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The concept of individuality in quantum mechanics shows radical differences
from the concept of individuality in classical physics, as E. Schrödinger pointed
out in the early steps of the theory. Regarding this fact, some authors suggested
that quantum mechanics does not possess its own language, and therefore, quan-
tum indistinguishability is not incorporated in the theory from the beginning.
Nevertheless, it is possible to represent the idea of quantum indistinguishabil-
ity with a first-order language using quasiset theory (Q). In this work, we
show that Q cannot capture one of the most important features of quantum
non-individuality, which is the fact that there are quantum systems for which
particle number is not well defined. An axiomatic variant of Q, in which quasi-
cardinal is not a primitive concept (for a kind of quasisets called finite quasi-
sets), is also given. This result encourages the searching of theories in which
the quasicardinal, being a secondary concept, stands undefined for some quasi-
sets, besides showing explicitly that in a set theory about collections of truly
indistinguishable entities, the quasicardinal needs not necessarily be a primitive
concept.

KEY WORDS: quasisets; particle number; quasicardinality; quantum indistin-
guishability.

1. INTRODUCTION

It is a well-established result that the concept of individuality in quan-
tum mechanics clashes radically with its classical counterpart. While in
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classical physics particles can be considered as individuals without giv-
ing rise to consistence problems, in quantum mechanics this is not the
case. Contradictions arise if one intends to individuate elementary parti-
cles. The responses to this problem range from the claim that there are
no elementary particles at all to the assertion that there are particles but
they are intrinsically indistinguishable (i.e., indistinguishable in an ontolog-
ical sense).

The problem is solved in the formalism by imposing symmetriza-
tion postulates (in non-relativistic quantum mechanics) or, equivalently, by
imposing commutation relations on the creation-annihilation operators (in
quantum field theory). But these solutions have a flow, well illustrated in
Refs. 1 and 2. The objection is that all these approaches make use of a
mathematical trick referred to in Ref. 1 as the Weyl’s strategy. This trick
consists in treating particles as if they were individuals and then impos-
ing symmetrization assumptions, thus masking individuality. We find this
a source of conceptual confusion and mathematical (or axiomatic) redun-
dancy, for if particles are not individuals (and this implies that they can-
not be labeled in the usual way), one could ask why do permutations make
sense. Is the symmetrization postulate really necessary or is it a necessity
of our own (and inadequate) language?

Many authors pointed out the importance of developing alterna-
tive ways to describe quantum indistinguishability, reproducing the results
obtained by standard techniques, but assuming in every step of the deduc-
tion that elementary particles of the same class are intrinsically indistin-
guishable from the beginning (see, for example, Refs. 1–3), without mak-
ing appeal to Weyl’s strategy variants. Another claim is that quantum
mechanics does not possess its own language, but it uses a portion of
functional analysis which is itself based on set theory, and thus finally
related to classical experience. This statement was posed by Manin,(4) the
Russian mathematician who suggested that standard set theories (as Zer-
melo-Fraenkel, Z F) are influenced by every day experience, and so it
would be interesting to search for set theories which inspire its concepts
in the quantum domain. This is known as the Manin’s problem.(5) In this
spirit, and looking for a solution to the Manin’s problem a quasiset theory
(Q in the following) was developed.(1,6) We base our work in the axiom-
atic system as presented in Ref. 6.

Quasiset theory seems to be adequate to represent as “sets” of some
kind (quasisets) the collections of truly indistinguishable entities. This aim
is reached in Q because equality is not a primitive concept, and there
exists certain kinds of urelemente (m-atoms) for which only an indistin-
guishability relationship applies. So, in Q, non-individuality is incorpo-
rated by proposing the existence of entities for which it has no sense to
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assert that they are identical to themselves or different from others of the
same class.

Q contains a copy of Zermelo-Fraenkel set theory plus Urelemente
(Z FU ). These Urelemente are called M-atoms. This feature divides the
theory in two parts. One region involves only the elements of Z FU , and
the other one contains quasisets whose elements can be truly indistin-
guishable entities. Quasisets containing only indistinguishable elements are
called “pure quasisets”. We will refer to the Z FU copy of quasisets as
“the classical part of the theory”, as in Ref. 6. Indistinguishability is mod-
eled in this theory using a primitive binary relation ≡ (indistinguishability)
and a new class of atoms, called m-atoms, which stands for expressing the
existence of quanta in the theory.(6) So, in the frame of Q, when we speak
of m-atoms of the same class, the only thing that we can assert about
them is that they are indistinguishable, and nothing else makes sense, for
expressions like x = y are not well-formed formulas for them. This is
to say that we cannot make assertions about their identity, i.e., it has no
sense to say that an m-atom is equal or different of other m-atom of the
same class.

It is important to remark that in Q, indistinguishability does not
imply identity, and so it is possible that even being indistinguishable, two
m-atoms belong to different quasisets, thus avoiding the collapse of indis-
tinguishability in classical identity.(6)

Q is constructed in such a way that allows the existence of collec-
tions of truly indistinguishable objects, and thereof it is impossible to label
the elements of pure quasisets. For this reason, the construction used to
assign cardinals to sets of standard Z FU theories cannot be applied any
more.

But even if electrons are indistinguishable (in an ontological sense),
every physician knows that it is possible to assert that for example, a Li-
tium atom has three electrons. It is for that reason that Q should allow
quasisets to have some kind of associated cardinal. In Q this is solved pos-
tulating that a cardinal number is assigned to every quasiset (remember
that there is a copy of Z FU in Q). Some other properties of the standard
cardinal are postulated too. This rule for the assignment of cardinals uses
a unary symbol qc() as a primitive concept. Here we will call “axioms of
quasicardinality” the collection of axioms related to the qc() functional let-
ter. So in Q, the quasicardinal is a primitive concept alike Z F , in which
the property that to every set corresponds a single cardinal number can be
derived from the axioms.(7)

On the other hand, this form of introducing the quasicardinal implies
that every quasiset has an associated cardinal, i.e., every quasiset has
a well-defined number of elements. But the idea that an aggregate of
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entities must necessarily have an associated number which represents the
number of entities is based in our every day experience. As we shall dis-
cuss below, (Section 2) there are quantum systems for which it is not
allowed to assign a number of particles in a consistent manner. These sys-
tems can be found in states which are not eigenstates of the particle num-
ber operator. Another problematic situation (which will be not discussed
in this work) is that of the frame dependence of the particle number oper-
ator. In relativistic quantum field theory, the vacuum state in a Minkows-
kian frame (which has particle number equal to zero in this frame) is seen
as a “plenty of particles” state for a Rindler observer,(8) thus cardinality
seeming frame dependent.

In Section 2 we will show that from the fact that in Q every quasiset
has an associated cardinal (its quasicardinal), it follows that it is not pos-
sible to represent systems which are not eigenstates of the particle num-
ber operator as quasisets. In Section 3 we discuss the relationship of the
concept of particle number with the measurement process. Based on the
discussions previously posed, in Section 4 we explore the possibility of
modifying Q in such a way that the quasicardinal becomes a derived con-
cept. Finally, in Section 5 we draw our conclusions.

2. QUANTITY IN QUANTUM MECHANICS

As is well known, performing a single measurement in a quantum
system does not allow to attribute the result of this measurement to a
property which the system possesses before the measurement is performed
without giving rise to serious problems.(9) What is the relationship between
this fact and the quantity of particles in a quantum system? Take for
example an electromagnetic field (with a single frequency for simplicity) in
the following state:

| ψ〉 = α | 1〉 + β | 2〉 (1)

where | 1〉 and | 2〉 are eigenvectors of the particle number operator with
eigenvalues 1 and 2 respectively, and α and β are complex numbers which
satisfy | α |2 + | β |2= 1. If a measurement of the number of particles of
the system is made, one or two particles will be detected, with probabilities
| α |2 and | β |2 respectively. And any other possibility is excluded. Sup-
pose that in a single measurement two particles are detected. What allows
us to conclude that the system had two particles before the measurement
was performed? The assertion that the number of particles is varying in
time because particles are being constantly created and destroyed is also
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problematic, because it assumes that at each instant the number of parti-
cles is well defined. Only in case that it is known with certainty that the
system is in an eigenstate of the particle number operator we can say that
the system has a well-defined cardinal. There would be no problem too if
it is known with certainty that the system is prepared in an statistical mix-
ture. In this case, the corresponding density operator would be:

ρm =| α |2| 1〉〈1 | + | β |2| 2〉〈2 | (2)

where the subindex “m” stands for statistical mixture. But the density
operator corresponding to (1) is:

ρ = (α | 1〉 + β | 2〉)(α∗〈1 | +β∗〈2 |) (3)

which is the same as:

ρ =| α |2| 1〉〈1 | + | β |2| 2〉〈2 | +αβ∗ | 1〉〈2 | +α∗β | 2〉〈1 | (4)

The presence of interference terms in the last equation implies that diffi-
culties will appear in stating that, after a single measurement, the system
has the quantity of particles obtained as the result of the measurement. In
this case, the incapability of knowing the particle number would not come
from our ignorance about the system, but from the fact that in this state,
the particle number is not even well defined.

Taking into account these considerations, it is worth asking: is it pos-
sible to represent a system prepared in the state (4) in the frame of quasi-
set theory? Which place would correspond to a system like (4) in that
theory? If such system could be represented as a quasiset, then it should
have an associated quasicardinal, for every quasiset has it. But this does
not seem to be proper, considering what we have discussed in this section.
It follows that it does not appear reasonable to assign a quasicardinal to
every quasiset if quasiset theory has to include all bosonic and fermionic
systems (in all their possible many particle states). Therefore, a system in
the state (4) cannot be included in Q as a quasiset. Yet, it would be inter-
esting to study the possibility of including systems in those states (such as
(4)) in the formalism. A possible way out is to reformulate Q in such a
way that the quasicardinal is not to be taken as a primitive concept, but
as a derived one, turning into a property that some quasisets have and
some others do not (in analogy with the property “being a prime num-
ber” of the integers). Those quasisets for which the property of having a
quasicardinal is not satisfied, would be suitable to represent quantum sys-
tems with particle number not defined (such as (4)). This property would
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also fit well with the position that asserts that particle interpretation is not
adequate in, for example, quantum electrodynamics. With such a modifi-
cation of Q, a field (in any state) could always be represented as a quasi-
set, avoiding the necessity of regarding the field as a collection of classi-
cal “things.” On the contrary, the field would be described by a quasiset
which has a defined quasicardinal only in special cases, but not in general.
And for that reason this quasiset could not be interpreted as simply as a
collection of particles (because it seems reasonable to assume that a collec-
tion of particles, indistinguishable or not, must always have a well-defined
particle number).

Another possibility would be the introduction of a vector space sim-
ilar to a Hilbert space, but constructed using the non-classical part of Q.
This option will be considered in a forthcoming paper. In the following
section we discuss the concept of particle number as the result of a process
(the measurement process). We will discuss its relationship with the idea of
individuality suggested by experiments, and relate it with the possibility of
developing quasicardinal as a derived concept.

3. PARTICLE NUMBER AS THE RESULT OF A PROCESS

In the last section, we suggested that the development of a Q-like
theory in which quasicardinal is a derived concept could be useful if
one aims to represent as quasisets, quantum systems with particle num-
ber not defined. In this section, we discuss the experimental relation of
the concept of “particle number” and find new arguments for the devel-
opment of quasicardinal as a derived concept. We start posing the ques-
tion: In which sense do we talk about quantum systems composed, for
example, of a single photon? We certainly know about the existence of
the electromagnetic field, and that this field obeys the rules of quantum
mechanics. How do we decide if the field is in a single photon state
or not? What do we mean when we use the words “single photon”?
These questions find an answer in our laboratory experience, i.e., mak-
ing measurements on the system. The measurement process (which in
the case of photons could be described by the theory of interaction
of the electromagnetic field with matter) allows us to construct an idea
of individuality which in time allows us to speak about the photon
as a particle. In a similar way, and always mediated by a measur-
ing process, we talk about the other particles (electrons, protons, etc.).
But these corpuscular features of quantum systems differ notably from
the classical ones, and though experiments suggest an idea of individ-
uality, it is well established that this does not enable us to consider
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particles as individuals, at least not in an equal sense to classical indi-
viduality. Elementary particles cannot be considered as individuals, as
E. Schrödinger pointed out in the early days of quantum mechanics.(10) In
spite of these difficulties, we continue speaking about photons, electrons,
etc., using a jargon which has a lot of points in common with classical
physics, source of conceptual confusion.

Let us consider an example to illustrate how particle number arises as
a result of the measuring process. A photoelectric detector consists in its
fundamental aspects of an atom that can be ionized due to the interaction
with the electromagnetic field. The signal (a current originated by the ion-
ized atom) must be amplified in order to be detected. The amplified signal
is a (macroscopical) current, and we say that the intensity of this current is
proportional to the quantity of “absorbed photons” in the volume of the
detector (in practice, composed of many atoms). In the limit of single pho-
ton states, we would observe a single current pulse each time a photon is
detected. Thus, we see that once the detection mechanisms are considered,
it is possible to assign to some quantum systems an associated number,
which represents the “particle number”. It is important to point out that
the so-called “particle number” only appears, in general, after the mea-
surement process is performed. In other words, experimental experience
is the condition for particle interpretation of the corresponding theoreti-
cal concepts (for example, of the particle number operator). And we have
already mentioned that the measurement process almost always implies the
modification of the original state, and that the result of the measurement
cannot be attributed in general to a property pertaining to the system
before the measure is performed. In particular, it is not true that a par-
ticle number can be always assigned in a consistent manner, as we saw
in the last section. Thus, counting the quantity of elements in quantum
mechanics (here understood as measuring particle number) is qualitatively
different from counting the quantity of elements of a classical system. In
particular, in quantum mechanics the system is usually destroyed or modi-
fied when counted, alike the classical case, where the counting process can
be made in principle without disturbing the system.

Nevertheless, we know that there exist in nature systems for which it
is possible to assign a cardinal in a consistent manner (a well-defined num-
ber of particles, as for example the electrons of a Litium atom, or sin-
gle photon states). But they cannot simply be considered as aggregates of
individuals as if they were distinguishable. This is to say that there should
exist the possibility of counting without distinguishing. If this were not
the case, physicians would have never talked about something like “num-
ber of indistinguishable particles”. Here, the word “counting” is taken in
the sense of assigning in a consistent manner a “number of elements” to
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a system which is not so simple as an individuals aggregate. For example,
we could count how many electrons has an Helium atom imagining the
following process (perhaps not the best, but possible in principle). Put the
atom in a cloud chamber and use radiation to ionize it. Then we would
observe the tracks of both, an ion and an electron. It is obvious that the
electron track represents a system of particle number equal to one and,
of course, we cannot ask about the identity of the electron (for it has no
identity at all), but the counting process does not depend on this query.
The only thing that cares is that we are sure that the track is due to a sin-
gle electron state, and for that purpose, the identity of the electron does
not matter. If we ionize the atom again, we will see the track of a new
ion (of charge 2e), and a new electron track. Which electron is responsible
of the second electron track? This query is ill defined, but we still do not
care. Now, the counting process has finished, for we cannot extract more
electrons. The process finished in two steps, and so we say that an Helium
atom has two electrons, and we know that, as the wave function of the
electrons is an eigenstate of the particle number operator, no problem of
consistence will arise in any other experiment if we make this assertion.
In Ref. 11 Dalla Chiara and Toraldo di Francia had already noted that
we know experimentally that the Helium atom has two electrons, because
we can ionize it and extract two separate electrons. They were looking
for experimental and theoretical grounds for developing a Quaset theory
(for a comparison between Q and Quaset theory see Ref. 12). In the
same way, we explore on experimental experience to justify the search of a
Q-like theory in which quasicardinal is a derived concept.

From the example of the ionized Helium atom, we find that the pro-
cess of counting the elements of a given “collection” extracting them one
by one can be applied to some quantum systems without giving rise to
serious contradictions. Then, we should be able of counting the Urele-
mente of some quasisets too. A radical difference between counting the
electrons of an atom and counting the elements in a collection of classi-
cal objects in the way shown above is that, in the classical case we can
ask about the identity of the extracted element at each step while, in the
case of the atom, this cannot be done. But this fact, does not alter the
essence of the counting process and we will exploit this fact. In the fol-
lowing section, we will translate this idea to the language of Q. As we
have already mentioned, Q describes collections of truly indistinguishable
objects as quasisets and the quasicardinal is introduced as a primitive con-
cept. The latter is justified arguing that indistinguishability prohibits well
ordering, and for that reason the possibility of counting à la Z F . We
agree that quasisets cannot be counted in the same form as in Z F , but our
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point is that it should be interesting to search for other ways of counting,
motivated by physical examples.

Experiments on quantum systems sometimes show corpuscular fea-
tures, and this suggests an idea of individuality. This idea is a base for
developing the concept of particle and subsequently, the notion of parti-
cles aggregate. In analogy with this, in the next section we will develop a
notion of “individual quasiset”, which will be used as a base for develop-
ing the notion of quantity of elements of a certain kind of given quasi-
sets. This is to be done without making appeal to classical individual-
ity and avoiding the introduction of quasicardinal as a primitive concept
(and avoiding quasicardinality axioms). As in the laboratory, where the
system to be counted is submitted to a process which transforms the orig-
inal state of the system, and only from this modification is that we talk
about particle number, the axiomatic variant exposed in the rest of this
article submits some quasisets (called finite quasisets) to a process which
assigns them a quasicardinal in a consistent manner. We want to consider
quasicardinal as the result of a process.

4. REFORMULATION OF QUASICARDINALITY AXIOMS

In Section 2 we suggested that it would be interesting to enrich Q
in such a way that systems with not defined particle number, could be
described with the formalism. We suggested that a possible way to follow
is to modify Q. To do this, we search for a Q-like theory in which the
quasicardinal is not to be taken as a primitive concept, alike Q. In such a
theory, to have a well-defined quasicardinal could be a property that some
quasisets possess and others do not, thus allowing the existence of quasi-
sets with their quantity of elements not well defined. In Section 3 we dis-
cussed the links between the concept of particle number and the measure-
ment process. There we recalled that it is possible to assign a particle num-
ber in a consistent manner to systems which are not as simply as individ-
ual aggregates (for example, to electrons in an atom). We said that this
fact suggested that a theory in which quasicardinal is a derived concept
could be conceived. In the rest of this section we explore this possibility.

The idea behind the formal construction shown below is very
simple. Once we have developed the intuitive idea of a quasiset with
one element (the singleton), this is used to count the Urelemente of a
given quasiset extracting them, one by one, without knowing which one
is extracted at each time. The challenge is to express this simple idea
in a first-order language without identity, and using only the axioms of
Q which do not contain the primitive unary functional letter qc(). The
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formal construction shown below enriches the questions posed in Ref. 13
about the physical and philosophical implications of the “labeling process”
described there, which alike our construction, makes use of the quasicard-
inality axioms. From now on, we use the same notation as in Ref. 6, and
also results and definitions therein.

4.1. Singletons

In Z F set theory it is possible to construct, for a particular set,
another set whose only element is the given set. This is to say: if A is a
set, there exists {A}, the set whose only element is A. Of course, the car-
dinal of {A} is 1. Its analogous in Q is the quasiset:

[A] =E [z : z ≡ A]
the quasiset of all the z indistinguishable from A. =E stands for the exten-
sional equality defined in Ref. 6. There, it is defined as a binary relation
and it is a derived concept (alike ≡, which is a primitive one). It collapses
into classical equality when applied to elements of Z FU or M-atoms, and
it is not defined for m-atoms (which are all indistinguishable).

In the frame of Q it is not necessarily true that [A] has a quasicardi-
nal equal to 1, for it could contain other elements indistinguishable from
A, (apart from A itself). Our aim in this section is to construct a single-
ton analogous without using the quasicardinality axioms of quasiset the-
ory (i.e., the axioms listed in Ref. 6 which make use of qc() functional
letter). To do this, we recall the following construction:(6) suppose that X
is such that X �=E ∅ and ∃x(x ∈ X). If ℘(X) stands for the collection of
all subquasisets of X , then there exists the quasiset of the a ⊆ X such that
x ∈ a:

Ax =E [a ∈ ℘(X) : x ∈ a]
and therefore

〈x〉 =E ∩a∈Ax a

exists too. So 〈x〉 is the intersection of Ax . Taking this fact into account,
it is possible to give the following definitions:

Definition 4.1. Given X �=E ∅ and x ∈ X

Ax =E [a ∈ ℘(X) : x ∈ a]
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Definition 4.2. Given X �=E ∅ and x ∈ X

〈x〉 =E ∩a∈Ax a

is the singleton of x relative to X .

In Ref. 6, 〈x〉 is a strong singleton. The interesting point is that we can
show that the singleton defined above satisfies the following properties:

Proposition 4.3. In case that X is a set (i.e., an element of the copy of
Z FU ), if x ∈ X it follows that

〈x〉 =E {x}

Proof. Straightforward from the axioms of Q.

In the following proposition, “Q(X)” stands for “X is a quasiset”.

Proposition 4.4. Let X be such that Q(X), x ∈ X , α such that Q(α) and
α ⊆ 〈x〉. Then,

α =E ∅ ∨ α =E 〈x〉

Proof. There are two possibilities: x ∈ α or x /∈ α. Suppose the first holds.
From α ⊆ 〈x〉 ⊆ X , it follows that α ∈ ℘(X) and if x ∈ α then α ∈ Ax . But
in this case, by construction of 〈x〉, it follows that 〈x〉 ⊆ α and therefore
〈x〉 =E α. On the other hand, if we suppose that x /∈ α, then:

x ∈ (〈x〉 \ α) ⊆ 〈x〉 ⊆ X −→ (〈x〉 \ α) ∈ Ax −→ 〈x〉 ⊆ (〈x〉 \ α)
So we have 〈x〉 =E (〈x〉 \ α). But if this were true, suppose that z is such
that z ∈ α, then z ∈ 〈x〉 and therefore z would belong to (〈x〉 \ α) and
thus ¬(z ∈ α), which is a contradiction. For this reason it follows that
∀z(z /∈ α) but this is to say that α =E ∅.

The last property states that 〈x〉 only admits ∅ and 〈x〉 itself as sub-
quasisets. This is a suitable property for a quasiset of quasicardinal 1. But
the last assertion has to be taken intuitively for, at this step, we have not
given a rigorous definition of quasicardinal. Notwithstanding, it is reason-
able to interpret singletons as quasisets with only one element, because
the last two properties suggest that they are the natural extension of the
Z F singleton. In the following sections we will use these intuitive ideas to
define the quasicardinal, without making use of the axioms related to the
qc() functional letter.
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4.2. Descendant Chains

Below, we will make use of the following proposition: (were X \ 〈y〉
stands for the difference between the quasiset X and the singleton 〈y〉)

Proposition 4.5.

∀X (Q(X) ∧ X �=E ∅ −→ ∃y(y ∈ X ∧ X \ 〈y〉 ⊂ X))

Proof. Let us see first that X �=E ∅ −→ ∃y ∈ X . If this were not true, then
∀y we would have ¬(y ∈ X). But in this case it is easy to convince oneself
that ∀z(z ∈ X ←→ z ∈ ∅) and so X =E ∅.

Using that ∃y(y ∈ X) it is possible to construct 〈y〉. On the other
hand X \〈y〉 ⊆ X by definition of inclusion. But in this case, y ∈ X∧¬(y ∈
X \ 〈y〉), so we have X \ 〈y〉 ⊂ X .

Taking into account the last proposition, given a non-empty quasiset
X , we can imagine the following process. Let us define first the notion of
“direct descendent of X”. If X �= ∅ then ∃z∃QY (z ∈ X ∧ Y =E (X \ 〈y〉) ∧
Y ⊂ X) and a quasiset Y with this property will be called a direct descen-
dent of X . In the last phrase, “∃QY ” stands for “there exists a quasiset
Y ”.

Definition 4.6.

DDX (Y )←→ ∃z(z ∈ X ∧ Y =E X \ 〈z〉)

DDX (Y ) is read as: Y is a direct descendent of X.

So, given X �= ∅ (by Proposition 4.5) there always exists a direct
descendent of X , let us call it X−, which satisfies:

X ⊃ (X−)

It could happen that X− = ∅ or not. If X− �=E ∅ it follows that there
exists a direct descendent of X−, call it X−−. Then we have:

X ⊃ X− ⊃ X−−

Going ahead with this process, it could be the case that this chain
of inclusions stopped (in case the last quasiset so obtained be the empty



Particle Number and Quantum Indistinguishability 867

quasiset), or that it has no end. So we could conceive two qualitatively
different situations:

Situation 1:

X ⊃ X− ⊃ X−− ⊃ X−−− ⊃ · · · · · ·

(the inclusions chain continues indefinitely)
Situation 2:

X ⊃ X− ⊃ X−− ⊃ X−−− ⊃ · · · · · · ⊃ ∅

(the inclusion chain ends in the empty quasiset).
It is not clear for us how to assure the existence of these chains with-

out making appeal to the quasicardinality axioms. But in the following we
will assume that given any arbitrary quasiset, we can always follow this
procedure taking into account the example of the Helium atom given in
Section 3. Suppose we want to describe the collection of the electrons in
the atom as a pure quasiset X . Then, when the atom is ionized, the free
electron track and the electrons in the ion could be interpreted as a sin-
gleton 〈x〉 extracted to X , and a quasiset X− =E X \ 〈x〉 respectively. If
the atom is ionized again, we would obtain another singleton 〈y〉 extracted
to X− and X−− =E ∅, with analogous interpretations. Then we obtain
the chain of inclusions X ⊃ X− ⊃ ∅ (as in Situation 2 described above)
which reaches the empty quasiset in two steps, expressing the fact that
an Helium atom has two electrons. In the following, we will postulate the
existence of these chains. To express these ideas in formal terms, it is nec-
essary to translate them to first-order language using the axiomatic of Q.
It is important to remark that in this work, we do not make appeal to the
axioms of quasicardinality alike Sant’Anna in Ref. 13. With this aim we
make the following definition:

Definition 4.7.

C DX (γ )←→
(γ ∈ ℘(℘(X)) ∧ X ∈ γ ∧ ∀z∀y(z ∈ γ ∧ y ∈ γ ∧ z �=E

y −→ (z ⊃ y ∨ y ⊃ z))

∧∀z(z ∈ γ ∧ z �=E ∅ −→ ∃y(y ∈ γ ∧ DDz(y) ∧ ∀w(w ∈ γ ∧ DDz(w)

−→ w =E y))))

C DX (γ ) is read as: γ is a descendant chain of X .
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Definition 4.7 says that γ is a descendant chain of X if and only if it is a
collection of enclosed subquasisets of X (each one is included in its pre-
decessor) such that if X ∈ γ , z ∈ γ and z �= ∅, then there exists a direct
descendant of z which belongs to γ . The definition of descendant chain
was made to express in the language of Q (minus quasicardinality axioms)
Situations 1 and 2 considered above. At the end of this section we will dis-
cuss that this concept could also be used to describe another situations.

Using this definition we will introduce the following postulate, which
asserts that for any given quasiset there exists at least one descendant
chain.

Axiom 4.8. (Axiom of descendent chains)

∀Q X (X �=E ∅ −→ ∃γ (C DX (γ )))

This postulate will be used below to construct the quasicardinal as a
derived concept.

4.3. Finite Quasisets

In this section, we will introduce the notion of finite quasisets. It is
based on the notion of descendant chain given above and involves quasi-
functions.(6) We will use the notation qf(F) to express that “F is a quasi-
function”. A quasifunction is a collection of ordered pairs, and if the pair
〈x; y〉 belongs to F , we will write F(x) =E y whenever y is itself a quasi-
set. Note that this notation has no sense if y is an m-atom, because exten-
sional equality is not defined for such Urelemente. In the following defini-
tion, ω is the quasiset which contains ∅ and all its successors.(7) If n+ is
a successor of n, then n+ =E n ∪ {n}.

Definition 4.9. Given X �=E ∅:

Fin(X)←→
∃n(n ∈ ω ∧ ∀γ (C DX (γ ) −→ ∃F(F ⊆ γ × n+ ∧ q f (F) ∧
〈n; X〉 ∈ F ∧ ∀z(z ∈ γ −→ ∃ j ( j ∈ n+ ∧ 〈 j; z〉 ∈ F)) ∧
∀ j ( j ∈ n+ ∧ j �=E 0 −→ DDF( j)(F( j − 1)))))

Fin(X ) means: X is finite.
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The intuitive interpretation of this definition is that a quasiset will be
considered to be finite if and only if all its descendant chains last (reach
the empty set) in a finite series of steps. In the following, we will make use
of another axiom:

Axiom 4.10.

∀Q X∀QY (Fin(X) ∧ Fin(Y ) ∧ Y ≡ X −→
((X ⊆ Y −→ Y =E X) ∧ (Y ⊆ X −→ Y =E X)))

This postulate means that if a given quasiset is finite, any of its direct
descendants is distinguishable from the original quasiset. This is a reason-
able assumption, because the only thing that distinguishes two collections
of truly indistinguishable objects of the same class should be their quan-
tity of elements. We will define the quasicardinal to fit this intuitive idea.
We will need the following proposition:

Proposition 4.11. Let X be a quasiset satisfying X �=E ∅, Fin(X) and
C DX (γ ). Let F be a quasifuntion as in 4.9. Then F(0) =E ∅.

Proof. As F is a q-function it follows that there exists λ ∈ γ such that
〈0; λ〉 ∈ F . If λ were not the empty quasiset then there would exist a direct
descendant of λ, call it λ−, and this last would pertain to γ , for DDX (γ ).
By hypothesis, there exists j ∈ n+ which satisfies 〈 j; λ−〉 ∈ F . If j = 0
then 〈0; λ−〉 ∈ F ∧ 〈0; λ〉 ∈ F . But λ− ⊂ λ and so it follows that ¬(λ− ≡
λ) (using Axiom 4.10) and so F would not be a quasifunction any more.
Thereafter j �= 0, and in that case, j > 0. So 〈 j; λ−〉 ∈ F and 〈0; λ〉 ∈ F
by construction of F , as j > 0 it follows that λ ⊂ λ−. But this is a con-
tradiction. The contradiction comes from the supposition that λ �=E ∅ and
then, we have 〈0; ∅〉 ∈ F . (This is the same that F(0) = ∅.)

Proposition 4.12. Let X be a non-empty and finite quasiset. Then there
exists a unique n which satisfies Definition 4.9.

Proof. Let us suppose that there are two integers n and m, n < m, satisfy-
ing Definition 4.9. In this case, given a descendant chain γ , there exist F
and F ′ which satisfy:

(a)F(n) =E X, (b)F ⊆ γ × n+, (c)∀ j (DDF( j)(F( j − 1)))

(a′)F ′(m) =E X, (b′)F ′ ⊆ γ × m+, (c′)∀ j (DDF ′( j)(F ′( j − 1)))
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Moreover, by Proposition 4.11 we have that F(0) =E ∅ and F ′(0) =E ∅
and by hypothesis m − n > 0. On the other hand,

F(n) =E X =E F ′(m) −→ F(n − 1) =E X− =E F ′(m − 1)

This last is true because there is a single direct descendant of X in γ and
because of the characteristics of quasifunctions. Due to the fact that this
is a process with a finite number of steps, we can continue extracting until
0 is reached, and for that reason, we can arrange the F( j)s in a table:

F(n) =E X =E F ′(m)
F(n − 1) =E X− =E F ′(m − 1)

...

F(0) =E F(n − n) =E ∅ =E F ′(m − n)

But j = m − n �= 0 implies F ′( j) =E ∅ with j �= 0 and F ′(0) =E ∅
(by Proposition 4.11). This is absurd because it would imply ∅ ⊂ ∅, and
we know that ∅ cannot be a proper subquasiset of ∅. The contradiction
comes from the supposition that m − n > 0 and so m = n.

The last proposition justifies the following definition:

Definition 4.13. If X �=E ∅ and X is finite, we say that its quasicardinal
is the only natural number n according to Definition 4.9. Then we write
qcard(X) =E n. If X is the empty quasiset, we say that it is finite too and
its quasicardinal is zero.

It is important at this point to make the following remark. In the last
definition we used the symbol qcard() to express that the quasicardinal of
X is n. Note the distinction of this derived unary function and the prim-
itive unary function qc() used in Ref. 6. In the next subsection, we show
that qcard() has the same properties as qc() when restricted to finite quasi-
sets.

4.4. Quasicardinality Theorems

Now, we are ready to prove as theorems all the axioms of quasicard-
inality of Q for the case of finite quasisets. In the rest of this section, we
will assume that all quasisets are finite, unless the contrary is mentioned.
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Theorem 4.14.

∀Q X (X �=E ∅ −→ qcard(X) �=E ∅)

Proof. As X �=E ∅, it follows that there exists at least one direct descen-
dant of X , and each descendant chain has at least two elements (they
surely contain X and ∅). So the quasifunctions F are defined starting from
0+ and then, qcard(X) �=E 0.

Theorem 4.15.

∀Q X (qcard(X) =E α −→ ∀β(β ≤ α −→ ∃QY (Y ⊆ X ∧ qcard(Y ) =E β)))

Proof. Suppose that qcard(X) =E n and m < n. Let γ be a descendant
chain of X. So, there exists F such that F ⊆ γ × n+, F(n) =E X and
DDF( j)(F( j − 1)). Furthermore, F(0) =E ∅.

Consider Y =E F(m). Then Y ∈ γ . It is easy to convince oneself that
the union of each one of the descendant chains of Y with the sets that pre-
cede Y in γ are descendant chains of X . Then, given an arbitrary descen-
dant chain in Y , let us extend it to a descendant chain in X and restrict
the quasifunction corresponding to the last one (according to Definition
4.9) to the quasiset which contains Y and its descendants. Then, it follows
that Y has quasicardinal m.

Theorem 4.16.

∀Q X∀QY (Fin(X) ∧ X ⊂ Y −→ qcard(X) < qcard(Y ))

Proof. Suppose that qcard(X) ≥ n =E qcard(Y ). It is clear that:

Y =E (Y \ X) ∪ X

If X �=E ∅ it follows that there exists z such that z ∈ X . Then:

Y \ 〈z〉 =E (Y \ X) ∪ (X \ 〈z〉)

or with the usual notation:

Y− =E (Y \ X) ∪ (X−)
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Taking this into account, it is apparent that the descendant chain in X
induces a descendant chain in Y :

X ⊃ X− ⊃ X−− ⊃ · · · ⊃ ∅ −→
−→ Y ⊃ Y− ⊃ Y−− ⊃ · · ·

with Y =E (Y \ X) ∪ X , Y− =E (Y \ X) ∪ (X−), Y−− =E (Y \ X) ∪ (X−−),
etc.

If the empty set is reached in m =E n steps, then we obtain:

∅ =E (Y \ X) ∪ ∅ −→ Y \ X =E ∅ −→ Y =E X

but this has no sense. If the empty quasiset is reached in m > n steps, it
is equally absurd, because we would arrive at zero in a number of steps
greater than that needed for any chain of Y . So we see that X must be
finite too, for if it were not so, it would have a chain in Y with an asso-
ciated number greater than n.

Theorem 4.17.

∀Q X∀QY (∀w(w /∈ X ∨ w /∈ Y ) −→
(qcard(X ∪ Y ) =E qcard(X)+ qcard(Y ))

Proof. First, let us see that the union of finite quasisets gives a finite quasi-
set. Let Z =E X ∪ Y . Z �=E ∅ −→ ∃w(w ∈ Z) −→ (w ∈ X ∨ w ∈ Y ) but
not both. If w ∈ X , we have

Z− =E Z \ 〈w〉 =E (X \ 〈w〉) ∪ Y =E (X
−) ∪ Y

(if w belongs to Y , we obtain an analogous equation). Taking a direct
descendent of Z−, we obtain one of two possibilities:

Z−− =E (X
−−) ∪ Y

or:

Z−− =E (X
−) ∪ (Y−)

X and Y are finite quasisets, so let us suppose that X has quasicardinal m
and that Y has quasicardinal n. So all the chains of X vanish in m steps
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and all the chains of Y in n steps. Then, we see that each element in a
chain of Z , call it e, can be expressed as

e =E α ∪ β

where α is an element of some chain in X and β in Y . Then, any chain in
Z vanishes in m + n steps. This fact proves that the quasicardinal of Z is
m + n. In all these demonstrations, the expressions n, m and n + m steps,
have to be associated with the quasifunctions of Definition 4.9. We point
out once more that we are always dealing with finite processes.

In the following, we will use the following proposition:

Proposition 4.18. Let X be a quasiset such that qcard(X) =E 1. Then it
follows that there exists z satisfying z ∈ X and X =E 〈z〉.

Proof. Let γ be a chain of X . Then there exists a quasifunction F satis-
fying F(1) =E X and (so) F(0) =E ∅. Furthermore, F has the following
property: DDF( j)(F( j − 1)), for any j �=E 0. Then we have DDF(1)(F(0))
and for that reason DDX (∅). From this, the existence of z such that z ∈ X
and X \ 〈z〉 =E ∅ follows. But in this case, there is no other choice than
X =E 〈z〉.

Theorem 4.19.

∀Q X (qcard(℘ (X)) =E 2qcard(X))

Proof. By induction on the quasicardinal. Let us suppose that X has
quasicardinal 1. Then, by Proposition 4.18 it follows that ∃z with X =E

〈z〉. Thus, by Proposition 4.4, the only possible subquasisets are ∅ and X ,
i.e., 〈z〉. It is easy to convince oneself that all the chains of ℘(X) vanish
in 2 steps, and therefore it follows that qcard(℘ (X)) =E 2 =E 2qcard(X).

Suppose now than the assumption is true for any quasiset of quasi-
cardinal n, and let us see that this is true for n+1. Let X be an arbitrary
quasiset of quasicardinal n+1 and γ a chain of this quasiset. Then, it fol-
lows that qcard(X−) =E n, for if X− is direct descendant of X , we have
that there exists z with z ∈ X and X =E X−∪ < z >. For this reason:

qcard(X) =E qcard(X−)+ qcard(〈z〉) −→ n + 1 =E qcard(X−)+ 1

But in this case we have qcard(℘ (X−)) =E 2n and as ℘(X−) ⊆ ℘(X) it
follows that there exist at least 2n different quasisets ℘(X), counting the
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empty quasiset too. But now we see that there remain 2n quasisets formed
by the union of each one of the quasisets of ℘(X−) with 〈z〉. In this case,
we see that ℘(X) has at least 2n + 2n =E 2n+1 elements. To see that we
have counted all the possible quasisets (all the elements of ℘(X)) we pro-
ceed as follows. Let Y be a quasiset such that Y ∈ ℘(X). Then, only one
of two things may happen: Y ∩ 〈z〉 =E ∅ or ¬(Y ∩ 〈z〉 =E ∅). If the first
option is true, it follows that Y ⊆ X− and so it has been already counted.
If the second one is true, we have Y ∩ 〈z〉 =E 〈z〉 (using Proposition 4.4),
and then Y =E Y \ 〈z〉 ∪ 〈z〉 and this is to say that Y is the union of an
element of ℘(X−) with 〈z〉 and then, it has been already counted.

4.5. On the Existence of Finite Quasisets

We have seen that if there exist finite quasisets in the sense given in
this section, these would satisfy the axioms of quasicardinality of Q. Now,
it is worthwhile to ask: under which conditions do pure and finite quasi-
sets exist?

Assume that there exists a non-empty and pure quasiset. Call it X .
Then, there exists z such that z ∈ X , and its singleton 〈z〉 exists too. Which
is the quasicardinal of 〈z〉? The following theorem gives the answer.

Theorem 4.20. Let X be a non-empty quasiset and let 〈z〉 be a singleton
of X . Then, ∃qcard(〈z〉) and qcard(〈z〉) =E 1.

Proof. Let γ be a descendant chain of 〈z〉. By Proposition 4.4 we have
that every direct descendant of 〈z〉 is the empty quasiset. Then the mem-
bers of γ can be shown explicitly: γ =E [y ∈ ℘(X) : y =E 〈z〉∨y =E ∅]. So
let F , be the following quasifunction (expressed as a collection of ordered
pairs):

F =E [〈1; 〈z〉〉; 〈0; ∅〉]

F satisfies all the conditions listed in Definition 4.9 for n =E 1. As
γ is an arbitrary chain, it follows that, by definition of quasicardinal,
qcard(〈z〉) =E 1.

Thus we see that the existence of a pure quasiset with quasicardi-
nal equal to 1 follows directly from the assumption of the existence of
some pure non-empty quasiset. What do we need to assume for granted
the existence of pure quasisets with an arbitrary but finite quasicardinal?
To answer this question we first give the following definition:
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Definition 4.21. A pure quasiset X is infinite if it is not finite.

If we assume that there exists an infinite quasiset then, we have a
“source” of infinite and disjoint singletons, because to be infinite implies
that there is at least one descendent chain for which it is not possible to
find a quasifunction F as defined in 4.9. But with this arbitrarily big col-
lection of singletons, we can make use of Theorem 4.17 as follows. If 〈z〉 is
a singleton of the chain and 〈w〉 is another one which satisfies 〈z〉∩〈w〉 =E

∅, we then have, by Theorem 4.17, that:

qcard(< z > ∪ < w >) =E qcard(< z >)+ qcard(< w >) =E 1+ 1 =E 2

It is obvious that, with this procedure, we can generate finite and pure
quasisets with any desired quasicardinal.

4.6. What do we Mean by “Counting”?

What do we mean when we say that a given set in Z F has ten ele-
ments? In that theory we say that its cardinal is ten, i.e., it is equivalent to
the ordinal number 10. If the set is infinite, we say that it has a cardinal,
because we can prove that it can be well ordered, and so it is equivalent
to a set of ordinals which has a minimal element (which in turn, is the
cardinal of the given set).(7) This fact lets us assert that every set of Z F
has an associated cardinal, and the cardinal is interpreted as the number
of elements of the set.

So we see that in Z F , the formalized idea of quantity of elements
bases itself in the concept of equivalence (the existence of a bijective func-
tion between sets). We see that this aspect of the formal construction of
cardinality in Z F is in correspondence with the intuitive idea of quantity
that we deal in our every day experience: two sets have the same quantity
of elements if we can put them in biunivocal correspondence. But we can
detach of intuitive interpretations, and say that possessing a cardinal (in
the sense of Z F) is simply a property of the sets deduced from the axioms
of Z F . Then it is found that the formal development of the theory shows
properties which depart radically from our intuition, as the fact that there
are many classes of infinity, a non-trivial result of set theory.(7) Thus we
see how formalism development enriches our concept of infinite, showing
properties which are by other means inaccessible to intuitive reasoning.

What happens in Q? As it can be proved that pure quasisets cannot
be well ordered,(6) it follows that the argument used in Z F to prove that
to every set corresponds a single cardinal no longer holds. This means that
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in Q we cannot use the same technique as in Z F if we want to assign a
quasicardinal to every quasiset in a consistent manner.

Is there any other technique which permits to assign a quasicardinal
to any arbitrary given quasiset taking quasicardinal as a derived concept?
We have in part given an answer to this query because, as shown in Sec-
tion 4, we can assign a derived quasicardinal to a certain class of quasisets
(finite quasisets). This assignment rule is reasonable in the following sense:
if it is applied to finite sets (elements of Z FU ), the quasicardinal of Defi-
nition 4.13 coincides with the one of Z F , as can be readily checked out.
Furthermore, if we restrict ourselves to the classical part of Q, Axioms 4.8
and 4.10 are no longer needed, for they become theorems of Z F axioms.

Postulates 4.8 and 4.10 exposed in Section 4 are interpreted as the
translation, to the language of Q, of the idea of extracting the elements
one by one. But this method is valid only for finite quasisets. The trick
of extracting the elements one by one until the empty quasiset is reached
fails for every thing which deserves to be called infinite. But we make the
following observation: it is possible to find in Z F examples of sets which
possess non-denumerable descendant chains. So, it happens that the con-
cept of descendant chain is not only applicable to denumerable process (as
a first glance may suggest), and this may be useful to extend the defini-
tion of quasicardinal to infinite quasisets. Thought we are not prepared
to solve the problem now, by taking into account the discussion presented
above we can formulate the following problem in Q: it would be interest-
ing to formulate an idea of infinite and pure quasisets (without using the
axioms of quasicardinality of Q), and then find a way to compare them.
This work would be interesting because the intent to solve it will proba-
bly give rise to new techniques (distinct and perhaps inequivalent to the
ones known in Z F) of thinking the infinite, and so, enrich our knowl-
edge of this intricate concept. We think that this is an interesting line of
work because obtaining satisfactory results in this direction would be an
advance in the development of a generalized theory of cardinality. Fur-
thermore, the Manin’s problem can be extended to the quest of developing
a “set theory” in which some “sets” do not possess an associated cardinal.
For the idea that every set must have an associated number of elements is
based in our every day experience as well as the idea that its elements have
to be individuals.

In this section we have proved that in a theory concerning collections
of truly indistinguishable objects (as Q), the quantity of elements, has not
necessarily be taken as a primitive concept. This result encourages the
search for a theory in which it is impossible to assign a quasicardinal to
certain quasisets in a consistent manner, thus allowing to describe what it
seems to happen with some quantum systems, in which non-individuality
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expresses itself in the fact that particle number is not defined, besides
ontological indistinguishability. We will explore elsewhere the possibility of
using the non-classical part of Q without modifying the axioms listed in
Ref. 6, to make a construction analogous to the state space used in quan-
tum mechanics in order to incorporate undefined particle number systems
in the formalism.

5. CONCLUSIONS

In this work, we have searched for a Q-like theory in which the quasi-
cardinal is not taken as a primitive concept alike Q. In such a theory,
to have a well-defined quasicardinal would eventually be a property that
some quasisets possess, and others do not, thus allowing the existence of
quasisets for which their quantity of elements is not well-defined. This
search was motivated in the discussions given in Sections 2 and 3. In Sec-
tion 2 we discussed the existence of quantum systems with not well defined
particle number and studied whether they can be represented as quasi-
sets. We saw that this cannot be done, because every quasiset has a well-
defined quasicardinal, and suggested that a possible way out is to take
quasicardinal as a derived concept. In Section 3, we found other motiva-
tions for considering quasicardinal as a derived concept. This was done
regarding particle number as a result of the measurement process, in the
sense that this process may be considered as the basis for the particle num-
ber interpretation. In Section 4 we saw that it is possible to develop a the-
ory about collections of indistinguishable entities in which quasicardinal
is not a primitive concept. In doing this, we transcribed to the first-order
language of Q the idea of counting the elements of a collection extracting
their elements one by one, without knowing which is which (because in Q
this query is not defined). Thus, we introduced the concept of descendant
chains. At the end of the section we discussed the possibility of developing
this method to extend the definition to infinite quasisets.

In the construction shown in Section 4 we have reobtained that every
(finite) quasiset has a well-defined quasicardinal. Perhaps a deeper trans-
formation in the axiomatic of Q is required to obtain the desired result
of undefined quasicardinal. One way would be to explore the possibility
of developing not completely defined belonging relations. This is done in
Quaset theory (see Ref. 11), but quasicardinal is assumed as a primitive
concept there, as in Q. Another interesting proposal is to modify logical
quantifiers such as “∃” and “∀”.(14) The modification could be made in
such a way that the property of undefined quasicardinal appear as a prod-
uct of it.
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The axiomatic variant exposed in Section 4 shows explicitly that in
a theory about collections of indistinguishable entities, the quasicardinal
needs not be necessarily taken as a primitive concept. This result encour-
ages the research of more complex axiomatic formulations, able to incor-
porate the quantum systems with undefined particle number as sets of
some kind, thus enriching the Manin’s problem.
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