisfactory, because in axiomatic theories of quantum mechanics the
state is usually considered as a functional on the space of observables, and it appears
after these observables in a somehow subordinate position. The importance of the
notion of state functionals acting on a previously defined space of observables was
stressed by one of us in references [5] and [6].

In this paper we explore a different approach to define the probability of a con-
junction of properties at different times, and to discriminate which are the properties
that can be simultaneously considered in a description of the system. Essentially, we
consider the time translation of a property, already at our disposal in the dynamic
generated by the Schrödinger equation. When properties corresponding to different
times are translated to a common single time, we can apply to them the usual rules of
compatibility between different observables, and compute the probabilities using the
Born rule.

In Sect. 2 we present a brief summary of the theory of consistent histories, and we
discuss its application to a spin system. In Sect. 3 we give a short review of the no-
tions of quantum logic, contexts and probabilities. The notion of time translation of
quantum properties is introduced in Sect. 4, where we also obtain the non distributive
lattice of time dependent properties. This definitions are used in Sect. 5 to implement
expressions involving the conjunction of properties at different times, and to define
the compatibility of these type of expressions. Distributive lattices of time dependent
properties, called generalized contexts, are also obtained in this section. The gener-
alized contexts are compared with the theory of consistent histories in Sect. 6. The
conclusions are given in Sect. 7.

2 The Theory of Consistent Histories

In what follows we present the main features of the theory of consistent histories,
following essentially the approach given by R. Omnès [7–9], and we also discuss the
application of this theory to the case of a spin system.

Let us consider a state of a system at time t0, represented by the state operator ρ̂t0 .
An observable represented by an operator ̂Aj with spectrum σj is considered for each
time tj (j = 1, . . . , n) of a sequence verifying t0 < t1 < · · · < tn. Each spectrum σj

is partitioned by a family {�(μ)
j } of mutually exclusive sets (

⋃

μ �
(μ)
j = σj , �

(μ)
j ∩

�
(μ′)
j = ∅ (μ �= μ′)).
The operator ̂E

(μ)
j is the projector onto the subspace of the Hilbert space corre-

sponding to the subset �
(μ)
j of the spectrum σj , and it represents the property “the
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value of the observable Aj is in the set �
(μ)
j at time tj ”. These projectors satisfy the

equations ̂E
(μ)
j

̂E
(μ′)
j = δμμ′ ̂E(μ′)

j and
∑

μ
̂E

(μ)
j = ̂I .

A history a is defined by the property “(the value of A1 is in �
(k1)
1 at t1) and (the

value of A2 is in �
(k2)
2 at t2) and . . . and (the value of An is in �

(kn)
n at tn)”. It is

represented by the history operator

̂Ca = ̂E(kn)
n (tn) . . . ̂E

(k2)
2 (t2) ̂E

(k1)
1 (t1), ̂E

(kj )

j (tj ) = ei ̂H(tj −t0)/�
̂E

(kj )

j e−i ̂H(tj −t0)/�,

(1)
where ̂H is the Hamiltonian operator of the system.

The probability of the history a is defined by the expression

Pr(a) = Tr(̂Ca ρ̂t0
̂C†

a). (2)

As the probability should verify positivity, normalization and additivity, the pos-
sible histories to be included in a valid description of the system should verify some
consistency conditions. Sufficient conditions, given by Gell-Mann and Hartle, are

Tr(̂Ca ρ̂t0
̂C

†
b) = 0, a �= b. (3)

The theory of consistent histories is a framework suitable to include properties
of a system at different times in the language of quantum theory. Moreover, these
properties at different times are given a well defined probability by (2), provided we
consider properties within a consistent family of histories. Each family of consistent
histories generate a possible universe of discourse about a quantum system. In gen-
eral, it is not possible to include two families in a single larger one. Different sets of
consistent histories are considered complementary descriptions of the system.

For simplicity we are going to consider the case n = 2, involving histories with
only two different times t1 and t2. For the time t1 the spectrum of the observable
̂A1 is partitioned by two complementary sets �1 and �1 with projectors ̂E1 and ̂E1,
while for the time t2 the spectrum of the corresponding observable ̂A2 is partitioned

by the sets �2 and �2 with projectors ̂E2 and ̂E2.
For this special case the necessary and sufficient consistency condition to obtain

well defined probabilities is

Re Tr(̂E1(t1) ρ̂t0
̂E1(t1) ̂E2(t2)) = 0, (4)

which is called the Griffiths condition.
In this case, the sufficient Gell-Mann and Hartle condition is

Tr(̂E1(t1) ρ̂t0
̂E1(t1) ̂E2(t2)) = 0. (5)

Logical operations and relations are well defined on a family of consistent histo-
ries. If �1 = �1 ∪�1 is the spectrum of ̂A1 and �2 = �2 ∪�2 is the spectrum of ̂A2,
the elementary histories are represented in �1 × �2 by the sets �1 × �2, �1 × �2,
�1 ×�2 and �1 ×�2. All the properties of the family are represented by the unions
of these four sets. In this way, the notions of conjunction, disjunction and negation
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are obtained. According to the approach of R. Omnès [7, 8], a property a is said to
imply another property b of the same family if Pr(b|a) = Pr(b and a)/Pr(a) = 1.
The conventional axioms of formal logic are satisfied with these definitions [8]. We
notice that in this theory the implication relation is defined trough a previous defini-
tion of probability. This makes a big difference with the usual approaches to quantum
mechanics, where the logical relations and operators on the properties have their own
definition independent of the probability, which is later on given by the Born rule. Our
own construction of the logical operators and relations, to be developed in Sects. 4
and 5, will be established in a way which do not depend on the definition of proba-
bility or on the state of the system.

R. Omnès [8] applied the theory of consistent histories to the case of a 1
2 spin

system, prepared at the time t0 in a pure state with Sx = + 1
2�, represented by the

vector |x+〉 (ρ̂t0 = |x+〉〈x+|). The description of the system include the two possible
values of the spin along the z axis direction for the time t2, which may be obtained
by an Stern-Gerlach experiment. With the simplifying assumption of the vanishing
of the Hamiltonian, he searched for the possibility to include in the description the
two possible values of the spin along a direction n1 (|n1| = 1) for a time t1 after the
preparation of the spin along the positive direction of the x axis, and before the time
t2 corresponding to the measurement along the z axis (t0 < t1 < t2). The state vectors
|n1+〉 and |n1−〉 correspond to the values + 1

2� and − 1
2� along the direction n1. If the

sufficient Gell-Mann and Hartle condition (5) is applied with ̂E1(t1) = |n1+〉〈n1+|,
̂E1(t1) = |n1−〉〈n1−|, ρ̂0 = |x+〉〈x+| and ̂E2(t2) = |z+〉〈z+|, two possibilities are
obtained:

(i) A set of histories including the two possible spin values along the x axis at time

t1, represented by the projectors ̂E1 = |x+〉〈x+| and ̂E1 = |x−〉〈x−|, together
with the two possible spin values along the z axis at time t2, represented by

the projectors ̂E2 = |z+〉〈z+| and ̂E2 = |z−〉〈z−|. Therefore in this case n1 =
(1,0,0).

(ii) A set of histories including the two possible spin values along the z axis at time

t1, represented by the projectors ̂E1 = |z+〉〈z+| and ̂E1 = |z−〉〈z−|, together
with the two possible spin values along the z axis at time t2, represented by the

projectors ̂E2 = |z+〉〈z+| and ̂E2 = |z−〉〈z−|. In this case n1 = (0,0,1).

More possible consistent histories are obtained using the necessary and sufficient
Griffiths condition given in (4). If n0 is the preparation spin direction at the time t0,
and if n2 is the spin direction at the time t2, the equation (n0 × n1) · (n1 × n2) = 0
is obtained for the possible n1 spin directions at the time t1 (see reference [9], page
161). For n0 = (1,0,0) and n2 = (0,0,1), representing the x and the z directions,
the direction n1 could be any vector in the planes xy or yz.

Up to now, we have considered well known facts of the theory of consistent his-
tories. We now analyze in more detail the consistent family obtained in the case (i).
Well defined probabilities can be obtained for all the members of the family apply-
ing (2). Let us consider the probability of the spin to be + 1

2� along the x axis at time
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t1 and to be + 1
2� along the z axis at time t2,

Pr((x+, t1); (z+, t2)) = Tr(̂E2 ̂E1ρ̂t0
̂E1 ̂E2) = |〈x+|z+〉|2 = 1

2
.

Provided that t0 < t1 < t2, any value of t1 gives a consistent family of histories,
and therefore a valid description of the spin system. As the time t1 can be chosen very
close to the time t2 we have

lim
t1−→t2

Pr((x+, t1); (z+, t2)) = 1

2
. (6)

The property giving simultaneously well defined values to different components
of the spin is forbidden in the universe of discourse of ordinary quantum mechanics,
due to the uncertainty principle (operators representing two different components
of the spin do not commute). Therefore the limit of (6) cannot be interpreted as the
probability for the conjunction of the spin values x+ and z+ at the single time t2. The
theory of consistent histories is discontinuous in its property ascriptions for different
times.

In the following sections we present our own approach to the description of time
dependent properties of a quantum system. We are going to prove that in our formal-
ism only the case (ii) survives as a valid description for the two times properties of
the spin system. Only for this case, the limit t1 −→ t2 of (6) can be interpreted as a
single time probability.

3 Quantum Logic, Contexts and Probabilities

We shall give in this section a brief summary of the logical structure of quantum
mechanics according to G. Birkhoff and J. von Neumann [10], which is one of the
standard approaches to quantum logic [11]. This summary is a preparation for our
own approach to the problem of time dependent properties, to be developed in Sect. 4.

A Hilbert space H is associated with each isolated physical system. Every quan-
tum property p is represented by a subspace Hp of the Hilbert space H. For each
subspace Hp there exists a projection operator ̂�p such that Hp = ̂�p H, and there-
fore a property p can also be represented by the projector ̂�p .

The implication relation between two properties is defined by the inclusion of the
corresponding subspaces (p1 ⇒ p2 iff Hp1 ⊆ Hp2 ). The conjunction of two proper-
ties p and p′ is represented by the greatest lower bound of the two corresponding
subspaces Hp and Hp′ (Hp∧p′ = Inf(Hp, Hp′) = Hp ∩ Hp′ ), while the disjunction
is the least upper bound (Hp∨p′ = Sup(Hp, Hp′)). Moreover, the negation of a prop-
erty p is represented by the orthogonal complement of the corresponding subspace
(H−p = H⊥

p ).
Endowed with these implication, conjunction, disjunction and negation, the set of

all properties of a physical system is an orthocomplemented nondistributive lattice.
According to quantum theory, not all the properties can simultaneously be considered
in a description of a physical system. Different descriptions involve different sets of
properties.
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Each possible description is called a context, and it is defined through a set of
atomic or elementary properties pj (where j belongs to a set σ of indexes). The
properties pj , represented by projectors ̂�j , are mutually exclusive and complete,
i.e.

̂�i
̂�j = δij

̂�i,
∑

i∈σ

̂�i = ̂I .

By disjunction of these elementary properties it is possible to generate all the prop-
erties of the context, obtaining a distributive lattice. Each property p of the context
can be represented by a projector which is a sum of some of the projectors ̂�i ,

̂�p =
∑

i∈σp

̂�i, σp ⊂ σ.

A state of the system is represented by the statistical operator ρ̂, which is self
adjoint, positive and with trace equal to one. In the state represented by ρ̂, the proba-
bility for each property p of a context is given by the Born rule

Pr(p) = Tr(ρ̂ ̂�p).

This rule gives a well defined probability (i.e. it is positive, normalized, and satisfy
the additivity property) when it is applied to the properties of a given context.

Moreover, the probability of a property b conditional to a property a, defined by

Pr(b|a) = Pr(b ∧ a)

Pr(a)
, (7)

is also a well defined probability within a context. The conditional probability can be
used to give a statistical meaning to the implication relation. It is not difficult to prove
that a property a implies a property b (a ⇒ b) if and only if Pr(b|a) = 1 for all the
states of the system.

We emphasize that the conjunction and the disjunction of the logical structure of
the quantum properties are obtained from the previous notion of implication, defined
by the inclusion of subspaces. On this lattice of properties, the Born rule is applied to
obtain the probabilities, which are only meaningful for subsets of properties within a
context. Properties belonging to different contexts do not have simultaneous physical
meaning.

In the next section we are going to present an extended notion of context to deal
with descriptions involving time dependent properties.

4 Time Translations and the Lattice of Time Dependent Properties

The time enters quantum theory through the Schrödinger equation generating the
evolution of the state of an isolated system. The evolution of a vector of the Hilbert
space H, representing a pure state, is given by

|ϕt ′ 〉 = ̂U(t ′, t) |ϕt 〉, ̂U(t ′, t) = e−i ̂H(t ′−t)/�, (8)
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where ̂H is the Hamiltonian operator of the system.
Let us consider the physical system at the time t , in a pure state represented by the

vector |ϕt 〉. Moreover, assume that |ϕt 〉 is an eigenvector with eigenvalue one of the
projector ̂�p corresponding to the property p

̂�p|ϕt 〉 = |ϕt 〉. (9)

We can say that the physical system has the property p at the time t , because it has
probability equal to one, according to the Born rule:

Pr(p) = 〈ϕt |̂�p|ϕt 〉 = 〈ϕt |ϕt 〉 = 1.

At a later time t ′, the time evolved state is represented by the vector |ϕt ′ 〉 given
by (8). Using (8) and (9) it is easy to prove that

̂�p′ |ϕt ′ 〉 = |ϕt ′ 〉, ̂�p′ = ̂U(t ′, t)̂�p
̂U−1(t ′, t).

Therefore, if the system has the property represented by the projector ̂�p at time t ,
it also has the property represented by the projector ̂�p′ at time t ′. We have obtained
in this way a procedure for the time translation of properties.

It is easily proved that the obtained relation between p at time t and p′ at time t ′
is transitive, reflexive and symmetric. Therefore, it is an equivalence relation, that we
shall indicate by the expression (̂�p, t) � (̂�p′ , t ′).

The expression (̂�p, t) is a symbol indicating the property p at time t . We shall
also indicate by [̂�p, t] the class of properties equivalent to the property p at time t .

If a property p at time t is equivalent to p′ at time t ′, the Born rule gives for them
the same probability,

Pr(̂�p′ , t ′) = Tr(ρ̂t ′ ̂�p′) = Tr(̂U(t ′, t)ρ̂t
̂U−1(t ′, t)̂�p′) = Tr(ρ̂t

̂�p) = Pr(̂�p, t),

(10)
and therefore a single probability is obtained for the properties of the same class of
equivalence. In physical terms, all the properties of a given class are essentially the
same property, as they can be obtained one from the other trough time evolution.

The just considered time translation, and the implication of ordinary quantum me-
chanics presented in the previous section, suggest that we define that the equivalence

class [̂�1, t1] implies the equivalence class [̂�2, t2] if the representative elements at a
common time t0 verify the implication of the usual formalism of quantum mechanics,
i.e.

̂�1,0 H ⊂̂�2,0 H,

̂�1,0 ≡ ̂U(t0, t1)̂�1 ̂U−1(t0, t1), ̂�2,0 ≡ ̂U(t0, t2)̂�2 ̂U−1(t0, t2) H.

It is not difficult to prove that if two projectors ̂�1 and ̂�2 verify this condition for
a given time t0, they verify the condition for all possible values of t0. The implication
relation is transitive, reflexive and antisymmetric, and therefore it is a well defined
order relation on the equivalence classes.
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Having defined an order relation on the equivalence classes, the conjunction (dis-
junction) of two classes [̂�, t] and [̂�′, t ′] can be obtained as the greatest lower (least
upper) bound, i.e.

[̂�, t] ∧ [̂�′, t ′] = Inf{[̂�, t]; [̂�′, t ′]} =
[

lim
n→∞(̂�0̂�′

0)
n, t0

]

, (11)

[̂�, t] ∨ [̂�′, t ′] = Sup{[̂�, t]; [̂�′, t ′]} =
[(

̂I − lim
n→∞{(̂I − ̂�0)(̂I − ̂�′

0)}n
)

, t0

]

,

(12)
where ̂�0 = ̂U(t0, t) ̂� ̂U−1(t0, t) and ̂�′

0 = ̂U(t0, t
′) ̂�′

̂U−1(t0, t
′) are the transla-

tions of the properties ̂� and ̂�′ to the time t0. The projectors limn→∞(̂�0̂�′
0)

n and
(̂I − limn→∞{(̂I − ̂�0)(̂I − ̂�′

0)}n) generate the greatest lower and the least upper

bounds of the subspaces generated by ̂�0 and ̂�′
0 [12].

The negation of an equivalence class [̂�, t] is defined by

[̂�, t] = [̂�, t] = [(̂I − ̂�), t].

With the implication, disjunction, conjunction and negation previously obtained,
the set of equivalent classes has the structure of an orthocomplemented nondistribu-
tive lattice.

5 The Generalized Contexts

The usual concept of context was briefly reviewed in Sect. 3 as a subset of all possible
simultaneous properties which can be organized as a meaningful description of a
quantum system at a given time, and endowed with a boolean logic with well defined
probabilities.

The definitions and notations given in the previous section will be useful to our
purpose of representing valid descriptions involving properties at different times,
which we are going to call generalized contexts. In what follows, we shall only con-
sider descriptions involving properties at two times t1 and t2, but our formalism has
an immediate extension to cases involving more than two times.

Let us consider a context of properties at time t1, generated by atomic properties
p

(1)
j represented by projectors ̂�

(1)
j verifying

̂�
(1)
i

̂�
(1)
j = δij

̂�
(1)
i ,

∑

j∈σ (1)

̂�
(1)
j = ̂I , i, j ∈ σ (1). (13)

Let us also consider a context of properties at time t2, generated by atomic prop-

erties p
(2)
μ represented by projectors ̂�

(2)
μ verifying

̂�(2)
μ

̂�(2)
ν = δμν

̂�(2)
μ ,

∑

μ∈σ (2)

̂�(2)
μ = ̂I , μ, ν ∈ σ (2). (14)
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We wish to represent with our formalism a universe of discourse capable to incor-
porate expressions like “the property p

(1)
j at time t1 and the property p

(2)
μ at time t2”.

With this purpose, we note that the properties associated to different times t1 and t2
can be translated to a common time t0, by using the equivalence relations previously
defined

(̂�
(1)
i , t1) � (̂�

(1,0)
i , t0), ̂�

(1,0)
i ≡ ̂U(t0, t1)̂�

(1)
i

̂U−1(t0, t1),

(̂�
(2)
μ , t2) � (̂�

(2,0)
μ , t0), ̂�

(2,0)
μ ≡ ̂U(t0, t2)̂�

(2)
μ

̂U−1(t0, t2).
(15)

The conjunction of the equivalence classes [̂�(1)
i , t1] and [̂�(2)

μ , t2] can be obtained
applying (11)

[̂�(1)
i , t1] ∧ [̂�(2)

μ , t2] = [̂�(1,0)
i , t0] ∧ [̂�(2,0)

μ , t0] =
[

lim
n→∞(̂�

(1,0)
i

̂�(2,0)
μ )n, t0

]

.

The conjunction of the classes with representative elements ̂�
(1)
i at t1 and ̂�

(2)
μ

at t2, is also the conjunction of the classes with representative elements ̂�
(1,0)
i and

̂�
(2,0)
μ at the common time t0. Moreover, the conjunction is a class with the represen-

tative element limn→∞(̂�
(1,0)
i

̂�
(2,0)
μ )n at the time t0. The conjunction of properties

at the same time is already defined in quantum mechanics, for the particular case in
which they are represented by commuting projectors. The usual quantum theory do
not give any meaning to the conjunction of simultaneous properties represented by
non commuting operators.

To make contact with the usual formalism of quantum theory, it seems natural to
consider quantum descriptions of a system, involving the properties generated by the

projectors ̂�
(1)
i at the time t1 and ̂�

(2)
μ at the time t2, only for the cases in which the

projectors ̂�
(1)
i and ̂�

(2)
μ commute when translated to a common time t0, i.e.

̂�
(1,0)
i

̂�(2,0)
μ − ̂�(2,0)

μ
̂�

(1,0)
i = 0. (16)

If this is the case, we have limn→∞(̂�
(1,0)
i

̂�
(2,0)
μ )n = ̂�

(1,0)
i

̂�
(2,0)
μ , and for the

equivalence class of composed properties hiμ, representing “the property p
(1)
j at time

t1 and the property p
(2)
μ at time t2” we obtain

hiμ = [̂�(1)
i , t1] ∧ [̂�(2)

μ , t2] = [̂�(1,0)
i

̂�(2,0)
μ , t0] = [̂�(0)

iμ , t0], ̂�
(0)
iμ ≡ ̂�

(1,0)
i

̂�(2,0)
μ .

As we can see, the conjunction of properties at different times t1 and t2 is equiva-
lent to a single property represented by the projector ̂�

(0)
iμ at the single time t0.

If the different contexts at times t1 and t2 produce commuting projectors ̂�
(1,0)
i

and ̂�
(2,0)
μ at the common time t0, it is easy to prove that

̂�
(0)
iμ

̂�
(0)
jν = δij δμν

̂�
(0)
iμ ,

∑

iμ

̂�
(0)
iμ = ̂I . (17)
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Therefore, we realize that the composed properties hiμ, represented at the time t0

by the complete and exclusive set of projectors ̂�
(0)
iμ , can be interpreted as the atomic

properties generating a usual context in the sense already described in the previous
section. More general properties are obtained from the atomic ones using the dis-
junction operation defined in (12). For example, taking into account the commutation
relation (16), we obtain

hiμ ∨ hjν = [̂�(0)
iμ + ̂�

(0)
jν , t0].

More generally, we can represent the property p
(1)
j at time t1 and the property p

(2)
μ

at time t2, with j and μ having any value in the subsets �(1) ⊂ σ (1) and �(2) ⊂ σ (2),
in the form

h�(1),�(2) =
[

∑

i∈�(1)

∑

μ∈�(2)

̂�
(0)
iμ , t0

]

. (18)

As a consequence of (17), the set of properties obtained in this way is an ortho-
complemented and distributive lattice.

As we proved in (10), the Born rule defines a single probability to all elements of
an equivalence class. If the state of the system at time t0 is represented by ρ̂t0 , the
probability of the class of properties h�(1),�(2) has the following expression

Pr(h�(1),�(2) ) =
∑

i∈�(1)

∑

μ∈�(2)

Tr(ρ̂t0
̂�

(0)
iμ ). (19)

As we already mentioned in the previous section, a description of a physical sys-
tem should not involve properties belonging to different contexts. As a natural ex-
tension of the notion of context, we postulate that a description of a physical system
involving properties at two different times t1 and t2 is valid if these properties are
represented by commuting projectors when they are translated to a single time t0. We
will call generalized context to each of these valid descriptions. On each generalized
context, the probabilities given by the Born rule are well defined (i.e. they are pos-
itive, normalized and additive), and therefore they may have a meaning in terms of
frequencies.

In summary, our formalism is based on the notion of time translation, allowing to
transform the properties at a sequence of different times into properties at a single
common time. A usual context of properties is first considered for each time of the
sequence. If the projectors representing the atomic properties of each context com-
mute when they are translated to a common time, the contexts at different times can
be organized forming a generalized context of properties. A generalized context of
properties is a distributive and orthocomplemented lattice, a boolean logic with well
defined implication, negation, conjunction and disjunction. This logic can be used for
speaking and reasoning about the selected properties of the system at different times.
Well defined probabilities on the elements of the lattice of properties are obtained
using the well known Born rule.
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6 Comparison of the Generalized Contexts with the Sets of Consistent Histories

In our opinion, the generalized contexts seem to be a natural generalization of the
usual contexts of quantum mechanics. They are suitable to deal with the logic of
properties at different times. But to be a “natural generalization” may have no any
scientific value, and perhaps may only reflects our confidence in the usual form of
quantum theory. Therefore, it is necessary to compare our new approach with the
theory of consistent histories, designed to deal with the same kind of problems, and
also to apply the new formalism to physically relevant situations. The main relation
between both theories is given by the following Theorem:

A generalized context obtained with our formalism, is also a consistent set of his-
tories, with the same probabilities.

We give the proof for a generalized context with two times. The probability for the
property p

(1)
j at time t1 and the property p

(2)
μ at time t2, is given by (19)

Pr((p(1)
j , t1) ∧ (p(2)

μ , t2)) = Tr(ρ̂t0
̂�

(0)
jμ) = Tr(ρ̂t0

̂�
(1,0)
j

̂�(2,0)
μ )

= Tr(̂�(2,0)
μ

̂�
(1,0)
j ρ̂t0

̂�
(1,0)
j

̂�(2,0)
μ ),

where the last equality is a consequence of the commutation relation (16) and the
cyclic permutation of the operators in the trace. Taking into account the defini-
tions (15), we obtain for the probability the same expression which is obtained with
(2) for consistent histories. Moreover, the consistency conditions Tr(̂Ca ρ̂t0

̂C
†
b) = 0,

for a �= b, are satisfied due to the commutation relations (16). A simple generalization
of this proof is obtained for a generalized context with n times. In simple words, the
meaning of this theorem is that our formalism put more restrictions than the theory
of consistent histories on the number of valid descriptions of a physical system.

A search of the sets of consistent histories which are forbidden by our formalism,
and their physical relevance, is unavoidable.

We can analyze with our formalism the spin 1
2 system, already described using

the theory of consistent histories at the end of Sect. 2. Once again we consider a
description including the two possible values of the spin along the z axis for the
time t2, and we ask which properties can also be considered at the time t1 (t0 < t1 <

t2), in such a way that they are compatible with the properties chosen at the time t2.
The atomic properties for the time t2 are represented by the projectors ̂Ez+ =

|z+〉〈z+| and ̂Ez− = |z−〉〈z−|, while the atomic properties at t1 are represented by
̂En1+ = |n1+〉〈n1+| and ̂En1− = |n1−〉〈n1−|, for an unknown direction n1 of the
spin. These projectors are invariant under time translations, due to the vanishing of
the Hamiltonian. Therefore, they are invariant when translated to any common time.
We may choose this common time as t0 (t0 < t1 < t2), where the initial state ρ̂t0 is

given. If the commutation conditions (16) are satisfied, we should have ̂En1± ̂Ez± −
̂Ez± ̂En1± = ̂En1∓ ̂Ez± − ̂Ez± ̂En1∓ = 0, which gives the z direction (n1 = (0,0,1))
as the only possibility. The z components of the spin at time t1 is the only choice
compatible with the z components at the time t2, and it corresponds to the case (ii)
obtained with consistent histories in Sect. 2. Moreover, this is the only possible choice
for any initial state ρ̂t0 .
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The case (i) for the Gelmann and Hartle condition, and all the possibilities for the
Griffiths condition are ruled out by our formalism of generalized contexts. Only the
case (ii), which is time continuous with respect to property ascriptions, remains.

It is also necessary to verify if the postulated compatibility condition for time
translated properties is successful to give a good description of well established phys-
ical processes.

We only mention here what are the results for the well known double slit experi-
ment. R. Omnès [13] proved that with no measurement instruments there is no place
for a set of consistent histories including in its universe of discourse through which
slit passed the particle before reaching a zone in front of the slits. Therefore, as a
consequence of the theorem given at the beginning of this section, there is also no
room for such a description with our generalized contexts. For the case of the double
slit with a measurement instruments recording through which slit passed the particle,
and another instrument recording the particle in different zones of a plane in front of
the double slit, we found with our approach the existence of a generalized context
suitable for the description of the registration of the instruments (but not of the parti-
cle positions). As a consequence, the theorem of the beginning of this section can be
used to deduce that such a description has also a place in a set of consistent histories.
These are preliminary results which will be included in a forthcoming paper.

The version of the theory of consistent histories given by R. Omnès [7–9] empha-
sizes its role as a logical construction, i.e. as a tool for obtaining valid descriptions
and reasonings about properties of the system. As this is also the case in our formal-
ism, it is interesting to compare both logical structures.

As we briefly summarized in Sect. 2, in the theory of consistent histories there
are ordinary contexts on each time of the sequence. The conjunction, disjunction
and negation of properties at different times are defined through the union, intersec-
tion and complement of the corresponding spectrums, as shown for the two times
case in the paragraph below (5). In this theory, a history a implies a history b when
Pr(b|a) ≡ Pr(b ∧ a)/Pr(a) = 1. As the probabilities depend on the state, the impli-
cation of the theory is also state dependent. If the set of histories verify the state de-
pendent consistency conditions given by (3), (4) or (5), it is named a set of consistent
histories, and within this set the conventional axioms of formal logic are satisfied.
Therefore, the possible universes of discourse provided by this theory have a very
special entanglement with the state of the system.

This situation is not entirely satisfactory, because in the usual axiomatic theories
of quantum mechanics the state is considered as a functional on the space of observ-
ables, and it appears after these observables in a somehow subordinate position. The
importance of the notion of state functionals acting on a previously defined space of
observables was stressed by one of us in references [5] and [6]. In our approach of
Sects. 4 and 5, the logical structure of the properties is an orthocomplemented lat-
tice defined independently of the state of the system and of the probability definition.
Moreover, the conditions to have a generalized context are commutation relations,
also state independent (see the condition given by (16) for the two times case). Prob-
ability is later on introduced on the already constructed logical structure, trough the
usual Born rule.
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7 Conclusions

We have introduced in this paper a formalism suitable to deal with descriptions and
reasonings about physical systems involving quantum properties at different times.
The dynamic generated by the Schrödinger equation provides a natural definition for
the time translation of quantum properties. Time translations generate a partition in
equivalence classes of the set of properties and times. From a physical point of view,
properties at different times which are connected by a time translation are essentially
the same property, on which the Born rule gives the same probability value.

Time translation also provide the possibility to define an implication between
classes. We used this implication to obtain through infimum and supremum the de-
finitions of conjunction and disjunctions of classes. The orthogonal complement of
Hilbert spaces is immediately generalized to obtain the negation of a class. In this
way we construct a non distributive orthocomplemented lattice of classes of proper-
ties and times, and we obtain what in our opinion is a natural extension of the logical
structure of quantum mechanics given by Birkhoff and J. von Neumann [10], one of
the standard approaches to quantum logic.

As the lattice is non distributive, the Born rule do not provide a well defined prob-
ability on the whole of it. Therefore, we extended the usual notion of context to the
notion of generalized context, which is a subset of the whole set of classes, orga-
nized in a distributive and orthocomplemented lattice. On each generalized context,
the Born rule provides a well defined probability. A generalized context is a boolean
logic which can be used for speaking and reasoning about properties of the system at
different times. It is interesting to note that our formalism allows to define the logic of
quantum properties without referring to any state of the system under consideration.

Our approach impose more restrictions than the theory of consistent histories on
the possible valid descriptions of a physical system. For a spin system, we proved that
our more restrictive conditions eliminate the sets of consistent histories which do not
satisfy time continuity for the property ascriptions. This continuity is in our opinion
a desirable property, and it is a direct consequence of the fact that our formalism only
allows quantum properties represented by commuting projectors when translated to
a common time.

We also obtained good preliminary results with our approach describing the dou-
ble slit experiment with and without measurement instruments detecting the particle
passing trough the slits. This open the possibility to apply our formalism to the de-
scription of the measurement process and to the classical limit, and moreover to ex-
plore in this framework the role of the environment induced decoherence. The work
in this direction is in progress.
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