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Abstract The double slit problem is idealized by simplifying each slit by a point
source. A composite reduced action for the two correlated point sources is developed.
Contours of the reduced action, trajectories and loci of transit times are developed in
the region near the two point sources. The trajectory through any point in Euclidean
3-space also passes simultaneously through both point sources.

Keywords Interference · Young’s experiment · Trajectory representation ·
Entanglement · Nonlocality · Determinism

1 Introduction

One of the first examples of wave-particle duality in quantum mechanics is the double
slit experiment which exhibits the wave and the particle properties. The wave prop-
erties are exhibited by diffraction patterns analogous to Young’s optical experiment
while a detector still registers individual particles whose spatial distributions are con-
sistent with Young’s diffraction. Attempts at detecting through which slit the particle
has passed destroys the interference between the two slits.

The trajectory representation has been developed as a deterministic theory of quan-
tum mechanics [1–8]. Faraggi and Matone have shown that the foundations of quan-
tum mechanics can be developed from the quantum equivalence principle, which is
consistent with the trajectory theory, without any of the philosophy of the Copen-
hagen interpretation [4]. The Welcher Weg aspect of the quantum Young’s diffraction
experiment is now ripe for an investigation using the deterministic trajectory repre-
sentation of quantum mechanics.
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The particular form, used herein, of the quantum Young’s diffraction experiment
examines interference between a pair of coherent secondary point source activated
coherently by a primary source. Substituting secondary point sources for the tradi-
tional slits simplifies the mathematics, which can be done in closed form, without
any loss of Welcher Weg physics. Each secondary point source emits a spherical wave
that is a component of the total wave function for a solitary diffracted quantum parti-
cle. By themselves, the spherical wave components do not represent particular states
in the deterministic trajectory representation. The total wave function is shown to be
a dispherical wave function for the self-entangled quantum particle that is synthe-
sized from the pair of individual spherical waves coherently emitted by the pair of
secondary point sources. The terminology “self-entangled” emphasizes that dispher-
ical wave function may represent a solitary quantum particle whose components, the
pair of spherical waves emitted by the coherent pair of secondary point sources, are
entangled. A self-entangled wave function for a quantum particle implies a solitary
self-entangled particle and is distinguished from an entangled wave function for an
entangled pair of quantum particles. This investigation develops from the synthe-
sized dispherical wave function the reduced action (Hamilton’s characteristic func-
tion) that is a generator of the motion for a solitary self-entangled quantum particle.
Subsequently the investigation, by applying Jacobi’s theorem to the reduced action,
develops the trajectory and motion for a solitary self-entangled quantum particle to
resolve Welcher Weg. This procedure is replicated to establish various other trajecto-
ries using different constants of the motion. Both cylindrical and prolate spheroidal
coordinate systems are used in this exposition for computational flexibility, as a com-
putational check, and to gain insight. The cylindrical coordinates are more familiar
and more closely related to the traditional presentation of the double slit experiment
in the Fraunhofer region. The prolate spheroidal coordinate system is the natural co-
ordinate system for investigating two-center phenomenon. Consequently, the results
herein are presented mostly in prolate spheroidal coordinates for heuristic purposes
and to exhibit insight [9].

The thrust of this investigation is to determine through which secondary point
source the trajectory passes. The investigation therefore concentrates mainly in the
region near the pair of secondary point sources. This region is well within the region
of Fresnel diffraction. However, Fresnel approximations are not needed herein as the
diffraction for a pair of secondary point sources can be determined exactly in closed
form. All trajectories for the solitary self-entangled quantum particle are shown to
be strongly nonlocal as each individual trajectory is shown to pass simultaneously
through both secondary point sources through a series of the trajectory segments that
alternate forward and retrograde motion with respect to time. The nonlocality of the
dispherical particle implies that the trajectory is for a distributed particle rather than
a point particle.

Manifestation of interference effects including reinforcement and destruction is
beyond the scope of this Welcher Weg investigation. A companion article shows how
the deterministic trajectory representation exhibits interference effects between plane
wave functions that is consistent with the quantum equivalence principle of Faraggi
and Matone [4] and does not resort to Born’s probability density of the Copenhagen
interpretation [3].
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Philippidis, Dewdney and Hiley have developed Bohmian trajectories for the dou-
ble slit experiment [10]. Guantes, Sanz, Margalef-Roig and Miret-Artés have revis-
ited the double slit experiment to develop Bohmian trajectories, classical trajectories
and the standard (wave function) quantum representation for a “soft-walled” double
slit barrier [11]. However, Bohmian mechanics [12] and the trajectory representation
have different equations of motion [2, 4, 6–8, 13]. Consequently the trajectories of
the two representations are different and imply different physics and philosophy as
one can learn by comparing the findings of these investigations.

In Sect. 2, the wave function, generator of the motion (reduced action), trajectory
equation and equation of motion are developed for the solitary self-entangled quan-
tum particle of the quantum Young’s diffraction experiment. In Sect. 3, examples of
the contours of reduce action, trajectories and loci of transit times are exhibited and
discussed for the solitary self-entangled quantum particle. In Sect. 4, the trajectory
for the solitary self-entangled quantum particle is shown to transit simultaneously
both coherent secondary point sources resolving Welcher Weg. In the Appendix, the
experiment is modified to render a set of self-entangled wave functions that are shown
to synthesize spherical waves.

2 Formulation

The formulation will be developed in both a modified prolate spheroidal coordinate
system (η, ξ,φ) and in the more familiar cylindrical coordinate system (ρ, z,φ) to
facilitate insight, accessibility and computational flexibility. Computations were con-
ducted in both coordinate systems, but the results will be presented for heuristic pur-
poses mostly in the modified prolate spheroidal coordinate system with scale factors
(metrical coefficients) modified by Morse and Feshbach [9]. The two foci of the set
of nested spheroids are at (ρ, z,φ) = (0,±a/2,−π ≤ φ ≤ π) in cylindrical coordi-
nates. The distances from the foci to a point (ρ, z,φ) are given in cylindrical and
prolate spheroidal coordinates by [9]

r1 = [ρ2 + (z + a/2)2]1/2 = a(ξ + η)/2,

r2 = [ρ2 + (z − a/2)2]1/2 = a(ξ − η)/2.

The modified prolate spheroidal coordinate system (ξ, η,φ), where ξ is the ellip-
soidal coordinate, η is the hyperboloidal coordinate, and φ is the azimuthal coordi-
nate, is specified by

ξ = (r1 + r2)/a, η = (r1 − r2)/a, φ = arctan(y/x).

For the modified scale factors, see Morse and Feshbach [9]. The foci of the spheroids
are at (ξ, η,φ) = (1,±1,−π ≤ φ ≤ π) in prolate spheroidal coordinates. The line
ξ = 1 lie on the principal axis of the set of nested prolate spheroids.

Let us consider two secondary point sources displaced from each other by the
distance a where each secondary source specifies one of the foci for an infinite set of
spheroids. The secondary point sources are coherently actuated with equal strength by
a sole primary source so that the secondary sources emit simultaneously components
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of equal magnitude of a solitary spinless quantum particle of mass m and energy
�

2k2/(2m). Each of the two secondary point sources, if acting alone, would be the
source for a stationary spherical wave function given by

ψ1 = exp(ik1 · r1)

r1
= exp(ikr1)

r1
(1)

and

ψ2 = exp(ik2 · r2)

r2
= exp(ikr2)

r2
(2)

where ki is collinear with r i and k1 · k1 = k2 · k2 = k2. The two point secondary
source problem is azimuthally invariant. A dispherical wave function, ψd can be syn-
thesized from its two components, ψ1 and ψ2, by [3]

ψd = ψ1 + ψ2 = [r−2
1 + r−2

2 + 2r−1
1 r−1

2 cos(k1 · r1 − k2 · r2)]1/2

× exp

[
i arctan

(
r2 sin(k1 · r1) + r1 sin(k2 · r2)

r2 cos(k1 · r1) + r1 cos(k2 · r2)

)]
. (3)

As ψd is not factorable into a product of ψ1 and ψ2, the two components, ψ1 and
ψ2, are entangled in ψd . The quantum particle that is emitted from the two secondary
point sources has ψd as its wave function and is self-entangled. In this investigation,
which examines the behavior of ψd as a solitary particle, the components ψ1 and ψ2
do not represent a pair of particles that entangle with each other. For completeness,
the cosine term in the amplitude for ψd in (3) manifests interference.

A generator of the motion, the reduced action (Hamilton’s characteristic function),
Wd , for the self-entangled wave function can be extracted from (3) as [3]

Wd = � arctan

(
r2 sin(k1 · r1) + r1 sin(k2 · r2)

r2 cos(k1 · r1) + r1 cos(k2 · r2)

)

= � arctan
{([ρ2 + (z − a/2)2]1/2 sin[kρρ + kz(z + a/2)]

+ [ρ2 + (z + a/2)2]1/2 sin[kρρ + kz(z − a/2)])
× ([ρ2 + (z − a/2)2]1/2 cos[kρρ + kz(z + a/2)]
+ [ρ2 + (z + a/2)2]1/2 cos[kρρ + kz(z − a/2)])−1}

= � arctan

(
(ξ − η) sin[k(ξ + η)a/2] + (ξ + η) sin[k(ξ − η)a/2]
(ξ − η) cos[k(ξ + η)a/2] + (ξ + η) cos[k(ξ − η)a/2]

)
. (4)

This generator of the motion, Wd , for the dispherical particle of quantum Young’s
diffraction experiment is in Euclidean 3-space and not in Hilbert space. Faraggi and
Matone have shown that the reduced action may be derived by the quantum equiv-
alence principle independent of the Schrödinger equation [4]. The reduced action
for the self-entangled wave function is independent of φ, which manifests azimuthal
symmetry. By (4), Wd , albeit independent of φ, does not contain a cyclic coordinate.
Neither is it further separable. In the vicinity near one of the secondary point sources
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by (4), the degree that Wd mimics reduced action of that secondary point source being
the sole point source increases with nearness to that point source.

The trajectory equation for the self-entangled wave function can be developed
from the reduced action by Jacobi’s theorem βi = ∂Wd/∂αi where αi is one of the
independent constants of integration and βi is its associated constant coordinate. This
procedure here differs with Bohmian mechanics, which does not employ Jacobi’s
theorem [12]. Following Goldstein [14] one may choose other independent quantities,
γi ’s where each γi is a function of all the αi ’s. The γi ’s are constant momenta albeit
not necessarily the integration constants that arise by integrating the Hamilton–Jacobi
equation. Jacobi’s theorem still holds for the γi ’s. Here, �kz has been selected for the
representation in cylindrical coordinates to be a constant momenta. The trajectory
equation for ψd is rendered in the ρ, z-plane by Jacobi’s theorem as

βz = �
−1 ∂Wd

∂kz

=
r2

2 [(z + a/2) − kz

kρ
ρ] + r2

1 [(z − a/2) − kz

kρ
ρ] + 2r1r2 cos[k(r1 − r2)][z − kz

kρ
ρ]

[r2 cos(kr1) + r1 cos(kr2)]2 + [r2 sin(kr1) + r1 sin(kr2)]2

(5)

where for compactness and didactic purposes not all the distances, r1 and r2, have not
been expanded and where kρ is another γ given by kρ = +(k2 −k2

z )
1/2 where the sign

of kρ is positive for outgoing radiation. We assume that the trajectory originates at
the secondary point source at the upper focus. Hence, for r2 = 0, ρ = 0 and z = a/2,
then βz = 0. This permits us to simplify (5) by

r2
2

[
(z + a/2) − kz

kρ

ρ

]
︸ ︷︷ ︸

lower source alone

+r2
1

[
(z − a/2) − kz

kρ

ρ

]
︸ ︷︷ ︸

upper source alone

+2r1r2 cos[k(r1 − r2)]
(

z − kz

kρ

ρ

)
︸ ︷︷ ︸

interference effects

= 0. (6)

Equation (6) has been organized into the weighted contributions (sub-trajectories)
from individual secondary sources acting alone and from interference effects. The
weighting of an individual contribution from a secondary source acting alone is pro-
portional to the square of the distance from the alternate secondary source while the
weighting of the contribution from the interference effects is proportional to twice
the product of the two distances from the individual secondary sources. We note that
these three sub-trajectories have the same constant of the motion, ηa . The correspond-
ing trajectory equation in prolate spheroidal coordinates may be expressed as

(ξ − η)2{ηa[(ξ2 − 1)(1 − η2)]1/2 − (1 − η2
a)

1/2(ξη + 1)}
+ (ξ + η)2{ηa[(ξ2 − 1)(1 − η2)]1/2 − (1 − η2

a)
1/2(ξη − 1)}

+ 2(ξ2 − η2) cos(kaη){ηa[(ξ2 − 1)(1 − η2)]1/2 − (1 − η2
a)

1/2ξη} = 0 (7)

where ηa is the constant of the motion and is the η-asymptote of the trajectory as it
propagates without bound. The top, middle and bottom lines on the left side of (7)
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represent in prolate spherical coordinates the contributions due to the lower secondary
source alone, upper secondary source alone and interference effects respectively. The
trajectory equations are implicit functions. Equation (6) renders (ρ, z) mutually im-
plicit while (7) renders (ξ, η) mutually implicit.

There is a fundamental simplicity that has been achieved by establishing the tra-
jectory of the quantum dispherical particle. Only one constant of the motion is needed
to establish the trajectory even though the equation of motion may exhibit vestiges of
motion of its components and the interference between its components as explicitly
shown by (6). Otherwise, had one worked directly with trajectories for the component
wave functions ψ1 and ψ2, then the worker would need two constants of the motion
to describe two trajectories (for ψ1 and ψ2) for the motion of the dispherical particle.

Note also that the trajectories determined by Jacobi’s theorem are not necessarily
orthogonal to the contours of reduced action [3, 13].

For completeness, had we been investigating the entangled motion of two parti-
cles where each secondary source had simultaneously emitted an identical particle,
then we would have proceeded as before and synthesized the entangled wave func-
tion, and established the reduced action for the entangled pair. The trajectory for the
entangled pair would be specified by a single constant of the motion determined by
Jacobi’s theorem. Note that this procedure would render the trajectory of the entan-
gled pair as a whole and not the trajectory of one particle of the entangled pair under
a quantum pressure due to a Bohmian quantum potential for the pair of identical par-
ticles. One can generalize for entangled ensembles of N particles. By extending a
procedure given by Bohm [12], one can synthesize an entangled wave function, ψE ,
from the ensemble of wave functions, ψj , j = 1,2, . . . ,N , where each wave function
represents one of entangled N particles, by

ψE = (X 2 +Y2)1/2 exp[i� arctan(Y/X )]
with

X = �
[

N∑
j=1

ψj

]
=

N∑
j=1

�[ψj ] and Y = �
[

N∑
j=1

ψj

]
=

N∑
j=1

�[ψj ].

While this investigation to resolve Welcher Weg concentrates upon the Fresnel
region (1 ≤ ξ < 6 herein), let us now briefly examine qualitatively the trajectories
in the Fraunhofer region. In the limit ξ → ∞, then by (6) and (7) z/ρ → kz/kρ

rendering the expected behavior of the trajectory in the infinitely outer region. Hence,
kρ and kz may be identified with the asymptotic direction of the trajectory. In prolate
spheroidal coordinates, the trajectory and the hyperboloid of revolution specified by
ηa have the common asymptote which is a cone whose generating line from the origin
has the angle θ with the z-axis or the ellipsoidal principal axis where θ is given, as
expected, by

θ = arccos(ηa) = arctan(kρ/kz).

The concept that ψd is synthesized from ψ1 and ψ2 follows from the superpo-
sitional principal for linear homogeneous differential equations. In the Appendix,
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a modified experiment is described where ψ1 and ψ2 are synthesized from two dif-
ferent dispherical wave functions.

The equation of motion for the dispherical wave function is rendered by Jacobi’s
theorem, t − τ = ∂Wd/∂E where τ specifies the epoch. Jacobi’s theorem gives

t − τ =
(

1 − 2

ξ2 + η2 + (ξ2 − η2) cos(kηa)

)
mξηa

�kηa

(8)

for motion projected across the η-coordinates. The equation of motion must be con-
sistent with the side relation that all points (ξ, η) obey the trajectory equation, (7),
with the constant of the motion ηa . For ηa → 0, (8) becomes singular and may be
replaced using (7) by an alternative form

t − τ = mηa

�k(1 − η2
a)

1/2
(9)

for motion projected across ξ -coordinates.

3 Application

3.1 Reduced Action

Let us now consider an example m = 1, � = 1, a = 1, and k = 15.2. The value of k

was chosen so that ka/π would not be a rational number for greater generality. The
contours for reduced action for the dichromatic particle are determined by (4) for
W = 0.5h,1h,1.5h, . . . ,5h and exhibited in the ξ, η-plane on Fig. 1. By symmetry,
Fig. 1 need only cover the range 0 ≤ η ≤ 1 as there exists a mirror symmetry on the
plane η = 0 in addition to the azimuthal symmetry in φ. The contours of constant Wd

orthogonally intersect the plane η = 0 manifesting the mirror symmetry and orthogo-
nally intersect the axis ξ = 1 or η = 1 manifesting azimuthal symmetry. The implicit
relationships between η and ξ or z and ρ were established by solving (4) numerically

Fig. 1 Contours of constant
reduced action for Wd = 0.5h,

1h,1.5h, . . . ,5h for the
quantum dispherical particle
with m = 1, � = 1, a = 1 and
k = 15.2
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Fig. 2 Contours of constant
reduced action for the quantum
dispherical particle as solid
lines. The dashed lines are the
projection onto the ξ, η-plane of
the hyperboloids η = 0.207,
0.620 near where maximum
destructive interference occurs
between ψ1 and ψ2

Fig. 3 Contours of constant
reduced action for Wd = 4h,

5h,6h for the quantum
dispherical particle with m = 1,
� = 1, a = 1 and k = 24.3. The
dashed lines are the projection
onto the ξ, η-plane of the
hyperboloids η = 0.129, 0.388,
0.646, 0.905 near where
maximum destructive
interference occurs between ψ1
and ψ2

by the secant method. The contours of reduced action manifest self interference on
Fig. 1 as wrinkles in the contours reminiscent of the serpentine contours exhibited for
interfering plane waves in the companion paper [3]. These wrinkles diminish as the
ratio r2 : r1 → 0. The locations of these wrinkles are shown by Fig. 2 to occur near
kaη = (2n − 1)π , n = 1,2, . . . in general or, for k = 15.2 and a = 1, in the vicinity
of the hyperboloids η = 0.207,0.620 near where maximum destructive interference
occurs between ψ1 and ψ2. The distribution of the wrinkles in Wd with regard to kaη

can be substantiated be considering Fig. 3 which exhibits the contours for Wd for
m = 1, � = 1, a = 1, and k = 24.3. This change in k induces four wrinkles in Fig. 3
in the vicinity of the hyperboloids η = 0.129, 0.388, 0.646, 0.905 where maximum
destructive interference occurs.
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Fig. 4 Contours of constant
reduced action for
Wd = 1.315815h,1.316815h,

1.317815h in the vicinity of the
origin for the quantum
dispherical particle with m = 1,
� = 1, a = 1 and k = 15.2

The behavior of the contour of Wd at the origin (ξ, η) = (1,0) is interesting and
exhibited in Fig. 4. Figure 4 exhibits the behavior of three contours separated by
0.001h in action in the vicinity of the origin. Figure 4 is also presented in cylindrical
coordinates as prolate spheroidal coordinates do not render any physical insight at
the fine scale used therein. Contours of constant reduced action less than approxi-
mately Wd = 1.316815 are disjointed with two sets of contours: each enclosing one
or the two secondary point sources. At approximately Wd = 1.316815, the two dis-
jointed contours of reduced action merge at the origin. At the origin, the contour must
instantaneously transition from orthogonal to the ellipsoidal principal axis (1, ε) to
orthogonal to the plane (1 + ε,0) in the limit ε → 0. Likewise a similar situation
is happening for the mirror-symmetric partner contour orthogonal to the ellipsoidal
principal axis (1,−ε). As ε → 0 from above, the radii of curvature of the two mirror-
symmetric partner contours are vertically aligned and go to zero from opposite signs,
the mirror-symmetric partner contours become tangent albeit the symmetric partner
contours have infinite curvature of opposite signs inducing a zero degree of oscula-
tion, and their evolutes merge vertically at (1,0). At and only at ε = 0, the infinite
curvatures of opposite sign at the point of tangency (1,0) of the two mirror-symmetric
contours form a third contour from the two mirror-symmetric partner contours. This
third contour has infinite curvature at (1,0) but whose radius of curvature while zero
is, in the limit ε → 0, horizontally aligned, which allows the two mirror symmetric
partner contours to be joined at ε = 0 to form a single contour. Succeeding contours
of larger action higher will be orthogonal to the plane η = 0.

3.2 Trajectories

We consider the same m = 1, � = 1, a = 1, and k = 15.2 for trajectories that
we used for investigating reduced action. The initial trajectory for examination
leaves the upper secondary source with the prolate spheroidal constant of motion
ηa = − sin(π/18), which has been chosen to be explicitly negative so that the sec-
ondary point source and ηa are in opposite hemispheres with regard to the sign of η.
The corresponding cylindrical constant of the motion is with �kz = −�k sin(π/18).
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Fig. 5 Trajectory for the
quantum dispherical particle
originating from the upper
secondary source with constant
of the motion ηa = − sin(π/18).
Note change of scale in ρ by a
factor of ten at ρ = 0.1, denoted
by the dashed vertical line, to
facilitate exposition

The trajectory equations, (6) and (7), are implicit and solved numerically by the se-
cant method in cylindrical and prolate spheroidal coordinates respectively. The tra-
jectories in prolate spheroidal coordinates are a monotonic function of η while in
cylindrical coordinates neither ρ nor z are the trajectories monotonic. Hence, the nu-
merical process was better behaved in prolate spheroidal coordinates with regard to
convergence by the secant method for successive points of the trajectory. The result-
ing trajectory transits between the two secondary point sources as exhibited in Fig. 5.
For this reason, this trajectory is called a “confined” trajectory. As the double point
source experiment has azimuthal symmetry, Fig. 5 exhibits the trajectory projected
onto the ρ, z-plane in cylindrical coordinates. Figure 5 is presented in cylindrical
coordinates to accommodate a change of scale by a factor of ten in ρ at ρ = 0.1 to
facilitate exposition of significant detail and the entire trajectory between the two sec-
ondary point sources. Nevertheless, prolate spherical coordinates still renders better
insight when examining the trajectory presented on Fig. 5.

Figure 5 is misleading as the apparent symmetry of the trajectory about the η = 0
or z = 0 plane in Euclidean 3-space is spurious. In prolate spheroidal coordinates,
ξ ≥ 1 while in cylindrical coordinates ρ ≥ 0. The point on the trajectory at the ori-
gin (ξ, η) = (1,0) or (ρ, z) = (0,0), is an inflexion point in Euclidean 3-space. The
trajectory mimics a cubic equation in the neighborhood of the origin where the sym-
metric pair of constant reduced action contours osculate with zero curvature. As the
trajectory transits z = 0, φ changes value by ±π . This inflexion point of the trajectory
in Euclidean 3-space at the coordinate origin (ρ, z) = (0,0) induces the trajectory to
be antisymmetric in Euclidean 3-space about the plane η = 0 or z = 0. The trajecto-
ries intersect the contours of constant reduced action in opposite direction in the two
hemispheres.

The trajectory, as exhibited by Fig. 5, has turning points in ξ in the vicinity of
kaη = ±2π,±4π or in the vicinity of η = ±0.413,±0.827 or z = ±0.207,±0.413.
At these points, the interference between ψ1 and ψ2 reinforce each other. This is
analogous to the lower turning points for the example considered in the companion
paper [3]. Other turning points in ξ occur for some ξ > 1 in the vicinity of kaη =
±π,±3π or in the vicinity of the hyperboloids η = ±0.207,±0.620 where the inter-
ference between ψ1 and ψ2 oppose each other as the cos(kaη) term in (7) is the super
preponderate cause of destructive interference. These turning points are analogous to
the upper turning points for the example considered in the companion paper [3].
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There remains two turning points in η, which manifest local maximum destructive
interference between ψ1 and ψ2, on Fig. 5 that are located approximately at points
(ξ, η) ≈ (1.0065,±0.954) or (ρ, z) ≈ (0.0171,±0.480). Here, the contribution of
the factor cos(kaη) in (7) contributing to self-interference is no longer super pre-
ponderate contribution near a secondary source point (ξ, η) = (1,±1). The choice
of ka 	= 2nπ,n = 1,2,3, . . . preempts the existence of latent next “regular” turning
point at kaη = ±5π for such |η| 	≤ 1 would be nonphysical. Nevertheless, ψd , which
has no self-interference at either secondary point source, immediately acquires self-
interference upon sortieing from either secondary point source that increases to lead-
ing order as (ξ − η)(ξ + η) in the vicinity of the secondary point sources that in turn
induces these “irregular” turning points in conjunction with the behavior of cos(kaη)

factor in (7).
Let us now investigate a set of selected “confined” trajectories that leave the upper

secondary point source with various values of ηa ≤ 0 so that the secondary source
and ηa are in opposite hemispheres . Figure 6 exhibits the set of selected trajectories
whose constants of the motion are given by

ηa = − sin(0),− sin(π/8),− sin(π/4),− sin(3π/8)

≈ −0,−0.383,−0.707,−0.924,

where −0 denotes that the limit ηa → 0 is from below. By symmetry, Fig. 6 need
exhibit only the right upper quadrant. A fifth trajectory for constant of the motion,
ηa = − sin(π/2) = −1 superimposes line ξ = 1 on Fig. 6 in the range 0 ≤ η ≤ 1. The
trajectories for ηa ≈ −0.383,−0.707,−0.924 cross at their mutual inflexion point
in Euclidean 3-space at the origin (ξ, η) = (1,0). For ηa < 0, in the limit that the
constant of the motion ηa → 0 from below, then its trajectory too goes through the
origin and crosses those other trajectories with ηa < 0 there. Thus, the origin, (1,0),
is a focus for “confined” trajectories.

The trajectories are mutually tangent at the turning points at ξ = 1 and kaη =
2π,4π where there is maximum reinforcement between ψ1 and ψ2. The trajec-
tories have common turning points at (ξ, η) = (1,2π/ka), (1,4π/ka) ≈
(1,0.413), (1,0.827) that form foci of the “confined” trajectories on the ellipsoidal
principal axis ξ = 1 The trajectories also do not cross at these foci.

The trajectories have “regular” turning points, where the values of ξ attain local
maxima, near the hyperboloids η = π/ka,3π/ka ≈ 0.207,0.620. These “regular”
turning points are located at local maxima in the destructive interference between
ψ1 and ψ2. Due to the scale of Fig. 6, only the “regular” turning point manifesting
maximum destructive interference for the trajectory with constant of the motion ηa =
− sin(3π/8) ≈ −0.917 is exhibited on Fig. 6 near the unexhibited hyperboloid η =
3π/ka ≈ 0.620. For the selected family of exhibited trajectories, the other “regular”
turning points of maximum destructive interference are displaced well off the scale
of Fig. 6.

The “irregular” turning points exist on Fig. 6 where the trajectories attain ξ values
of local maxima for 3π/kaη < 1. These “irregular” turning points have values of η

between approximately 0.955 and 0.975 and increase as the constant of the motion,
ηa increases.
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Fig. 6 A set of selected
“confined” trajectories for the
quantum dispherical particle
from the upper secondary source
for the constants of the motion
ηa ≈ −0, −0.383, −0.707,
−0.924. A fifth trajectory for
ηa = −1 superimposes upon the
line ξ = 1 in the range 0 ≤ η ≤ 1

A trajectory in Fig. 6 passes through an alternating series of turning points. The
turning points where maximum destructive interference in ψd occur are interspersed
with turning points (foci) where maximum reinforcement occurs. This alternating
series of turning points is reminiscent of the companion paper [3] where alternat-
ing turning points manifest creation and annihilation of trajectories. At the turning
points of maximum destructive interference one trajectory segment in forward mo-
tion merges with a retrograde trajectory for mutual annihilation while foci create a
forward and retrograde trajectory segments. Thus, the trajectories of Fig. 6 have pat-
tern of alternating forward and retrograde segments with respect to the ellipsoidal
coordinate ξ (in Sect. 3.3 the retrograde motion is shown to be also with respect to
time).

Let us now investigate a set of selected trajectories with various values of ηa ≥ 0 so
that the secondary point source and ηa are in the same hemisphere with regard to the
sign of η. We first examine the trajectory that leaves the upper secondary source with
the spheroidal constant of the motion ηa = sin(π/32) ≈ 0.0980. The correspond-
ing cylindrical constant of motion �kz = �k sin(π/32) ≈ 15.12681�. This trajectory
is exhibited on Fig. 7 and is monotonically decreasing in η as it asymptotically ap-
proaches its constant of the motion ηa where ξ increases without bound. As such, this
trajectory is called “free”. The trajectory exhibits turning points for local extrema in
the value of ξ . The two turning points at local minima of ξ manifesting maximum
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Fig. 7 The trajectory for the
quantum dispherical particle
originating from the upper
secondary source with constant
of the motion ηa = + sin(π/32)

reinforcement are located near the unexhibited hyperboloids η = 2π/ka,4π/ka with
values of ξ > 1. In contradistinction to the “confined” trajectories, “free” trajectories
do not have foci on the ellipsoidal principal axis ξ = 1. The trajectory has turning
points at local maxima of ξ near the unexhibited hyperboloids η = π/ka,3π/ka

that are well displaced off Fig. 7. The trajectory has an additional turning point near
(ξ, η) = (3.409,0.128) after which the trajectory increases in ξ without bound and
sharing the mutual asymptote with the hyperboloid η = sin(π/32).

Figure 8 exhibits the set of four selected “free” trajectories exhibited whose con-
stants of the motion are given by

ηa = + sin(0),+ sin(π/8),+ sin(π/4),+ sin(3π/8)

≈ +0,+0.383,+0.707,+0.924

where +0 denotes that the limit ηa → 0 is from above. The secondary source and ηa

are in the same hemisphere for these trajectories. The trajectories exhibited on Fig. 8
have positive values of ηa while those for Fig. 6 have negative. By symmetry, Fig. 8
need exhibit only the right upper quadrant. A fifth trajectory with the constant of the
motion, ηa = +1 superimposes on the line η = 1 on Fig. 8 in the range 1 ≤ ξ , that is
the z-axis above the upper secondary point source in cylindrical coordinates. All tra-
jectories have monotonically decreasing η’s except for the one specified by ηa = +1
as previously discussed. Each trajectory asymptotically approaches its constant of the
motion, ηa . Trajectories with constant of the motion ηa > 3π/k, that, for the trajec-
tories exhibited on Fig. 8, includes the two trajectories with ηa ≈ +0.924,+0.707
respectively, do not ever reach the value of η ≈ +0.620 where cos(kaη) = −1 in (7)
manifesting latent maximum interference. This explains why the behavior of the
“free” trajectories become smoother with increasing |ηa|, (also true for “confined”
trajectories where in the limit ηa → |1| the confined trajectory goes to the ellipsoidal
principal axis, ξ = 1). The trajectory with ηa = +0 at η = 0 must now be exam-
ined in the limit that ηa → 0 from above. The trajectory with constant of the motion
ηa = sin(π/32) as exhibited on Fig. 7 has, as noted in the previous paragraph, a turn-
ing point near (ξ, η) = (3.409,0.128) after which it proceeds asymptotically to its ηa .



1416 Found Phys (2007) 37: 1403–1420

Fig. 8 A set of selected “free”
trajectories for the quantum
dispherical particle from the
upper secondary source for the
constants of the motion
ηa ≈ +0, +0.383, +0.707,
+0.924. A fifth trajectory for
ηa = +1 superimposes upon the
line η = 1 in the range 1 ≤ ξ

This tuning point moves to the origin (ξ, η) = (1,0) as ηa → 0 from above, and the
trajectory for ηa = 0 then superimposes on the line η = 0 for ξ ≥ 1 on Fig. 8. Note
that the behavior of the trajectory for in the limit ηa → 0 depends on whether the
limit is approached from above (i.e., ηa positive) or below (i.e., ηa negative) where
it was shown earlier in conjunction with Fig. 6 that in the limit ηa → 0 from below
induces the trajectory not to have a turning point at the origin. The different behav-
iors for the trajectories for ηa = ±0 is the reason for making explicit whether the
limit ηa → 0 is taken from above or below. The trajectories with ηa = +0,−0 su-
perimpose on each other for the segment between (ξ, η) = (1,1) and (ξ, η) = (1,0),
but differ beyond the origin. The trajectory for ηa = +0 then propagates out as a
straight line, (ξ, η) = (ξ ≥ 1,0). On the other hand, the trajectory for ηa = −0 pro-
ceeds antisymmetrically, as previously noted, to the lower secondary point source,
(ξ, η) = (1,−1). For completeness, there is a trajectory originating from the lower
secondary point source that is the symmetric equivalent to the trajectory originating
from the upper secondary point source with ηa = +0.

By Fig. 6 the set of all “confined” trajectories originating from the upper sec-
ondary point source with a constant of the motion ηa < 0 lie on one side by the
trajectory for ηa = −0. By Fig. 8 the set of all “free” trajectories originating from the
upper turning point with a constant of the motion ηa > 0 lie on the other side by the
trajectory for ηa = +0. By symmetry, an analogous situation occurs for trajectories
originating from the lower secondary point source except that the trajectories with
ηa > 0 are “confined” while those with ηa < 0 are “free”. A “free” trajectory has its
secondary point source and constant of the motion, ηa in the same hemisphere with
regard to the sign of η; a “confined” trajectory, opposite hemispheres. The particular
case of ηa = 0 depends on how limηa→0 is taken. The set of all “confined” trajectories
for which ηa 	= 0 form an open domain in ξ, η-plane that is bounded by the trajec-
tory originating from the upper secondary point source with for ηa = −0 The set
of all “free” trajectories originating from either secondary source combined with the
trajectory ηa = +0 originating from the upper secondary source and its symmetric
equivalent from the lower secondary source form a closed domain in the ξ, η-plane



Found Phys (2007) 37: 1403–1420 1417

that is the compliment in the ξ, η-plane of the open domain formed by the open set of
all “confined” domains. Revolving the ξ, η-plane azimuthally through 2π in φ shows
that the trajectories for a quantum dispherical particle span Euclidean 3-space.

3.3 Loci of Transit Times

We consider the same m = 1, � = 1, a = 1, and k = 15.2 that we used for investigat-
ing reduced action and trajectories for investigating the loci of transit times for tran-
sits in the near region to assist resolving Welcher Weg. We have computed from (8)
and (9) and exhibited on Fig. 9 for the dispherical particle the loci of transit times
for t = 0,0.002,0.02,0.04,0.06. The loci for t = 0 are points on Fig. 9 on the prin-
cipal ellipsoidal axis (ξ = 1) at η = 0, 2π/ka, 4π/ka,1 or η ≈ 0, 0.413, 0.827, 1.
The two coherent secondary sources at (1,±1) nonlocally induce coherent tertiary
focal points approximately at (1,0), (1,±0.413) and (1,±0.827) which are focal
points of the “confined” trajectories as exhibited by Fig. 6. The crossing or tangency
of trajectories at these induced foci at the same time by Figs. 6 and 9 in the trajectory
representation is, in contrast, forbidden in Bohmian mechanics [16, 17].

Comparing Figs. 5 through 8 with Fig. 9, one sees that certain trajectories trans-
verse across some loci of transit time many times—in alternating forward or retro-
grade motion for a particular trajectory. These multiple crossings imply that a particle
may be simultaneously at multiple locations manifesting strong nonlocality. Thus the
self-entangled dispherical particle is not necessarily a point particle, and its trajectory
is that for a distributed particle.

For the “confined” trajectories, while the series of trajectory segments that al-
ternate forward and retrograde motion render nil transit times from the originating
secondary source to the induced tertiary focal points, t = 0, the transit time from
the originating secondary source to a non-focal point on the trajectory in the same
hemisphere of the originating secondary source is never negative, i.e., t 	< 0; but for

Fig. 9 Loci of selected transit
times. At transit time t = 0,
induced tertiary sources are at
(ξ, η) ≈ (1,0.827), (1,0.413),

(1,0)
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opposite hemispheres, never positive, t 	> 0. On the other hand for “free” trajectories,
t > 0.

We note that the loci for transit times exhibit piecewise separation on Fig. 9. The
cut between η = 1 and η = 4π/ka ≈ 0.827 in the locus for t = 0.002 has closed for
the locus for time t = 0.02. The cut centered at η = 3π/ka ≈ 0.620 for loci for times
t = 0.002,0.02 have closed for the locus for time t = 0.04. The cut at η = π/ka ≈
0.207 would close for about transit times t > 0.156, which are not exhibited on Fig. 9.

The equation of motion, (8) is antisymmetric with regard to η. Physically, a “con-
fined” trajectory, which has an inflexion point in Euclidean 3-space at the origin with
the azimuthal coordinate φ changed by ±π so that it transits the contours (disjointed
and otherwise) of constant reduced action in the upper and lower hemispheres in
opposite directions. What is either forward or retrograde motion in one hemisphere
becomes reversed in the other hemisphere for “confined” trajectories. To generalize,
the time of transit for any “confined” trajectories between (ξ0, η0) and (ξ0,−η0) is
nil. It follows that the quantum dispherical particle has the same transit time from
either secondary point source to any other point on the “confined” trajectory.

Contrasting Figs. 1, 2 and 4 with Fig. 9, one sees that shapes and connectivities of
the contours of reduced action and loci of transit times do not mimic each other in the
near region. Note that the induced tertiary sources are neither intuitively manifested
by the contours for reduced action in Figs. 1, 2 and 4 nor obvious in (4).

After a “confined” trajectory passes through the origin, it then, by the symmetry
of Fig. 1, transits the contours of constant reduced action in a reverse direction from
the direction that it had transited the symmetrically corresponding contours before
passing through the origin (that is a “confined” trajectory transits contours of constant
Wd and the loci of transit time in one hemisphere in the reverse order for which
it transited them in the other hemisphere). Since the origin in Euclidean 3-space is
an inflexion point and not a turning point for a “confined” trajectory as previously
noted, those trajectory segments of the transit between the upper secondary point
source (ξ, η) = (1,1) and the origin (ξ, η) = (1,0) that are in the forward direction
become retrograde with regard to time in the transit from the origin (ξ, η) = (1,0)

and the lower secondary point source (ξ, η) = (1,−1) while those segments that
are retrograde between the upper secondary point source and origin become forward
between the origin and lower secondary point source.

4 Welcher Weg

The secondary point sources of the trajectories for the quantum Young’s diffraction
are the ellipsoidal focus points for prolate spheroidal coordinate system, which are
regular singular point in ξ and η [15]. The trajectory equation, (7) has branch point
singularities in ξ and η at these particular focus (secondary source) points. A tra-
jectory for a self-entangled dispherical particle beginning from the lower secondary
point source, (ξ, η) = (1,−1), with constant of the motion 0 < ηa ≤ 1 propagates as
a “confined” trajectory with monotonically increasing η from an initial value of −1
until it reaches the value of +1 at the upper secondary point source (ξ, η) = (1,1),
with nil transit time as previously shown. At the upper secondary point source,
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the “confined” trajectory transitions while rounding the branch point singularity at
(ξ, η) = (1,1) to become a “free” trajectory with the very same constant of the mo-
tion ηa . This transition is accompanied by a change in the azimuthal coordinate φ of
±π . Along the “free” segment of the trajectory, η now monotonically decreases from
+1 to asymptotically approaching the value of the trajectory’s constant of the mo-
tion, ηa . Analogously, any “free” trajectory of the upper hemisphere may be coupled
at (ξ, η) = (1,1) to the corresponding “confined” trajectory with the same constant of
the motion, ηa . An analogous situation exists for constants of the motion −1 ≤ ηa < 0
but with the roles of the upper and lower secondary point sources reversed.

Welcher Weg? Both ways concurrently. The trajectory for the quantum dispherical
particle through any point in space will have at least a “confined” segment whose
terminals are the two coherent secondary point sources. The time of transit for the
quantum dispherical particle from either secondary point source to any point on its
trajectory will be the same. As previously shown, the “confined” and “free” trajecto-
ries span Euclidean 3-space.

Perhaps, quantum mechanics for over eight decades had been asking the wrong
question, “Welcher Weg?” It should have been asking, “How both ways simultane-
ously?”
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Appendix Quantum Erasure

Let us consider a hypothetical experiment for a quantum particle that is half Young’s
diffraction and half Lloyd’s mirror. We combine these two experiments out of phase
in such a manner to swap quantum information on self-entangled dispherical wave
function for quantum information on spherical wave functions. Such a swapping im-
plies a quantum erasure. Herein, we are not studying the phenomenon of the quantum
erasure—merely applying it as a confidence building measure to demonstrate that
a spherical wave function can be synthesized from two dispherical wave functions
and substantiate that nonlocal entangled quantum particles represented by dispheri-
cal wave functions are physical.

Let us modify our hypothetical experiment of interference between two coherent
secondary point sources. We still consider the behavior of a solitary quantum particle.
The first modification to Young’s diffraction experiment is the interference between
two secondary point sources is still coherent but now anti-correlated, that is the resul-
tant quantum dispherical wave function ψY for Young’s diffraction is now given as
ψY = ψ1 − ψ2. A sole primary source emits a solitary quantum particle with a spec-
ified de Broglie wavelength that after going through an initial 50:50 splitter actuates
the secondary point sources 1 and 2. Secondary point source 1 is arbitrarily made the
lower point source; secondary point source 2, the upper secondary point source. Anti-
correlation is achieved by making the path length from the primary source to lower
secondary point source N de Broglie wavelengths while inserting a second 50:50
splitter that in turn splits the path from the primary source to the upper secondary
point source into two branches. One branch is N − 1/2 de Broglie wavelengths long;
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the other, N + 1/2 de Broglie wave lengths. Having two branches to the upper sec-
ondary source confounds a time-of-arrival analysis for determining Welcher Weg for
a solitary quantum particle.

The next modification is to insert a half-silvered mirror along the η = 0 plane.
This produces two partial Lloyd’s mirror experiments: one for the lower secondary
point source for −1 ≤ η ≤ 0; the other for the upper secondary point source for
0 < η < +1. Concurrently the half-silvered mirror posits the virtual point source
for each Lloyd’s mirror at the alternate secondary point source. Hence, the dispher-
ical wave function for Lloyd’s mirror in the lower infinite hemisphere is given by
ψL = +(ψ1 + ψ2)/21/2, −1 ≤ η ≤ 0 and in the upper hemisphere is given by
ψL = −(ψ1 + ψ2)/21/2, −1 ≤ η ≤ 0.

The half-silvered mirror also reduces the amplitude of dispherical wave function
for Young’s diffraction by the factor 2−1/2 so that ψY = +(ψ1 −ψ2)/21/2 throughout
all space. There exists interference between the two dispherical waves, ψY and ψL.
These two dispherical waves can be summed as

ψY + ψL =
{

21/2ψ1, −1 ≤ η ≤ 0,

−21/2ψ2, 0 ≤ η ≤ +1.

Hence, a spherical wave can be synthesized from two dispherical waves. Cascaded
entanglement recovers the spherical wave. Both the spherical and dispherical waves
are wave functions of the Schrödinger equation. It is just as valid to work with di-
spherical wave functions as it is to work with spherical waves by the superpositional
principle of linear homogeneous differential equations.

References

1. Floyd, E.R.: Phys. Rev. D 34, 3246 (1986)
2. Floyd, E.R.: Gravitation and cosmology: from the Hubble radius to the Planck scale. In: Amoroso,

R.L., Hunter, G., Kafatos, M., Vigier, J.-P. (eds.) Proceedings of a Symposium in Honour of the 80th
Birthday of Jean-Pierre Vigier. Kluwer Academic, Dordrecht (2002), extended version promulgated
as quant-ph/00009070

3. Floyd, E.R.: Interference, reduced action and trajectories. Found. Phys. 37 (2007, in press)
4. Faraggi, A.E., Matone, M.: Int. J. Mod. Phys. A 15, 1869 (2000), hep-th/98090127
5. Bertoldi, G., Faraggi, A.E., Matone, M.: Class. Quantum Gravity 17, 3965 (2000), hep-th/9909201
6. Carroll, R.: Can. J. Phys. 77, 319 (1999), quant-ph/9904081
7. Carroll, R.: Quantum Theory, Deformation and Integrability, pp. 50–56. Elsevier, Amsterdam (2000)
8. Carroll, R.: Uncertainty, trajectories, and duality. quant-ph/0309023
9. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, Part II, p. 1284. McGraw–Hill, New York

(1953)
10. Philippidis, C., Dewdney, C., Hiley, B.J.: Nuovo Cimento B 52, 15 (1979)
11. Guantes, R., Sanz, A.S., Margalef-Roig, J., Miret-Artés, S.: Surf. Sci. Rep. 53, 199 (2004)
12. Bohm, D.: Phys. Rev. 85, 166 (1953)
13. Floyd, E.R.: Phys. Rev. D 26, 1339 (1982)
14. Goldstein, H.: Classical Mechanics, 2nd edn., p. 441. Addison–Wesley, Reading (1980)
15. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, Part I, p. 661. McGraw–Hill, New York

(1953)
16. Holland, P.R.: The Quantum Theory of Motion, pp. 85–86, 183, 201. Cambridge University Press,

Cambridge (1993)
17. Zhao, Y., Makri, N.: J. Chem. Phys. 119, 60 (2003)


	Welcher Weg? A Trajectory Representation  of a Quantum Young's Diffraction Experiment
	Abstract
	Introduction
	Formulation
	Application
	Reduced Action
	Trajectories
	Loci of Transit Times

	Welcher Weg
	Acknowledgements
	Appendix Quantum Erasure
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


