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Abstract Closed timelike curves (CTCs) appear in many solutions of the Einstein
equation, even with reasonable matter sources. These solutions appear to violate
causality and so are considered problematic. Since CTCs reflect the global properties
of a spacetime, one can attempt to extend a local CTC-free patch of such a spacetime
in a way that does not give rise to CTCs. One such procedure is informally known as
unwrapping. However, changes in global identifications tend to lead to local effects,
and unwrapping is no exception, as it introduces a special kind of singularity, called
quasi-regular. This “unwrapping” singularity is similar to the string singularities. We
define an unwrapping of a (locally) axisymmetric spacetime as the universal cover of
the spacetime after one or more of the local axes of symmetry is removed. We give
two examples of unwrapping of essentially 2+1 dimensional spacetimes with CTCs,
the Gott spacetime and the Gödel spacetime. We show that the unwrapped Gott space-
time, while singular, is at least devoid of CTCs. In contrast, the unwrapped Gödel
spacetime still contains CTCs through every point. A “multiple unwrapping” proce-
dure is devised to remove the remaining circular CTCs. We conclude that, based on
the given examples, CTCs appearing in the solutions of the Einstein equation are not
simply a mathematical artifact of coordinate identifications. Alternative extensions of
spacetimes with CTCs tend to lead to other pathologies, such as naked quasi-regular
singularities.
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1 Introduction

Closed timelike curves (CTCs) are closed curves in a spacetime that a timelike test
observer can trace [1]. Although spacetimes with CTCs cannot be constructed by
evolution, they are still solutions of the Einstein equation, just not of its initial value
formulation. CTCs are considered problematic because their presence appears to lead
to causality violations. Spacetimes with CTCs are usually dealt with in one of two
ways: either a spacetime with CTCs is declared not physically relevant or it is mod-
ified globally in such a way that the CTCs are absent. In many cases the CTCs are
manifest isometries of the spacetime and follow coordinate curves of a periodically
identified coordinate. If this periodic identification is removed, the global structure of
the spacetime changes. This global modification is informally known as unwrapping.
One is then tempted to declare the unwrapped spacetime to be “more natural” than
the original one. This is the content of the claim of Cooperstock and Tieu in [2], who
declare that “the imposition of periodicity in a timelike coordinate is the actual source
of CTCs, rather than the physics of general relativity”. We investigate this claim in
detail.

Two natural questions that arise are: Do spacetimes extended by unwrapping con-
tain any CTCs not explicitly removed by unwrapping? Do any other pathologies arise
as a result of unwrapping CTCs? To answer these questions we consider the two
spacetimes where CTCs are concluded to be artificial by Cooperstock and Tieu, the
Gödel universe [3] and the Gott spacetime [4]. These spacetimes serve as nice toy
models, as they are highly symmetric and essentially (2 + 1)-dimensional (each is a
direct products of a (2 + 1)-dimensional spacetime with a spacelike real line).

Implicit in the claim of [2] seems to be the requirement that the metric of the
spacetime without the periodic identifications is locally the same as of the origi-
nal spacetime with identifications. In particular, if the original spacetime is regular
everywhere, the spacetime where the CTCs are unwrapped should be as well. We
find that in axisymmetric spacetimes, where the axis of symmetry is a regular (n−2)-
dimensional subspace, such as the Gödel spacetime, there is an obstacle to having this
correspondence everywhere, which manifests itself as a singularity in the unwrapped
spacetime. This singularity is of the type known in literature as a quasi-regular sin-
gularity [5], where the spacetime curvature is bounded along each incomplete curve.
This result also holds for the Gott spacetime.

This “unwrapping” singularity is similar to the one describing infinitely thin
straight cosmic strings in 3 + 1 dimensions, where strings are (1 + 1)-dimensional
timelike singularities. If a (3 + 1)-dimensional spacetime is a direct product of a
(2 + 1)-dimensional spacetime and a real line, the third spatial dimension can be pro-
jected out, transforming the string into a point particle. The main difference between
the unwrapping singularity and a point particle singularity is topological: there are no
closed curves winding around the unwrapping singularity.

We show that, while unwrapping the Gott spacetime results in a (singular) space-
time with no CTCs, unwrapping the Gödel space does not remove all of the CTCs.

In the case of the Gödel spacetime, where the CTCs still persist after unwrapping,
we investigate a possibility of a “multiple unwrapping”, where multiple families of
CTCs are unwrapped all at once. In this procedure multiple “strings” are removed,
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and the resulting multiply connected spacetime is then unwrapped by constructing
its universal cover in order to get rid of the CTCs winding around each removed
string. This removes all of the circular CTCs winding around each such string and we
conjecture that no other CTCs remain, either.

Our example of extending a locally Gödel chart in a way that apparently does not
give rise to CTCs results in a spacetime with pervasive quasi-regular naked singular-
ities instead. Similarly, a CTC-free extension of the Gott spacetime, even though it
is locally Minkowski almost everywhere, also results in a naked quasi-regular singu-
larity. These examples support the view that attempts to get rid of CTCs by alternate
extensions, even if successful, are likely to result in other pathologies.

This paper is organized as follows. In Sect. 2 we give a brief review of some of the
spacetimes admitting CTCs and describe how the Gödel and Gott solutions fit into
the picture. In Sect. 3 we define what we mean by unwrapping and we investigate
the nature of the resulting singularities. In Sect. 4 we unwrap the Gott spacetime and
show that there are no CTCs in the unwrapped (singular) spacetime. In Sect. 5 we un-
wrap the Gödel space and show that the unwrapped space is singular, and moreover,
that CTCs are still present. In Sect. 6 we improve the unwrapping procedure in order
to remove the remaining circular CTCs and discuss the properties of the resulting
space.

2 Spacetimes with CTCs

Spacetimes with CTCs can arise in a variety of ways. In some cases, such as the van
Stockum cylinder, the Gödel universe and the Kerr blackhole, CTCs are produced by
the “frame dragging” effect of the rotating matter. In other cases, such as the spinning
string, they are due to coordinate identifications. In yet other cases the CTCs arise
due to the non-trivial topology of the spacetime itself (wormholes). We give a brief
overview of some of these spacetimes in this section, with the emphasis on the Gödel
spacetime.

The first spacetime where the CTCs are manifest, the van Stockum cylinder, was
constructed by Lanczos in 1924, then rediscovered by van Stockum [6] and analyzed
by Tipler [7]. This spacetime is stationary and axisymmetric (it admits two commut-
ing Killing vectors, one timelike and one spacelike with closed orbits and a regular
1 + 1-dimensional axis), its metric is of the Weyl-Papapetrou type [8]:

ds2 = −A(r)dt2 + B(r)dtdφ + C(r)dφ2 + H(r)(dr2 + dz2). (1)

Here φ is 2π -periodic, and so the CTCs appear whenever C(r) < 0. Conventionally,
the solution consists of a spinning dust cylinder matched to an external vacuum solu-
tion. For certain values of the cylinder size and angular momentum the CTCs occur
in the external vacuum only. See [7] for details.

One of the most famous solutions of the Einstein equation which admit CTCs was
obtained in 1949 by Gödel [3]. Its geodesics were computed in [9] and its properties
are discussed in [1]. Following [1] Sect. 5.7, we write the metric of the Gödel universe
as

ds2 = −dt2 + dx2 − 1

2
e2

√
2ωxdy2 − 2e

√
2ωxdtdy + dz2. (2)
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Here ω = const and (t, x, y, z) take all real values. In the following we will call
this coordinate system Cartesian. The manifold of the Gödel metric is R

4 and the
spacetime is homogeneous. The matter source in this space can be written as

Tab = ρuaub + 1

2
ρgab, (3)

where ρ = 2ω2 is the energy density in the units where 8πG = 1 and c = 1, so
that the Einstein equation in the presence of the cosmological constant reads Gab +
�gab = Tab . We use this convention throughout this paper. Here ua is the timelike
unit vector field tangent to the coordinate curves of t in (2). If the second term in (3) is
associated with a negative cosmological constant � = − 1

2ρ, then the matter content
of the Gödel universe is rotating dust (pressureless perfect fluid) with density ρ, and
ω is the magnitude of its vorticity flow. This spacetime is a direct product of a three-
dimensional spacetime with a real line R, parameterized by the coordinate z, which
does not add any interesting features and can be safely ignored. In the following we
set ω = 1/

√
2, so that ρ = 1. This is equivalent to rescaling the coordinates, up to a

constant overall factor in the metric.
The Gödel space is highly symmetric, admitting 4 out of a possible 6 Killing

vectors in the (t, x, y) subspace. These are ∂t , ∂y, ∂x −y∂y,−2e−x∂t +y∂x +(e−2x −
y2/2)∂y . The first one of these commutes with the rest, the last three form an SO(2,1)

Lie algebra.
The rotating matter in the Gödel space leads to CTCs, some of which are manifest

after a coordinate transformation to a cylindrical-like chart (τ, r,φ), where r > 0, τ

can take any real values and φ is a 2π -periodic angular coordinate:

ex = cosh 2r + cosφ sinh 2r,

yex = √
2 sinφ sinh 2r, (4)

tan
1

2

(
φ + t√

2
− √

2τ

)
= e−2r tan

1

2
φ.

The new metric, after omitting the irrelevant z-coordinate, is

ds2 = −dτ 2 + dr2 + sinh2 r(1 − sinh2 r)dφ2 − 2
√

2 sinh2 rdτdφ. (5)

The validity of imposing periodicity on φ follows from the fact that the last of (4) is
2π -periodic in φ, and from the regularity condition on the axis. Specifically, a space-
time admitting an axial (U(1)) Killing vector ξa , parameterized by a 2π -periodic
coordinate φ is regular on the rotation axis (a set of fixed points of ξa) if and only if
the following “elementary flatness” condition holds:

(∇a(ξ
cξc))(∇a(ξcξc))

4ξcξc

→ 1, (6)

where the limit corresponds to the rotation axis [8]. This is further discussed in
Sect. 3. This condition holds on the axis r = 0 of (5). The tangent to the coordi-
nate curve of φ is future pointing when it is timelike, resulting in CTCs. This occurs
for sinh r > 1.
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The Gödel spacetime has generally been discarded as pathological, however other
CTC-admitting solutions have been harder to dismiss.

There are several known examples of non-simply connected spacetimes with mat-
ter sources satisfying the Null, Weak and Dominant energy conditions1 where CTCs
are present. In such cases Carter, in his investigation of the spinning black hole met-
ric [10], makes a distinction between the “trivial” CTCs (those that are not homotopic
to zero, i.e. non-contractible) and the “non-trivial” (contractible) ones, such as those
present in the Gödel spacetime. The trivial CTCs can be removed by going from a
given non-simply connected spacetime to its universal cover, without changing the
metric locally. The non-trivial ones obviously persist even in that case.

A simple example of a spacetime admitting trivial CTCs is the Minkowski space-
time

ds2 = −dt2 + dx2 + dy2 + dz2 (7)

with the periodically identified timelike coordinate (t ∼ t + T ). This spacetime is
homeomorphic to a cylinder S × R

3, all CTCs are trivial and can be removed by
going to its universal covering space, the usual R

4 manifold with Minkowski metric.
Another example, relevant to some of the unwrapping constructs below, is the

spacetime of an infinite spinning cosmic string. A single straight non-spinning cosmic
string along the z-direction is described by the metric

ds2 = −dt2 + dr2 +
(

1 − m

2π

)2

r2dφ2 + dz2, (8)

0 ≤ φ ≤ 2π , m �= 0. This was first analyzed by Marder [11], who described the coni-
cal singularity at r = 0, without assigning any physical meaning to it. For the spinning
string the metric is

ds2 = −
(

dt + a

2π
dφ

)2

+ dr2 +
(

1 − m

2π

)2

r2dφ2 + dz2, (9)

0 ≤ φ ≤ 2π , where a is the angular momentum per unit length, and m is the mass per
unit length (string tension), respectively. This spacetime can be obtained from that of
a non-rotating string (8) by replacing the usual identification (t, r, φ, z) ∼ (t, r, φ +
2π, z) with (t, r, φ, z) ∼ (t + a, r,φ + 2π, z) and substituting t → t + aφ/2π (see
e.g. [12]). This is an example of “topological frame dragging”, where an observer
on the Killing horizon (corresponding to the zeros of the norm of ∂φ) appears to be
rotating relative to an observer at infinity [13, 14]. The manifold of (9) is regular
and flat everywhere except at r = 0, where there is a conical singularity due to the
mass term (the deficit angle is equal to m). The coordinate curves of φ are closed and
become timelike sufficiently close to the string (r < a

2π−m
). The conical singularity

can be smeared out by a suitable matter distribution [15], in which case the CTCs
become contractible.

1The Null Energy Condition holds if Tabkakb ≥ 0 for all null ka , the Weak Energy Condition holds if

Tabkakb ≥ 0 for all timelike ka , and the Dominant Energy Condition holds if Tabka is future-pointing for
all non-spacelike ka . One or more of these conditions are satisfied by all known classical matter sources.
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Instead of a single rotating string one can produce CTCs with a pair of non-rotating
strings moving with respect to each other with a non-zero impact parameter, as dis-
covered by Gott [4]. The coordinate chart in the vicinity of each string is just (8), and
the two charts can be smoothly connected, such that there is a boost along the junc-
tion, as discussed in detail in Sect. 4.1. This causal structure of this spacetime is, in
a sense, an opposite of the spinning string one, as the CTCs in it have minimum size
and extend all the way to infinity [16]. Thus the Gott spacetime violates the “physical
acceptability conditions” outlined in [17]. The CTCs of this spacetime are discussed
in detail in Sect. 4.2.

In all of the above examples the CTCs exist for all times, and so such spacetimes
are usually considered unphysical, since they do not admit a Cauchy surface from
which such a spacetime could evolve.

Another well-known example of a vacuum spacetime with CTCs is the Kerr black
hole. In this metric there exist both the CTCs that wrap around the ring singularity
and those that do not [10]. Both kinds are hidden from an external observer by the
event horizon of the black hole.

A different class of spacetimes admitting CTCs are those with non-trivial topology
(wormholes) and “exotic” matter sources (those violating the energy conditions), but
without singularities. Exotic matter is required to keep the wormholes traversable.
The first traversable wormhole metric was given in [18]. An example of such a metric
is

ds2 = −dt2 + dr2 + (r2 + R(r)2)
(
dθ2 + sin2 θdφ2), (10)

where R(r) has compact support, r ∈ R. Positive and negative values of r correspond
to two different flat asymptotic regions. These can be patched together far enough
from the wormhole throats, where R(r) = 0. To do that we can identify a 3-plane (e.g.
x = r sin θ cosφ = const) in one of these asymptotic regions with a corresponding 3-
plane in the other. Since the spacetime is flat there, both the intrinsic and extrinsic
curvatures of the planes vanish, and so a spacetime with such an identification satis-
fies the Einstein equation without the need for any additional matter sources. Once a
wormhole exists in a given spatial slice t = const, it can be manipulated into produc-
ing CTCs by a variety of means, all based on changing the relative rates of time flow
between the throats, as seen by an asymptotic observer, until there is a CTC threading
through them. This can be achieved using either the special relativistic time dilation
effect, as described in the original paper, or the gravitational one [19]. Since all such
CTCs result from the underlying spacetime not being simply connected, going to the
simply connected universal cover gets rid of the CTCs.

Another evidence of the ubiquity of CTCs is the solution constructed by Ori [20],
where a regular Cauchy horizon bounded by a closed null geodesic develops from a
regular spatial slice and the matter sources satisfying energy conditions.

There is a number of conjectures and theorems that deal with the CTCs and their
appearance. Tipler [21] has shown that CTCs cannot evolve from non-singular ini-
tial data in a regular asymptotically flat spacetime. Hawking [22] has advanced the
Chronology Protection Conjecture, which states that, if the Null Energy Condition
holds, then the Cauchy horizon (the null boundary of the domain of validity of the
Cauchy problem, see e.g. [1]) cannot be compactly generated. Moreover, even if
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the Null Energy Condition is violated, the quantum effects are likely to prevent the
Cauchy horizon from appearing.

3 Unwrapping

Since one of our goals is to show that unwrapping contractible CTCs creates singu-
larities, we first review the definition of singularities in General Relativity. Next we
discuss the quasi-regular singularities resulting from changing the angular coordi-
nate identifications in Minkowski spacetime, as described in [5]. Finally, we consider
one particular kind of quasi-regular singularities, the unwrapping singularity, one that
results from unwrapping closed timelike curves in axisymmetric spacetimes with a
regular symmetry axis.

3.1 Singular Spacetimes

Intuitively, one tends to think of a singularity in a spacetime as a place in it where
the curvature diverges or something else pathological happens. This approach, while
satisfactory in other field theories, where the spacetime is provided a priori, does not
work in General Relativity, because the spacetime is not given in advance. Instead it is
determined by solving the Einstein equation, which relates the matter content to the
spacetime curvature. This means that the manifold and the metric must be smooth
enough to keep the Einstein tensor finite everywhere. Hence, any singular point is
not a part of the spacetime manifold and cannot be described as a “place” [1], so a
different definition of singularity is required.

A singularity can be detected by the existence of curves of “finite length” which
are inextendible in at least one direction. An inextendible curve γ is defined as a
continuous map γ : [0,1) → M for which there is no end point, i.e. there is no
continuous map γ ′ : [0,1] → M, γ ⊂ γ ′. However, while “length along a curve” is
well-defined for manifolds with Riemannian metric, a Lorentz metric does not give
rise to a distance function for an arbitrary curve. For a geodesic curve one can use its
affine length [1], but there is no unique or natural prescription for a distance between
two points on a general curve.

The definition of singularities through the existence of incomplete inextendible
geodesics is successfully used in the proofs of the singularity theorems [1]. These
theorems are generally associated with the most familiar type of singularities, the
curvature singularities, such as that of the Schwarzschild metric for r → 0. This is,
however, not the only type of singularities possible. A commonly accepted classifi-
cation of singularities is given in [5]. In the case of curvature singularities some of
the curvature invariants, such as R or RabR

ab , grow unbounded along an incomplete
curve. A different case is the parallel-propagated curvature singularities, where some
of the components of the Riemann tensor cannot be bounded along some incomplete
curves, even though all of the curvature invariants remain finite or even vanish, such
as in the case of singularities formed by gravitational waves.

Yet another case, and the one most relevant to the subject of this paper, is that of
quasi-regular singularities. There the curvature tensors remain smooth and bounded
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everywhere along an incomplete curve, yet the curve is still inextendible. To avoid
the case where singularities are created artificially by removing a regular point from
a given spacetime, only inextendible spacetimes are considered. A spacetime is inex-
tendible if it is not isometric to a proper subset of another regular spacetime of the
same dimension.

A classic example of a quasi-regular singularity is the two-dimensional cone. The
differentiable structure and the metric on that space can be taken to be induced from
its embedding into a three-dimensional flat space. The space is smooth (even flat)
everywhere outside the apex of the cone. However, an attempt to include the apex
into the space and continue the geodesics through it leads to problems. One can see
that there is a curvature singularity at the apex by considering a cone with a spherical
cap (as seen from its three-dimensional embedding) and taking a limit where the cap
radius goes to zero (see e.g. [23]). The induced differentiable structure breaks down
at the apex of the cone. In fact, this space is an example of a conifold, which is a
generalization of a manifold, and it allows quasi-regular singularities of the conical
type [24]. Cosmic string, described by the metric (8), is another example of a conical
singularity. Mars and Senovilla [25] have shown that an axisymmetric spacetime is
regular on the axis if and only if the regularity condition (6) holds. It is obviously
violated in the case of a cosmic string with non-zero mass (8).

Here we briefly review some of the definitions of a singularity, each tailored to a
particular class of problems. For the simple examples of quasi-regular singularities
considered in this paper, all the definitions agree. A detailed review of the topic can
be found in [26].

One of the first definitions was Geroch’s g-boundary [27], defined by existence
of incomplete geodesics, whether timelike, spacelike or null. The timelike geodesic
incompleteness is the most severe case, as there would exist inertial observers whose
existence comes to an end within a finite proper time. This definition does not address
the case of singularities that can only be reached by non-geodesic curves.

Another definition of singularity, originally due to Penrose [28], is through the
concept of a conformal boundary. There a spacetime is embedded in another “un-
physical” Lorentzian manifold conformally, rather than properly, in effect bringing
the “infinity” to the finite values of the coordinates. This allows one to attach a con-
formal boundary to the spacetime. See e.g. [1]. If such a boundary is reached by a
geodesic curve with a finite affine parameter value in the original spacetime, the con-
formal boundary is singular. This idea works well in highly symmetric cases, where
the unphysical spacetime is easy to construct.

A famous attempt to assign a causal boundary to a spacetime without resorting to
an “external” concept, such as the unphysical conformal spacetime, is that of Geroch,
Kronheimer and Penrose [29]. They attach a “causal boundary” to any spacetime
subject to certain causality restrictions.

Schmidt [32] generalized the geodesic affine parameter to non-geodesic curves,
in order to characterize singularities that cannot be reached by a freely falling ob-
server. The basic idea is to assign a positive-definite distance function to points on
an arbitrary curve using a Riemannian metric on a frame bundle parallel-propagated
along the curve. See e.g. [1]. This in turn enabled the use of Cauchy completion
to assign an end point to an incomplete curve. These endpoints define a so called
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“b-boundary”. Once the b-boundary points are found, one can talk about a “neigh-
borhood of a singularity” and the behavior of tensors, such as the Riemann tensor,
along a curve approaching the singularity.

Scott and Szekeres [30] suggested that the boundary definition need not be re-
stricted to using only the objects intrinsic to the Lorentzian manifold. Moreover, it
should be definable for any differentiable manifold with an affine connection, thus
accommodating theories other than just the Einstein’s General Relativity, such as the
gauge theories, Einstein-Cartan and others. The abstract boundary approach is based
on the idea of an “envelopment”, a way to embed a manifold in a “larger” manifold
of the same dimension. The boundary points are then regular points of the topolog-
ical boundary of the embedding. The abstract boundary points and sets are formed
by equivalence classes of envelopments that cover each other. The set of all abstract
boundary points is called the abstract boundary, or a-boundary. The singularities are
classified as either removable, if they can be covered by a non-singular boundary set
or essential if they cannot.

For our purposes the timelike geodesic incompleteness provides an adequate def-
inition of singularities. Indeed, any singularity resulting from a change in coordinate
identifications appears in place of a formerly regular point. Since there are timelike
geodesics passing through any regular point, these geodesics become incomplete af-
ter the change in identifications.

In the case of singularities constructed by changing periodic coordinate identifi-
cations in an axisymmetric spacetime, the singular boundary coincides with the set
of the fixed points of the periodic coordinate before the identification is changed. For
example, for the two-dimensional cone with the metric ds2 = dr2 + r2dφ2, where
0 ≤ φ ≤ � < 2π , r = 0 is its singular boundary, due to the deficit angle. A conical
singularity in the 4-dimensional spacetime with the metric (8) is an example of a two-
dimensional singular boundary which is a flat R

2 manifold. The r = 0 singularity of
the Schwarzschild spacetime can be described as a singular b-boundary with a rather
peculiar structure [33].

It is worth noting that the singular boundary is different from the usual boundary of
an n-dimensional manifold with a boundary. The latter is itself an (n−1)-dimensional
manifold without boundary. In contrast, the singular boundary can be of any dimen-
sion, it may or may not be a manifold itself, and may or may not have a boundary (or
a singular boundary). See [5] for examples and counter-examples.

3.2 Quasi-Regular Singularities in a Flat Spacetime

Here we describe the construction of a conical as well as unwrapped singularities in
a flat spacetime. Since changing the coordinate identifications does not change the
metric at any of the regular points, the unwrapping singularities are always quasi-
regular (they are not associated with a curvature divergence). Provided the original
spacetime is asymptotically flat and has no event horizon, neither does the unwrapped
one, so the resulting quasi-regular singularity is naked, i.e. there are future directed
null curves originating arbitrarily close to the singularity that reach the future null in-
finity. We first describe the unwrapping singularity for the 4-dimensional Minkowski
spacetime and then generalize the definition to apply to the spacetimes of interest.
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A conical singularity in a 4-dimensional Minkowski spacetime can be obtained as
follows [5]:

1. Remove the timelike two-plane x = y = 0 in the Cartesian chart. This is precisely
where the cylindrical chart is not defined (r2 = x2 + y2 = 0). This space is no
longer simply connected and has the topology of S

1 × R
3.

2. Unwrap the resulting space to obtain its universal covering (M̄, ḡ), with the same
flat metric in the cylindrical chart, but with the range of the new angular coordinate
φ̄ extended to φ̄ ∈ R, instead of 0 ≤ φ ≤ 2π . A local Cartesian chart (with the
non-negative x-axis removed) is obtained by the standard transformation (x =
r cosφ,y = r sinφ). A two-dimensional slice of this spacetime in the x − y plane
(t = z = 0) is shown in Fig. 1 and the three-dimensional embedding of this slice
into R

3 is shown in Fig. 2. A well-known version of this space is the Riemann
surface forming the domain of the complex Log function.

3. Identify the points under translation through an angle � �= 2π , taking care to pre-
serve the rotational isometry r = const, i.e. (t, r, φ, z) ∼ (t, r, φ + �,z).

For � �= 2π we get the metric of the cosmic string (8) with the string tension m

equal to the deficit angle m = 2π − �. If � > 2π , the string has negative tension.
The presence of a conical singularity is reflected in the focusing (or defocusing) of
geodesics passing on the opposite sides of the singularity. This can also be seen from
the violation of the regularity condition (6). This condition is obviously satisfied for
the ordinary Minkowski spacetime, where ξcξc = r2 in the cylindrical chart, but not
after the identifications where the deficit angle m �= 0, as can be seen by a coordinate
transformation where the deficit angle is traded for a constant factor in ξcξc, such as
in (8), breaking (6).

If the last step is omitted, we get the unwrapped space (M̄, ḡ), and the singularity
is not conical in the usual sense, as there is no closed curve wrapping around it. We
will call this type of quasi-regular singularity the unwrapping singularity.

The subspace x = y = r = 0 removed in the step 1 forms the “boundary” of each
of the three spaces corresponding to the three steps above. (We put the word boundary
in quotes to indicate that it is neither the usual boundary of a manifold, nor yet a
singular boundary, but rather an artificial “hole” in the spacetime.) After step 1 this
boundary is regular, since it can be included back in to form the original inextendible
Minkowski spacetime.

After step 2 the boundary is no longer regular. Indeed, if it were regular, we would
be able to include it back into the spacetime and show that any neighborhood of a
point on the boundary point is homeomorphic to an open ball in R

4. This would
in turn imply that there are closed curves around any such point. Furthermore, any
such closed curve is homotopic to a closed curve r = const lying inside the open
ball. However, step 2 explicitly removes all such curves, contradicting the regularity
assumption. The singularity is quasi-regular, because the Riemann tensor vanishes
for all points r > 0.

After the step 3 the boundary is still singular, as any arbitrarily small curve around
it has the same fixed deficit angle, breaking the regularity condition (6).

The argument that the singular boundary of the unwrapped spacetime is quasi-
regular applies to a class of regular spacetimes that is larger than just the Minkowski
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Fig. 2 A visualization of a
two-dimensional spatial slice of
the unwrapped Minkowski space

space. For the steps 1 and 2 to be applicable for a certain spacetime, it is sufficient
to have the spacetime covered by a single Cartesian chart. In particular, it is valid for
the Gott and Gödel spacetimes and is generalized in Sect. 3.3 to locally axisymmetric
spacetimes.

Moreover, for any future-directed null curve connecting the origin point O in this
Cartesian chart with a certain point P in the original spacetime there is a future-
directed null curve connecting the boundary in the unwrapped spacetime with one
of the infinitely many copies of the point P resulting from unwrapping. Thus, if the
unwrapping point is not hidden by an event horizon in the original asymptotically flat
spacetime, the quasi-regular singularity in the unwrapped spacetime is necessarily
naked.

For completeness, we mention another type of quasi-regular singularity, the Mis-
ner singularity, constructed by removing a spacelike two-plane t = z = 0 from
Minkowski space, then periodically identifying points under a given boost t2 −
z2 = const, to obtain the 4-dimensional Misner space (a direct product of the two-
dimensional Misner space introduced in [34] with the x − y plane). The topology of
the resulting space is S × R

3, it contains CTCs through every point, and the surface
t = z = 0 is a quasi-regular singularity. See [5] for detailed examples. If we omit the
identification step, we obtain an “unwrapped” Misner space.

One can construct rather complicated quasi-regular singularities by cutting and
gluing together spacetime pieces with different properties. For example, Krasnikov
[35] describes string-like singularities that are loops or spirals.

3.3 Singularities Created by Unwrapping

We now generalize the unwrapping procedure to a general axisymmetric spacetime
and review the properties of the resulting singularity.

Following [8, 25, 36], we define an axisymmetric spacetime (M, g) as the one
which is invariant under the action � : SO(2) × M → M of the one parameter ro-
tation group SO(2) ≡ U(1), such that the set of the fixed points of � is an (n − 2)-
dimensional embedded surface F . If the latter condition is not required to hold, the
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spacetime is called cyclic. A cyclic, but not axisymmetric, spacetime does not nec-
essarily becomes singular after unwrapping—for example one can unwrap a two-
dimensional torus in an obvious way (by going to its universal cover) and get a two-
dimensional plane.

Note that the axis of symmetry F is a set of regular points in M. By this definition,
the cosmic string is, while cyclic, not axisymmetric, unless the infinitely thin string
is smoothed into the one of finite diameter.

To unwrap an axisymmetric spacetime we follow the same steps as in Sect. 3.2.
See also [31, 35]:

– Start with the axisymmetric spacetime (M, g)

– Remove the fixed point set F to obtain (M′ = M \ F , g)

– Go to the universal covering space M̄ of M′, Z : M̄ → M′.
The unwrapped spacetime (M̄, g) is singular by construction (we excised a set

of regular points from its base space), and inextendible, provided (M, g) is inex-
tendible. We cannot use the regularity criterion (6) to show inextendibility, as it only
applies to axisymmetric spacetimes, and M̄ is not axisymmetric, because the rotation
� is lifted to the translation �̄. Instead we mirror the argument from [5] reproduced
in Sect. 3.2 for the unwrapped Minkowski spacetime. Suppose there is an extension
M̂ of M̄ that includes a point of F as a regular point. Any compact neighborhood Ô
of a point p ∈ F ⊂ M̂ includes a neighborhood Ō of the corresponding point on the
singular boundary of the unwrapped space M̄. However, Ō includes a lift �̂ of some
orbits of the rotation �, which are non-compact (and infinitely long, as measured
by the generalized affine parameter) in the unwrapped spacetime M̄. Thus Ô is also
non-compact, leading to a contradiction. Any attempt to compactify Ô while keep-
ing �̂ an isometry would make the orbits of �̂ closed, thus violating the regularity
condition.

The singular boundary of the unwrapped spacetime is again quasi-regular, as there
is no curvature divergence anywhere along a lift of the curves from M to M̄. The
singularity is naked, provided the rotation axis is not hidden by the event horizon
in M. (A singularity resulting from unwrapping of a BTZ black hole [37] remains
shrouded by its (unwrapped) event horizon.)

Finally, to deal with the Gott and Gödel spacetime discussed in the remaining sec-
tions, we generalize the unwrapping to “locally axisymmetric” spacetimes. We call a
spacetime locally axisymmetric if it admits an isometric embedding of an axisymmet-
ric spacetime of the same dimension. We will only consider the case where removing
the axis of symmetry makes the orbits of the isometry non-contractible not only in
the embedded spacetime, but also in the full spacetime. Subject to this condition, the
spacetime with the local symmetry axis removed can be lifted to its universal cover.
This lift again turns the closed orbits of the rotation into open ones and consequently
creates a quasi-regular unwrapping singularity with the same properties as before.
As long as the CTCs are contractible curves, it is possible to generalize this con-
clusion to spacetimes without even a local axisymmetry, however we do not address
this generalization in this paper. If the full spacetime admits multiple axisymmetric
isometrically embedded spacetimes, on can remove all the axes of symmetry first
and the lift the resulting spacetime to its universal cover, thus obtaining a “multiply
unwrapped” spacetime.
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4 Unwrapped Gott Spacetime

The Gott spacetime, discussed in detail in this section, admits CTCs, created by
matching two strings Lorentz-boosted in opposite direction. Cooperstock and Tieu
suggested that such a matching is artificial and that identification “before the Lorentz
boost is applied” is “more natural” [2]. Since their claim is based on a different space-
time (they appear to remove two timelike ribbons from Minkowski space and boost
the resulting singularities relative to each other) and relies on a closed curve crossing
these ribbon singularities, it is hard to evaluate. Instead, in keeping with the proce-
dure described in Sect. 3.3, we unwrap the Gott spacetime, such that the Gott CTCs
correspond to open curves in the unwrapped spacetime. To do that without changing
the metric locally, we remove a timelike line from the Gott spacetime and construct
the universal cover of the resulting multiply connected (and now singular) spacetime.
We show that no CTCs are present in the new spacetime. We also construct some
alternative extensions of the Gott spacetime with a timelike line removed and discuss
their properties.

4.1 Construction

We first review the way the (2 + 1)-dimensional Gott spacetime is constructed. Fol-
lowing Gott [4], we start with the (2 + 1)-dimensional version of the straight cosmic
string spacetime (8), where the string is represented by a point particle:

ds2 = −dt2 + dr2 +
(

1 − m

2π

)2

r2dφ′2, (11)

where 0 ≤ φ′ ≤ 2π and the particle mass m is the deficit angle. The deficit angle can
be made explicit by the substitution φ′ = φ/(1 − m

2π
), where now 0 ≤ φ ≤ 2π − m:

ds2 = −dt2 + dr2 + r2dφ2. (12)

The coordinate identification φ ∼ φ + 2π − m corresponds to removing a timelike
wedge centered at the particle and identifying the opposite faces of the wedge. The
angle φ0 the wedge makes with the horizontal axis corresponds to the remaining
coordinate gauge freedom and can be chosen in a way that simplifies a particular
calculation. Gott has chosen the wedge angle in a way that identifies the surfaces
φ0 = π

2 − m
2 ∼ φ1 = π

2 + m
2 , which simplifies his proof of the existence of CTCs.

Cutler [38] used the identification φ0 = π
2 − m ∼ φ1 = π

2 for one of the strings to
show the existence of a timelike cylinder enclosing both strings which no CTCs en-
ter. Carroll et al. [39] identified φ0 = −m

2 ∼ φ1 = m
2 to visualize the existence of

spacelike hypersurfaces through which no CTCs pass. These identification choices
are illustrated on Fig. 3. As our goal is to investigate the CTCs in the Gott spacetime,
we use the Gott’s choice of φ0.
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Fig. 3 Conical wedge identification choices in the Gott spacetime. Wedge fill lines indicate the identified
points. The strings are shown at the moment of the closest approach. Left: Gott identification, where CTCs
are manifest (one CTC is shown). Center: Cutler identification, used to prove the existence of points not
lying on any CTCs. Right: Carroll identification, used to visualize the existence of CTC-free spacelike
hypersurfaces, as the opposite sides of the wedge are identified at equal times

We write each face of the wedge (denoted by the indices 1 and 2) in the Cartesian
coordinate system, expressed in terms of two parameters t and x:

t1 = t,

x1 = x,

y1 = x cotm/2,

t2 = t,

x2 = −x,

y2 = x cotm/2.

(13)

Points corresponding to the same values of (t, x) on both faces are identified.
It is possible to have multiple strings in the same spacetime, as long as the total

deficit angle does not exceed 2π , otherwise the topology of the spacetime becomes
S

2 × R instead of R
3, where the total deficit angle is equal to 4π [12].

Next step is to boost the wedge in the positive x direction with the velocity v <

c = 1. The coordinates of the faces are then Lorentz-transformed into the laboratory
frame as tL = γ (t + vx), xL = γ (x + vt), yL = y:

t1L = γ (t + vx),

x1L = γ (x + vt),

y1L = x cotm/2,

t2L = γ (t − vx),

x2L = γ (−x + vt),

y2L = x cotm/2.

(14)

One can see that the identified points p1 = (t1L,x1L,y1L) and p2 = (t2L,x2L,y2L)

have different values of the time coordinate tL in the laboratory (center of momen-
tum) frame. Specifically, the time difference between the two is


tL = t2L − t1L = −2γ x = v(x2L − x1L), (15)

and is always negative. To describe two boosted strings of masses m moving along the
x-axis in opposite directions with the velocities v and −v and the impact parameter
2b, we shift the boosted wedge (14) by b in the positive y direction and introduce a
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second wedge, v → −v′ and y → −y:

t1L = γ (t + vx),

x1L = γ (x + vt),

y1L = b + x cotm/2,

t2L = γ (t − vx),

x2L = γ (−x + vt),

y2L = b + x cotm/2,

t ′1L = γ (t ′ − vx′),
x′

1L = γ (x′ − vt ′),
y′

1L = −b − x′ cotm/2,

t ′2L = γ (t ′ + vx′),
x′

2L = γ (−x′ − vt ′),
y′

2L = −b − x′ cotm/2,

(16)

where primed variables describe the second wedge. We have now constructed the Gott
spacetime in a single Cartesian chart (tL, xL, yL), corresponding to the laboratory
frame, subject to the two wedge identifications (t1L,x1L,y1L) ∼ (t2L,x2L,y2L) and
(t ′1L,x′

1L,y′
1L) ∼ (t ′2L,x′

2L,y′
2L). If we choose t ′ and x′ such that γ (t + vx) = γ (t ′ −

vx′) and γ (x +vt) = γ (x′ −vt ′), then the closest approach of the strings corresponds
to tL = 0.

4.2 CTCs of the Gott Spacetime

Following Gott, we now consider the curves composed of two pieces of geodes-
ics with xL = const, as shown on the Fig. 3 left. The first piece connects the
two wedges at the points p′

1 = (t ′1L = −T ,x′
1L = a, y′

1L = −V T ) and p1 = (t1L

= T ,x1L = a, y1L = V T ). Here V is the velocity of the observer traveling the geo-

desics. The travel time along the geodesic T is T = b+aγ cot m
2

V +vγ cot m
2

. The second piece

connects the two wedges at the points p2 = (t2L = −T ,x2L = −a, y2L = V T ) and
p′

2 = (t ′2L = T ,x′
2L = −a, y′

2L = −V T ). For the two geodesics to form a closed
curve, the initial point of one must be the final point of another: p1 ∼ p2 and p′

1 ∼ p′
2.

In this case the coordinate time 2T taken to travel from one wedge to another is bal-
anced exactly by the backward time jump across the wedge between x1L = a and
x2L = −a. Using (15), we get

2T + 
tL = 2T + v(x2L − x1L) = 0, (17)

or T = av, resulting in the relation V = b
av

+ cot m
2

γ v
. The curve is a CTC for V < 1,

which is possible for large enough a whenever γ v > cot m
2 . This also sets the lower

limit on a for a given boost: amin = γ b

γ v−cot m
2

for this choice of geodesics.

These xL = const CTCs are not the only ones possible. Cutler [38] has determined
the (null) boundary of the region containing CTCs, and it turns out that, while there
are closed null curves passing closer to the origin than amin, no CTCs pass through
the origin and all CTCs go counter-clockwise around the origin.
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Moreover, even when CTCs are present, there always exist a neighborhood of each
string free of CTCs. As a consequence, “smoothing out” the strings in a small enough
neighborhood does not affect the CTCs, as noted by Cutler.

4.3 Unwrapping Gott Spacetime

The existence of the minimum value for a CTC’s distance from the x = y = 0 line
implies that all CTCs wrap around it in the direction opposite to the relative motion
of the strings (they also wrap around both strings at some finite distance from each).
The Gott spacetime is flat, and so locally axisymmetric everywhere. We pick the
x = y = 0 subspace as the symmetry axis. We apply the same unwrapping procedure
as in Sect. 3: remove the subspace x = y = 0 and construct the universal covering
space of the resulting non-simply connected manifold (we assume that the original
Gott spacetime is simply connected, as the strings can be smoothed out). Since in the
Gott’s choice of identifications neither wedge crosses the x-axis, the resulting space
can be described using countably many copies of the Cartesian (t, x, y) charts, with
the charts n and n + 1 joined along the non-negative x-axis of each one, as shown on
Fig. 4a.

Fig. 4 Unwrapping Gott spacetime. (a) The x = y = 0 subspace is removed and the universal cover is
constructed by patching multiple Cartesian charts together. The former CTCs (indicated by the vertical
arrows) are now open curves passing from chart to chart. The identifications between charts are indicated
by the wavy arrows. (b) An alternative way to unwrap: a single Gott chart is matched to a collection of
Minkowski charts. The former CTCs wrap around just the two strings in the single Gott chart
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This unwrapped Gott spacetime is simply connected, has a quasi-regular singu-
larity at x = y = 0 and admits no CTCs, no matter how fast the strings are moving
relative to each other. It also contains a countable infinity of pairs of boosted strings.
The presence of the singularity removes the restriction on the total mass (deficit an-
gle) of all strings, which can now be arbitrarily large, though each string’s mass still
cannot exceed π .

A timelike or null observer starting on the nth chart and traveling around both
strings counter-clockwise ends up on the (n + 1) chart after crossing the positive
x-axis. This ensures that no such curve is closed, and so no CTCs are present in
the unwrapped Gott spacetime. Instead, what used to be CTCs are now open curves
winding around two strings per turn.

It is worth noting that the unwrapped Gott spacetime described above is not the
only way to unwrap the CTCs. Since the surface where each two Cartesian charts are
joined is locally flat, we do not have to have the two moving strings present on more
than one chart. For example, all but one chart can be Minkowski, as shown on Fig. 4b.

We have shown that one can indeed change the identifications in the Gott space-
time such that no CTCs are present. The trade-off for the CTCs removal is intro-
duction of a naked quasi-regular singularity. This singularity is timelike and so it is
present in any possible initial data set, making any initial value formulation problem-
atic.

We next turn to another 2 + 1 dimensional spacetime with CTCs, the Gödel uni-
verse, and demonstrate that a straightforward CTCs unwrapping does not work there.

5 Unwrapping Gödel Spacetime

In this section we construct a spacetime which is locally Gödel at every point, but with
a different global structure, such that a given set of CTCs in the original spacetime
is not longer closed in the unwrapped spacetime. This is not the only way one can
get rid of the Gödel CTCs. One obvious way to remove CTCs from the Gödel space
is to restrict the radial coordinate in the chart (5), thus creating a boundary where
the orbits of φ are still spacelike. Examples of this are given in [40] and [41], where
a preferred holographic screen is constructed at the radial distance sinh r = 1/

√
2,

where the expansion of the congruence of null geodesics emanating from a point
at r = 0 is zero. A generalization of this approach to higher-dimensional Taub-NUT-
AdS spacetimes is done in [42]. Another approach, considered in [43], is to match the
Gödel interior to an exterior spacetime without CTCs. There the metric is explicitly
changed locally in the regions where the CTCs used to exist.

5.1 Unwrapping Procedure and Circular CTCs

We now consider a particular example of unwrapping the Gödel space with respect
to a given family of CTCs. The metric is given in the (τ, r,φ) coordinate chart by the
expression (5). This chart is singular at r = 0, but this is just a coordinate singularity,
as the transformation (4) shows. Since the spacetime is homogeneous, this chart can
be constructed using any point in the spacetime as its origin. The CTCs manifest in
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this chart are the coordinate curves of φ when sinh(r) > 1. They are not geodesics,
but they are isometries of the spacetime, since the metric in this chart does not de-
pend on φ. These CTCs have been extensively studied (see e.g. [1]). Cooperstock
and Tieu in [2] “question the continuation of identifying the φ values of 0 and 2π

when φ becomes a timelike coordinate”. Since it is impossible to abruptly change the
coordinate identification of φ only at sinh r ≥ 1 without breaking the regularity of the
spacetime at sinh r = 1, we will instead remove this identification everywhere.

The Gödel spacetime is axisymmetric, and so the unwrapping procedure is
straightforward. We start with the chart (2) of the Gödel spacetime M. In this chart
the CTCs that are coordinate curves of φ cross the positive x-axis in the counter-
clockwise direction, like the CTCs of the Gott spacetime. We remove the x = y = 0
subspace (corresponding to a single fiber of the Killing vector ∂t , which also co-
incides with ∂τ at r = 0) and construct a universal covering space of the resulting
non-simply connected manifold M′. The resulting spacetime can be described by
either a single global chart (5) with φ ∈ R or by a collection of countably infinitely
many Cartesian charts with the charts n and n + 1 joined along the positive x-axis
of each one. The description using a single cylindrical chart is possible because the
subspace r = 0, where (5) is not defined, has been removed, and so this chart is valid
everywhere in the unwrapped spacetime.

As expected, the removed subspace makes the unwrapped Gödel space singular,
and inextendible. Any curve that passed through the subspace r = 0 in M is incom-
plete in M′ and hence in the unwrapped space, as well.

All circular CTCs cross the positive x-axis in M′ at least once, so their
unwrapped-space analogs in the nth Cartesian chart end up on the (n + 1) chart
after crossing the axis and so cannot be closed. This corresponds to the orbits of φ in
the chart (5) being open in the unwrapped space.

5.2 Remaining Circular CTCs

While there are no r = const > sinh−1(1) CTCs in the unwrapped Gödel spacetime,
this is not the only kind of circular CTC present in the Gödel metric. Since the Gödel
spacetime is homogeneous, we can construct a cylindrical chart (5) around any point
and obtain CTCs winding around that point. If this new, shifted origin of the cylin-
drical chart is “far enough” from the old, unshifted one, then the CTCs around it will
lie wholly on a single sheet of the space unwrapped around the unshifted origin, and
so will remain CTCs even in the unwrapped space.

To demonstrate this, it is convenient to use the quotient space M̃ of the
(2 + 1)-dimensional Gödel space M with the fiber defined by the orbits of the time-
like Killing vector y: y : M → M̃. The metric hab of the quotient space is calculated
as hab = gab − yayb

ycyc
(see e.g. [44]). Since ya is timelike everywhere, with a non-

vanishing norm, hab is nowhere singular, the reduced space is Riemannian, and its
line element in the original Cartesian coordinates is just a flat two-dimensional space

ds2 = dx2 + dt2. (18)

An arbitrary circular CTC in the full space, parameterized by (0 ≤ φ ≤ 2π), is
completely defined by its center (t0, x0, y0) and radius R. It can be written using the
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equivalent of (4) as

ex−x0 = cosh 2R + cosφ sinh 2R,

(y − y0)e
x = √

2 sinφ sinh 2R,

tan
1

2

(
φ + t − t0√

2

)
= e−2R tan

1

2
φ.

(19)

An image of this CTC in the flat quotient space M̃ is obtained by omitting the
coordinate y from (19):

ex−x0 = cosh 2R + cosφ sinh 2R,

tan
1

2

(
φ + t − t0√

2

)
= e−2R tan

φ

2
,

(20)

which can be rewritten in an explicit form as

x = x0 + ln cosh 2R + cosφ sinh 2R,

t = t0 + 2
√

2 tan−1 (e−2R − 1) tan φ
2

1 + e−2R tan2 φ
2

.
(21)

All CTCs with the same values of x0 and t0, but with a different y0 are mapped into
the same closed curve. The image of the singular boundary of the unwrapped space
is the point x = t = 0 of the quotient space.

We note the following properties of a curve described by (21):

1. It is inscribed in a rectangle centered at (x0,t0) and with sides 2R and 2tan−1sinhR,
and

2. It circumscribes an ellipse inscribed into this rectangle, as described by (22)

(
x − x0

2R

)2

+
(

t − t0

2
√

2 tan−1 sinhR

)2

= 1. (22)

The property 1 follows from the ranges of x and t in (21) for a given R, while the
property 2 can be shown by substituting (21) into the left-hand side of (22), finding
the four local minima of the resulting function of φ and showing that they give exactly
the equality (22). At small R the curve (21) tends closer to (22), while at large R it
asymptotically approaches the rectangle, as shown on Fig. 5.

We can now show that there exist CTCs that are not unwrapped by the singular
boundary resulting from unwrapping around the origin in the chart (5). Since the
image of any CTC winding around the boundary has to wrap around the image of the
boundary in the reduced space, constructing the image of a CTC that does not wrap
the image of the singularity is enough to show the existence of CTCs that are not
unwrapped. Since the image of any CTC of radius R with, say, |x0| > 2R or |t0| >

2
√

2 tan−1 sinhR does not wrap around x = t = 0, all such curves remain closed after
unwrapping.
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Fig. 5 Normalized concentric CTCs of radius R in the (x/2R, t/(2
√

2 tan−1 sinhR)) coordinates. The
CTCs lie inside a square with the side equal to two, but outside of a circle inscribed into it

Thus the naive coordinate identification change of [2] fails to unwrap at least some
of the circular CTCs.

6 Multiple Unwrapping of the Gödel Space

By unwrapping the Gödel spacetime we have introduced a quasi-regular singularity
into it, yet we did not accomplish the goal of removing all CTCs from it. If one re-
mains intent on also removing circular CTC, one may consider a multiple unwrapping
instead, as described at the end of the Sect. 3.3.

6.1 Double Unwrapping

We first consider what happens when we unwrap the CTCs in just two charts. We
show that even in this simple case the unwrapped space contains a countably infinite
number of quasi-regular singularities.
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This “double unwrapping” procedure would look as follows. We consider two dif-
ferent families of circular CTCs, one centered at x = x1, y = y1 and x = x2, t = t2
respectively. The subspaces (x = x1, t = t1) and (x = x2, t = t2) are the fixed points
of the corresponding U(1) isometries represented by the CTCs. As before, we first
remove these fixed points from the spacetime M, only this time we have to remove
both sets, resulting in the singular space M′′. Next we construct the universal cover-
ing space M̄ of M′′ and lift the metric tensor to M̄. Since the original (2+1)-Gödel
manifold is R

3, we do not need to worry about accidentally removing any topologi-
cal features unrelated to unwrapping. In this case M′′ is homotopy-equivalent to the
wedge sum of two circles S

1 ∨ S
1, known as the “figure 8” (see e.g. [45], Chap. 1).

This can be shown by explicitly constructing a deformation retraction, an operation
that preserves the fundamental group of a manifold. To do that, we first note that,
since the orbits of y are open lines, they can be retracted into points by the continu-
ous map fs : (t, x, y) → (t, x, (1− s)y). f0 is the identity map, and f1 maps M′′ into
a two-dimensional plane with two points ((x1, t1) and (x2, t2)) removed. Following
[45], we next retract the plane first onto two circles (one around each removed point)
connected by a line segment, then contracting the connecting segment into a point.
The resulting space is the “figure 8”. As a result of the retraction, the singularities
now “fill the inside of the circles”. The fundamental group of M′′ is the fundamental
group of the “figure 8”, which is just the free product of two copies of Z, π1 = Z ∗ Z.
Each element of the group corresponds to winding around one of the two singularities
in M′′.

The universal cover of the “figure 8” is well known, it is a tree with countably in-
finitely many edges and each node connecting four edges (see e.g. [45] for construc-
tion). The process of constructing the universal cover of the twice punctured plane is
shown schematically on Fig. 6. Each edge of this graph corresponds to a CTC wind-
ing around one of the removed subspaces of fixed points. In the unwrapped space
this CTC becomes open and corresponds to a given path along the graph. Traversing
one edge corresponds to “going around” one of the singularities, so there is a one-to-
one correspondence between the singularities in the twice-unwrapped Gödel and the
edges in the graph.

Fig. 6 Constructing the homotopy equivalence of the twice-unwrapped Gödel space. We start with the
(t, x, y = 0) subspace with two points removed (left), then retract the space onto first two circles connected
by a line segment, then the “figure 8”, and finally construct the universal cover of the “figure 8” (only the
first four levels of nodes are shown). Each edge corresponds to a circle wrapping around one of the two
singularities in the original space, so the unwrapped space contains infinitely many singularities
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Fig. 7 A tessellation of the two-dimensional quotient space of the Gödel spacetime. Each vertex corre-
sponds to a timelike line in the full spacetime and each circle is an image of a closed null curve R = Rmin.
The tessellation is dense enough to make any circular CTCs wrap around at least one such line, as shown.
Once the lines are removed and the resulting non-simply connected spacetime is lifted into the full space-
time and then into its universal cover, no circular CTCs are present in this “multiply unwrapped” spacetime

We can now conclude that unwrapping around two axes at once in a simply con-
nected spacetime results in a spacetime with a countable infinity of quasi-regular
singularities of the type discussed in Sect. 3.2.

6.2 Multiple Unwrapping

As discussed in Sect. 5.2, there are infinitely many families of concentric CTCs pa-
rameterized by (t0, x0, y0) for which at least some CTCs persist after unwrapping
around (x = 0, t = 0). According to the property 2, each CTC lies outside an el-
lipse (22). All such ellipses are larger than the image of a closed null curve corre-
sponding to sinhR = 1. If we modify the spacetime in a way that transforms any
such ellipse into an open curve, the resulting spacetime will not have any circular
CTCs. This can be accomplished by first tessellating the quotient space (x, t) with
a dense enough triangular lattice, such that there is a vertex inside any ellipse with
sinhR = 1, then lifting it into the full 3-dimensional Gödel spacetime using y as the
fiber and finally by going to the universal covering space, in a procedure analogous
to the one described in Sect. 6.1.

The tessellation is shown schematically on Fig. 7. The fundamental group of the
tessellated space is the free group on Z generators, one for each removed point. A
small patch of the unwrapped quotient space is illustrated on Fig. 8. Each helix cor-
responds to a family of unwrapped concentric circular CTCs. The price to pay for
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Fig. 8 A visualization of the
two-dimensional quotient space
of the Gödel spacetime
unwrapped at three points at
once. Only a small patch of this
space is shown, as unwrapping
around two or more points
results in a countable infinity of
singular boundaries

removing all circular CTCs is the introduction of a naked singular boundary consist-
ing of a countable infinity of disjoint pieces.

6.3 Sector-like CTCs in the Gödel Space

One can ask whether any other types of CTCs are present in the multiply unwrapped
Gödel spacetime. For example, is it possible to weave one’s way in between the ver-
tices and come back to the starting point along a CTC? This seems unlikely and we
conjecture that no such CTCs exist. To support this conjecture we describe a different
kind of CTCs, we call sector-like CTCs, and show that they, too, are transformed into
open curves by the multiple unwrapping procedure of Sect. 6.2.

The idea of constructing a CTC surviving the tessellation of Sect. 6.2 is to exploit
the property of the Gödel spacetime where an arc with a larger radius but a smaller
angular distance can get us just as far back in time in the chart (5). The hope is then
to go far along a timelike curve in a radial direction, then along an arc, then back to
the starting point, thus covering a sector instead of a full circle in this chart. If the
resulting sector is thin enough, then we can try to fit it in the tessellated space in such
a way that no vertices are inside the sector.

To check if this can be done, we calculate the angular and linear distance along
the arc required to overcome the time lost traveling forward and back along the two
radial directions. Since a closed null sector would be “thinner” than the corresponding
timelike sector, we analyze the null sector first.

The (negative) time change in the coordinate τ along a null arc of radius R and
angle 
φ in the chart (5) can be calculated as


τ = (sinh2 R(
√

2 − cothR))
φ, (23)

and it has to compensate for the positive time change of 2R along the two radii of the
sector, resulting in the total angular change of


φ = 2R

sinh2 R(
√

2 − cothR)
. (24)
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Fig. 9 Images of sector-like closed null curves in the (x, t) coordinates for a range of values R. Arrows
indicate the future null directions. For large R the curve tends to a triangle with a fixed minimum angle.
The angle increases as R goes down, and for R close to the minimum value of sinhRmin = 1 the null curve
has to wrap around the origin several times to compensate for the time lost along the radial paths

To see if the sector is thin enough to fit between the vertices of the lattice for large
enough R, we project it into the flat quotient space (18). The three legs of the path
written in the (τ, r,φ) coordinates and parameterized by λ are

(λ,λ,0), 0 ≤ λ ≤ R,(
2R − λ,R,

λ − R

sinh2 R(
√

2 − cothR)

)
, R ≤ λ ≤ 3R, (25)

(
λ − 4R,4R − λ,

2R

sinh2 R(
√

2 − cothR)

)
, 3R ≤ λ ≤ 4R.

The same curve in the (x, t) chart of (18) can be described using the explicit coordi-
nate transformation (21). The resulting curves are plotted for several values of R on
Fig. 9. For large R the three turning points of the path in the (x, t) chart asymptot-
ically approach (0,0), (2R,2

√
2R), (2R,−2

√
2R). Thus, no matter how large R is,

the tessellation dense enough to unwrap circular CTCs also unwraps the sector-like
closed null (and therefore timelike) curves. In this sense, the original CTCs described
by Gödel appear to have the smallest “footprint” in the flat quotient space.

Whether or not there are other CTCs that persist in the multiply unwrapped space-
time, it is quite clear that removing CTCs from the Gödel spacetime solely by chang-
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ing the coordinate identification results in a rather contrived space with a countable
infinity of naked quasi-regular singularities.

7 Conclusion

We have defined and investigated “unwrapping” CTCs in two (2 + 1)-dimensional
toy models, the Gödel spacetime and the Gott spacetime, as a concrete implemen-
tation of the claim by Cooperstock and Tieu [2] that the periodic identification of a
timelike coordinate is “purely artificial”. The procedure requires removing a time-
like line from the spacetime and constructing a universal cover of the resulting non-
simply connected spacetime. We have demonstrated that such an unwrapping creates
a naked quasi-regular singularity, corresponding to the removed timelike line in the
original space. The same argument was extended to any locally axisymmetric space-
time where CTC wrap around the axis, as is the case in the Gott spacetime.

While the unwrapped Gott spacetime is devoid of CTCs, the unwrapped Gödel
spacetime still contains them. We have defined a “multiple unwrapping” of the Gödel
spacetime in order to remove the remaining circular CTCs. As a result, this multiply
unwrapped spacetime contains a countably infinite number of singularities. We con-
jecture that this multiple unwrapping removes all other CTCs as well, and support
it by giving an explicit example of a sector-like CTC, which is also removed by the
multiple unwrapping.

Our investigation into the ways of removing the CTCs by means of changing co-
ordinate identifications resulting in unwrapping suggests that CTCs appearing in the
solutions of the Einstein equation are not a mathematical artifact of arbitrary coor-
dinate identifications, but rather are an unavoidable, if an undesirable, consequence
of General Relativity. Different ways to extend the same local coordinate patch of
a pathological spacetime may lead to different pathologies, such as CTCs or naked
quasi-regular singularities, but are unlikely to result in a physically acceptable regular
spacetime.
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