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The Universe as an Eigenstate: Spacetime Paths
and Decoherence∗
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This paper describes how the entire universe might be considered an eigenstate
determined by classical limiting conditions within it. This description is in the
context of an approach in which the path of each relativistic particle in spa-
cetime represents a fine-grained history for that particle, and a path integral
represents a coarse-grained history as a superposition of paths meeting some
criteria. Since spacetime paths are parametrized by an invariant parameter, not
time, histories based on such paths do not evolve in time but are rather his-
tories of all spacetime. Measurements can then be represented by orthogonal
states that correlate with specific points in such coarse-grained histories, causing
them to decohere, allowing a consistent probability interpretation. This concep-
tion is applied here to the analysis of the two slit experiment, scattering and,
ultimately, the universe as a whole. The decoherence of cosmological states of
the universe then provides the eigenstates from which our “real” universe can
be selected by the measurements carried out within it.
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mology; relativistic dynamics; decoherence; consistent history interpretation.
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1. INTRODUCTION

Before the ascendency of quantum field theory, Stueckelberg proposed
an approach to relativistic quantum field theory based on the concep-
tion of particle paths in spacetime, parameterized by an invariant fifth
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parameter.(1,2) Feynman later considered this idea as the basis for relativis-
tic path integrals (see the appendices to Feynman(3,4)), a conception which
seems to have informed his early work on quantum field theory (though it
is not much apparent in his later work).

Since then, a number of authors have further developed the theory
of parameterized relativistic quantum physics (see Ref. 5 and references
therein), though not necessarily using a path integral approach. Howe-
ver, relativistic path integrals in particular have a natural interpretation
in terms of consistent or decoherent histories.(6–8) In this interpretation,
the path of a particle in spacetime is considered a fine-grained history. A
path integral then represents a coarse-grained history as a superposition
of paths meeting some criteria. When the criteria are properly chosen, the
states for these coarse grained histories do not interfere—that is, they are
decoherent.(9)

Since decoherent histories do not interfere, they can be assigned clas-
sical probabilities. Further adopting a “many worlds” interpretation,(10)

these histories can be considered to be alternate “branches” in the his-
tory of the universe, with associated probabilities for each of the branches
to “occur” (for an informal introduction to the ideas of decoherence and
emergent classicality, see Ref. 11. For a more extensive survey see Ref. 12).

Relativistic path integrals have also proved useful in the study of
quantum gravity and quantum cosmology, because the time coordinate
is treated similarly to the space coordinates, rather than as an evolution
parameter see, for example, Refs. 9,13. In quantum cosmological models,
the total Hamiltonian annihilates the “wave function of the universe”,
rather than determining the time evolution of the system. The question is
how to extract physical predictions from such a wave function.

Inspired by this, Halliwell and Thorwart recently published a paper
with the engaging title “Life in an energy eigenstate”(14) in which they
consider the internal dynamics of a simple particle system in an energy
eigenstate. In the present paper, I would like to take this idea a bit far-
ther, and describe how the entire universe might be considered to be in an
eigenstate determined by classical limiting conditions within it. In effect,
such an eigenstate is a selection of a specific coarse-grained branch as
“the” history of the universe.

Pursuing this idea requires a formalism that allows coarse-grained his-
tories to be expressed as quantum states. I will use the spacetime path
formalism proposed in Ref. 15. For completeness, Sec. 2 summarizes the
development of this formalism. A particularly important result from this
work is that the coarse-grained histories of free particles with fixed three-
momentum become on-shell and decoherent in the infinite time limit.
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Section 3 then discusses decoherence in the context of the space-
time path formalism. Section 3.1 applies the formalism to the analysis of
the familiar scenario of the two slit experiment. Section 3.2 extends the
approach to consideration of a scattering process that takes place in a
finite region of spacetime. Finally, taking this analysis of scattering as a
paradigm, Sec. 3.3 considers the relation of probabilities to measured rela-
tive frequencies and Sec. 3.4 presents a heuristic discussion of the decohe-
rence of cosmological states of the entire universe.

Throughout, I will use a spacetime metric signature of (−+++) and
take –h = c = 1.

2. SPACETIME PATHS

This section summarizes the spacetime path formalism I will use in
the following sections. For further details on the development of this for-
malism, see Ref. 15.

2.1. Position States

A spacetime path is specified by four functions qμ(λ), for μ =
0, 1, 2, 3, of a path parameter λ. Note that such a path is not constrained
to be timelike or even to maintain any particular direction in time. The
only requirement is that it must be continuous. And, while there is no a
priori requirement for the paths to be differentiable, we can, as usual, treat
them as differentiable within the context of a path integral (see the discus-
sion in Ref. 15.)

It is well known that a spacetime path integral of the form

�(x − x0) = η

∫ ∞

λ0

dλ1

∫
D4q δ4(q(λ1)− x)δ4(q(λ0)− x0)

exp
(

i
∫ λ1

λ0

dλL(q̇2(λ))

)
, (1)

for an appropriate normalization constant η and the Lagrangian function

L(q̇2) = 1
4
q̇2 −m2 ,

gives the free-particle Feynman propagator.(3,13,15,16) In the path inte-
gral above, the notation D4q indicates that the integral is over the four
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functions qμ(λ) and the delta functions constrain the starting and ending
points of the paths integrated over.

Consider, however, that Eq. (1) can be written

�(x − x0) =
∫ ∞

λ0

dλ1�(x − x0; λ1 − λ0),

where

�(x − x0; λ1 − λ0) ≡ η

∫
D4q δ4(q(λ1)− x)δ4(q(λ0)− x0)

exp
(

i
∫ λ1

λ0

dλL(q̇2(λ))

)
(2)

now has a similar path integral form as the usual non-relativistic propaga-
tion kernel,(17,18) except with paths parametrized by λ rather than time. We
can, therefore, use the relativistic kernel of Eq. (2) to define a parametrized
probability amplitude function in a similar fashion to the non-relativistic
case:

ψ(x; λ) =
∫
d4x0�(x − x0; λ− λ0)ψ(x0; λ0). (3)

These wave functions are just the parametrized probability amplitude func-
tions defined by Stueckelberg.(1) In this sense, the ψ(x; λ) represent the
probability amplitude for a particle to reach position x at the point along
its path with parameter value λ.

The path integral in Eq. (2) can be evaluated to give(13,15)

�(x − x0; λ− λ0) = (2π)−4
∫
d4p eip·(x−x0)e−i(λ−λ0)(p

2+m2).

Inserting this into Eq. (3), we see that ψ(x; λ) satisfies the Stuekelberg–
Schrödinger equation

−i
∂

∂λ
ψ(x; λ) =

(
∂2

∂x2
−m2

)
ψ(x; λ).

Note that this equation is based on the relativistic Hamiltonian p2 + m2,
and therefore includes the mass term m2. This is in contrast to most pre-
vious authors,(3,19,20) who used a Hamiltonian of the form p2/(2m), by
analogy with non-relativistic mechanics.
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The relativistic propagation kernel can also be given a conjugate form
as a superposition of particle mass states. For T > 0,

θ(T )�(x − x0; T ) = e−iTm2
∫
d4p eip·(x−x0)

∫ ∞

0
dT ′ e−iT ′p2

δ(T ′ − T )

= (2π)−1e−iTm2
∫
d4p eip·(x−x0)

∫ ∞

0
dT ′ e−iT ′p2

∫
dm′2 e−i(T ′−T )m′2

(4)

= (2π)−1e−iTm2
∫
dm′2 eiTm′2

�(x − x0;m′2),

where

�(x − x0;m′2) ≡
∫ ∞

0
dT ′

∫
d4p eip·(x−x0)e−iT ′(p2+m′2)

= −i(2π)−4
∫
d4p

eip·(x−x0)

p2 +m′2 − iε
.

Except for the extra phase factor exp(−iTm2), this form for �(x − x0; T )
is essentially that of the retarded Green’s function derived by Land and
Horwitz for parametrized quantum field theory(21,22) as a superposition of
propagators for different mass states (see also Refs. 23,24).

The value T in �(x − x0; T ) can be thought of as fixing a specific
intrinsic length for the paths being integrated over in Eq. (2). The full pro-
pagator then results from a regular integration over all possible intrinsic
path lengths:

�(x − x0) =
∫ ∞

0
dT �(x − x0; T ) .

As a result of the phase factor exp(−iTm2) in Eq. (4), the integration over
T effectively acts as a Fourier transform, resulting in the Feynman propa-
gator with mass sharply defined at m, �(x − x0) = �(x − x0;m).

The functions defined in Eq. (3) form a Hilbert space over four
dimensional spacetime, parameterized by λ, in the same way that tra-
ditional non-relativistic wave functions form a Hilbert space over three-
dimensional space, parameterized by time. We can therefore define a
consistent family of position state bases |x; λ〉, such that

ψ(x; λ) = 〈x; λ|ψ〉, (5)
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given a single Hilbert space state vector |ψ〉. These position states are nor-
malized such that

〈x′; λ|x; λ〉 = δ4(x′ − x) .

for each value of λ. Further, it follows from Eqs. (3) to (5) that

�(x − x0; λ− λ0) = 〈x; λ|x0; λ0〉 . (6)

Thus, �(x−x0; λ−λ0) effectively defines a unitary transformation between
the various Hilbert space bases |x; λ〉, indexed by the parameter λ.

The overall state for propagation from x0 to x is given by the super-
position of the states for paths of all intrinsic lengths. If we fix qμ(λ0) =
x
μ

0 , then |x; λ〉 already includes all paths of length λ − λ0. Therefore, the
overall state |x〉 for the particle to arrive at x should be given by the
superposition of the states |x; λ〉 for all λ > λ0:

|x〉 ≡
∫ ∞

λ0

dλ |x; λ〉 .

Then, using Eq. (6),

〈x|x0; λ0〉 =
∫ ∞

λ0

dλ�(x − x0; λ− λ0) =
∫ ∞

0
dλ�(x − x0; λ) = �(x − x0) .

2.2. On-Shell States

The position states defined in Sec. 2.1 make no distinction based
on the time-direction of propagation of particles. Normally, particles are
considered to propagate from the past to the future. Therefore, we can
define normal particle states |x+〉 such that

〈x+|x0; λ0〉 = θ(x0 − x0
0)�(x − x0) , (7)

On the other hand, antiparticles may be considered to propagate from the
future into the past.(1,2,25) Therefore, antiparticle states |x−〉 are such that

〈x−|x0; λ0〉 = θ(x0
0 − x0)�(x − x0) . (8)

Note that the particle/antiparticle distinction proposed here is subtly
different than that originally proposed by Stueckelberg.(1,2) Stueckelberg
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considered the possibility that a single particle path might undergo a dyna-
mical interaction that could change the time direction of its propagation,
corresponding to what seemed to be a particle creation or annihilation
event when viewed in a time-advancing direction. In contrast, the defini-
tions of particle and antiparticle states given here depend only on whether
the end point x of the particle path is in the future or past of its starting
point x0. Between these two points, the path may move arbitrarily forward
or backwards in time.

This division into particle and antiparticle paths depends, of course,
on the choice of a specific coordinate system in which to define the time
coordinate. However, if we take the time limit of the end point of the
path to infinity for particles and negative infinity for antiparticles, then the
particle/antiparticle distinction will be coordinate system independent.

In taking this time limit, one cannot expect to hold the three-
position of the path end point constant. However, for a free particle, it is
reasonable to take the particle three-momentum as being fixed. Therefore,
consider the state of a particle or antiparticle with a three-momentum p

at a certain time t :

|t,p±〉 ≡ (2π)−3/2
∫
d3x ei(∓ωp t+p·x)|t, x±〉 ,

where ωp ≡
√

p2 +m2. Now, as shown in Ref. 15,

|t,p+〉 = (2ωp)
−1
∫ t

−∞
dt0 |t0,p+; λ0〉 and

|t,p−〉 = (2ωp)
−1
∫ +∞

t

dt0 |t0,p−; λ0〉 , (9)

where

|t,p±; λ0〉 ≡ (2π)−3/2
∫
d3x ei(∓ωp t+p·x)|t, x; λ0〉 .

Since

〈t ′,p′
±; λ0|t,p±; λ0〉 = δ(t ′ − t)δ3(p′ − p) ,

we have, from Eq. (9),

〈t,p±|t0,p0±; λ0〉 = (2ωp)
−1θ(±(t − t0))δ

3(p − p0) .
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If we now define the time limit particle and antiparticle states

|p±〉 ≡ lim
t→±∞ |t,p±〉 , (10)

then

〈p±|t0,p0±; λ0〉 = (2ωp)
−1δ3(p − p0) , (11)

for any value of t0.
Equation (11) is a natural introduction of an “induced” inner pro-

duct, in the sense of Refs. 16,26. To see how this induced inner product
may be used, consider, the two Hilbert-space subspaces spanned by the
normal particle states |t,p+; λ0〉 and the antiparticle states |t,p−; λ0〉, for
each time t . States in these subspaces have the form

|t, ψ±; λ0〉 =
∫
d3pψ(p)|t,p±; λ0〉 ,

for any square-integrable function ψ(p), with

ψ(p) = (2ωp)〈p±|t, ψ±〉 .

Similarly, consider the dual subspaces spanned by the bra states 〈p+| and
〈p−|, such that

〈ψ±| ≡
∫
d3pψ(p)∗〈p±|

and

ψ(p)∗ = 〈ψ±|t,p±〉(2ωp) . (12)

As a result of Eq. (11), we get the traditional inner product

(ψ ′, ψ) ≡ 〈ψ ′
±|t, ψ±〉 =

∫
d3p

2ωp
ψ ′(p)∗ψ(p) . (13)

With the inner product given by Eq. (13), the spaces of the |t, ψ±〉
can be considered “reduced” Hilbert spaces in their own right, with the
dual Hilbert space being the spaces of the 〈ψ±|. Equation (11) can then be
seen as a bi-orthonormality relation (see Ref. 27 and App. A.8.1 of Ref. 28)
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expressing the orthonormality of the |t,p; λ〉 basis with respect to this
inner product and allowing for the resolution of the identity

∫
d3p (2ωp)|t,p±; λ0〉〈p| = 1 . (14)

This can be used to reproduce the usual probabilistic interpretation of
quantum mechanics over three-space for each time t (for further details,
see Ref. 15).

Further, writing

|t0,p±; λ0〉 = (2π)−1/2e∓iωp t0

∫
dp0 eip0t0 |p; λ0〉 ,

where

|p; λ0〉 ≡ (2π)−2
∫
d4x eip·x |x; λ0〉

is the corresponding four-momentum state, it is straightforward to see
from Eq. (9) that the time limit of Eq. (10) is

|p±〉 ≡ lim
t→±∞ |t,p±〉 = (2π)1/2(2ωp)

−1|±ωp,p; λ0〉 .

Thus, a normal particle (+) or antiparticle (−) that has three-momentum
p as t → ±∞ is on-shell, with energy ±ωp. Such on-shell particles are
unambiguously normal particles or antiparticles, independent of choice of
coordinate system, and, because of the bi-orthonormality relation of Eq.
(11), we can assign classical probabilities for them to have specific three-
momenta.

2.3. Fields and Interactions

Multiple particle states can be straightforwardly introduced as mem-
bers of a Fock space over the Hilbert space of position states |x; λ〉. First,
in order to allow for multiparticle states with different types of particles,
extend the position state of each individual particle with a particle type
index n, such that

〈x′, n′; λ|x, n; λ〉 = δn
′
n δ

4(x′ − x) .



The Universe as an Eigenstate 581

Then, construct a basis for the Fock space of multiparticle states as sym-
metrized products of N single particle states:

|x1, n1, λ1; . . . ; xN, nN, λN 〉 ≡ (N !)−1/2
∑

perms P
|xP1, nP1; λP1〉 · · · |xPN, nPN ; λPN 〉 ,

where the sum is over all permutations P of 1, 2, . . . , N (since, for simpli-
city, I am only considering scalar particles in the present work, only Bose-
Einstein statistics need be accounted for).

It is then convenient to introduce a creation field operator ψ̂†(x, n; λ)
such that

ψ̂†(x, n; λ)|x1, n1, λ1; . . . ; xN, nN, λN 〉 =
|x, n, λ; x1, n1, λ1; . . . ; xN, nN, λN 〉 ,

with the corresponding annihilation field ψ̂(x, n; λ) having the commuta-
tion relation

[ψ̂(x′, n′; λ), ψ̂†(x, n; λ0)] = δn
′
n �(x

′ − x; λ− λ0) .

Further, define

ψ̂(x, n) ≡
∫ ∞

λ0

dλ ψ̂(x, n; λ) ,

so that

[ψ̂(x′, n′), ψ̂†(x, n; λ0)] = δn
′
n �(x

′ − x) .

Now, an individual interaction vertex can be considered an event at
which some number of incoming particles are destroyed and some number
of outgoing particles are created (note that I am using the qualifiers “inco-
ming” and “outgoing” here in the sense of the path evolution parameter
λ, not time—which means that we are not separately considering particles
and antiparticles at this point). Such an interaction can be modeled using
a vertex operator constructed from the appropriate number of annihilation
and creation operators.

For example, consider the case of an interaction with two incoming
particles, one of type nA and one of type nB , and two outgoing particles
of the same types. The vertex operator for this interaction is

V̂ ≡ g

∫
d4x ψ̂†(x, nA; λ0)ψ̂

†(x, nA; λ0)ψ̂(x, nA)ψ̂(x, nA), (15)
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where the coefficient g represents the relative probability amplitude of the
interaction.

In the following, it will be convenient to use the special adjoint ψ̂‡

defined by

ψ̂‡(x, n) = ψ̂†(x, n; λ0) and ψ̂‡(x, n; λ0) = ψ̂†(x, n) .

With this notation, the expression for V̂ becomes

V̂ = g

∫
d4x ψ̂‡(x, nA)ψ̂‡(x, nB)ψ̂(x, nA)ψ̂(x, nB) .

To account for the possibility of any number of interactions, we just
need to sum up powers of V̂ to obtain the interaction operator

Ĝ ≡
∞∑
m=0

(−i)m

m!
V̂ m = e−iV̂ , (16)

where the 1/m! factor accounts for all possible permutations of the m

identical factors of V̂ . Note that, unlike the usual scattering operator,
there is no time ordering in the summation here (more on this in Sec. 3.2).

The −i factors are introduced in Eq. (16) so that Ĝ is unitary rela-
tive to the special adjoint (that is, Ĝ‡Ĝ = ĜĜ‡ = 1), so long as V̂ is self-
adjoint relative to it (that is, V̂ ‡ = V̂ ). The self-adjointness of V̂ implies
that an interaction must have the same number of incoming and outgoing
particles, of the same types, at least when only one possible type of inter-
action is involved [as is the case with the example of Eq. (15)]. The for-
malism can be easily extended to allow for multiple types of interactions
by adding additional terms to the definition of V̂ . In this case, only the
overall operator V̂ needs to be self-adjoint, not the individual interaction
terms.

Now, clearly we can also construct a Fock space from the three-
momentum representation states |t,p; λ0〉 and |t,p〉. We can then define
the multiparticle time-limit states

〈p′
1±, n

′
1; . . . | ≡ lim

t ′i→±∞
〈t ′1,p1±, n′

1; . . . | ,

|p1±, n1; . . . ; λ0〉 ≡ lim
ti→∓∞ |t1,p1±, n1, λ0; . . .〉 .

In these states, each particle is either a normal particle (+) or and antipar-
ticle (−). Note that the limit is taken to +∞ for outgoing particles, but to
−∞ for outgoing antiparticles (and vice versa for incoming particles).
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These multiparticle three-momentum states can be used with the
interaction operator Ĝ to compute multipoint interaction amplitudes. For
example, the four point amplitude for one incoming particle, one incoming
antiparticle, one outgoing particle and one outgoing antiparticle is given by

G (p′
1+, n′

1; p′
2−, n′

2|p1+, n1; p2−, n2; λ0)

= (2ωp′
1
2ωp′

2
2ωp1 2ωp2)

1/2〈p′
1+, n′

1; p′
2−, n′

2|Ĝ|p1+, n1; p2−, n2; λ0〉.
(17)

The 2ωp factors are required by the resolution of the identity for the mul-
tiparticle three-momentum states, generalizing the single particle case of
Eq. (11). Expanding Ĝ as in Eq. (16) gives a sum of Feynman diagrams
for possible number of interactions. The time-limited three-momentum
states give the correct truncated amplitudes for the external legs of the
diagrams.(15)

3. DECOHERENCE

The bi-orthonormality condition of Eq. (11) already provides an
example of decoherence. The operator (2ωp)|t,p±; λ0〉〈p| represents the
quantum proposition that a particle or antiparticle has a coarse-grained
history in which it is free with three-momentum p. The fact that these
operators are orthogonal by Eq. (11) and resolve the identity by Eq. (13)
indicates that these histories are decoherent and classical probabilities can
be assigned as to whether a particle is in one such history or another.(29)

In this section I will explore further this concept of decohering his-
tories of particle paths. I will start with the familiar case of the two slit
experiment, to provide a heuristic example of the analysis of measurement-
induced decoherence using the spacetime path formalism. This is followed
by consideration of scattering experiments and then, finally, extension of
these ideas to the universe as a whole.

3.1. Two Slit Experiment

The canonical two-slit experiment has, of course, been analyzed several
times previously, both in terms of path integrals and decoherence (see, for
example, Refs. 9,11,18,30). Nevertheless, it is still instructive to use this
familiar case as a means for introducing the application of the formalism
defined in Sec. 2.
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Presume that incoming particles are prepared to have a fixed three-
momentum p. Then, we can take a particle emitted at time t0 to be in the
three-momentum state |t0,p+; λ0〉. Further, assume that the flight time is
long enough that, when the particles reach the slits, they can be considered
to be in the on-shell state |p+〉.

For the purposes of the discussion here, it is sufficient to further idea-
lize the experiment by considering the slits to be single points at positions
xi , for i = 1, 2. The state for the particle to reach one or the other of the
slits is then

|xi+〉 = (2π)−3/2
∫
d3p e−ip·xi |p+〉 .

From Eq. (12), the corresponding probability amplitudes are

φi = 〈xi+|t0,p+; λ0〉(2ωp) = eip·xi ,

corresponding to an incoming plane wave. Taking the plane of the slits to
be perpendicular to the direction of p results in φ1 = φ2 = 1, correspon-
ding to the equal probability of the particle reaching any point on that
plane. Since the particle is blocked from passing except through the slits,
we can clearly renormalize the φi so that

φ1 = φ2 = 1√
2
.

Suppose the particle passes through the slit at xi at some time ti .
One can now consider its remaining path separately, starting at (ti , xi ) and
ending at some position x on the final screen of the experiment. Qualita-
tively, the amplitude for this can be given by

ψi(x) = 〈x+|ti , xi+; λ0〉 .

The amplitude for passing through either slit and reaching x is then

ψ(x)=φ1ψ1(x)+ φ2ψ2(x)= 1√
2
(〈x+|t1, x1+; λ0〉 + 〈x+|t2, x2+; λ0〉).

(18)

The result of the experiment is a measurement made of the final posi-
tion x. This measurement is represented by a measuring instrument eigens-
tate |m(x)〉 such that

〈m(x′)|m(x)〉 = δ3(x′ − x) . (19)
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The measurement eigenstate |m(x)〉 must be weighted by the amplitude
ψ(x) for the particle to reach position x. From the point of view of par-
ticle paths, each state ψ(x)|m(x)〉 can be viewed as representing the entire
coarse-grained history of a particle being emitted, passing through one or
the other of the slits and being measured as arriving at position x. Due to
the orthogonality condition of Eq. (19), these coarse-grained history states
do not interfere with each other—that is, the histories decohere, so a clas-
sical probability of |ψ(x)|2 can be assigned to them. From Eq. (18), it
is clear that this probability will, however, include interference effects bet-
ween the slit-specific amplitudes ψ1 and ψ2.

We can, of course, also represent the less-coarse-grained histories for
the particle passing through just one slit as ψi(x)|m(x)〉, for i = 1, 2. But
these histories do not decohere, since

ψ∗
1 (x)ψ2(x)〈m(x)|m(x)〉,

is not zero (actually, with the delta function normalization of Eq. (19) this
value is infinite, but that would not be so for a more realistic instrument
with finite resolution).

Suppose, however, that we add a measuring device that measures whe-
ther the particle passes through slit 1 or slit 2. This device has two eigens-
tates denoted |s(i)〉, for i = 1, 2, such that

〈s(i)|s(j)〉 = δij .

The coarse-grained history for a particle being measured as passing
through slit i then being measured as reaching position x is now ψi(x)|s(i)〉
|m(x)〉. These histories now do decohere, since

ψ∗
i (x

′)ψj (x)〈s(i)|s(j)〉〈m(x′)|m(x)〉 = |ψi(x)|2δij δ3(x′ − x)

and they can be given the individual probabilities |ψi(x)|2.
The results of this analysis are, of course, as would be expected.

Notice, however, that, rather than the usual approach of time evolving
states, the approach here constructs states representing entire coarse-
grained particle histories. Measurements are modeled as being coupled to
specific points in these histories. Thus, rather than modeling some initial
state of a measuring instrument evolving into a state with a specific mea-
surement, the states |s(i)〉 and |m(x)〉 represent the occurrence of specific
measurement values as part of the overall history of the experiment.

The occurrence of a specific measurement value places a constraint
on the possible particle paths that can be included in any coarse-grained
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history consistent with that measurement. Thus, |s(i)〉 places the constraint
that paths must pass through slit i, while |m(x)〉 places the constraint that
the paths end at position x. If a coarse-grained history includes all pos-
sible paths consistent with the constraints for specific measurement values,
and no others, then the orthogonality of the measurement states causes
such a history to decohere from other similar histories for different mea-
surement values.

In this sense, the tensor product of the measurement eigenstates pro-
vides a complete, orthogonal basis for decoherent coarse-grained histories
of the experiment. Given observations of certain measurement values, the
experiment, as a whole, can be said with certainty to be “in” the specific
history eigenstate selected by those measurement values. Nothing defini-
tive, however, can be said about finer-grained histories, since these histories
do not decohere.

The important point here is that the experiment is not modeled as
“evolving” into a decoherent state. Rather it is entire coarse-grained histo-
ries of the experiment that decohere, with observed measurements simply
identifying which actual history was observed.

3.2. Scattering

We now turn to the more general problem of multiparticle scattering,
with the goal of providing an analysis similar to that provided for the two
slit experiment in Sec. 3.1. Clearly, we can base this on the multiple par-
ticle interaction formalism discussed in Sec. 2.3.

However, the formulation of Eq. (17) is still not that of the usual
scattering matrix, since the incoming state involves particles at t → +∞
but antiparticles at t → −∞, and vice versa for the outgoing state. To
construct the usual scattering matrix, it is necessary to have incoming mul-
tiparticle states that are composed of individual asymptotic particle states
that are all consistently for t → −∞ and outgoing states with individual
asymptotic states all for t → +∞. That is, we need to shift to considering
“incoming” and “outgoing” in the sense of time.

To do this, we can take the viewpoint of considering antiparticles to
be positive energy particles traveling forwards in time, rather than nega-
tive energy particles traveling backwards in time. Since both particles and
their antiparticles will then have positive energy, it becomes necessary to
explicitly label antiparticles with separate (though related) types from their
corresponding particles. Let n+ denote the type label for a normal particle
type and n− denote the corresponding antiparticle type.



The Universe as an Eigenstate 587

For normal particles of type n+, position states are defined as in Eq.
(7):

〈x, n+|x0, n+; λ0〉 = θ(x0 − x0
0)�(x − x0) .

For antiparticles of type n−, however, position states are now defined such
that

〈x, n−|x0, n−; λ0〉 = θ(x0 − x0
0)�(x0 − x) .

Note the reversal with respect to Eq. (8) of x0 and x on the right side of
this equation.

Carrying through the derivation for antiparticle three-momentum
states based on the new antiparticle states |x, n−〉 does, indeed, give posi-
tive energy states, but with reversed three momentum:(15)

|t,p, n−〉 = (2ωp)
−1
∫ t

−∞
dt0 |t0,p, n−; λ0〉 ,

where

|t0,p, n−; λ0〉 = |t0,−p+, n; λ0〉 .

Further, taking the limit t → +∞ gives the on-shell states

|p, n−〉 ≡ lim
t→+∞ |t,p, n−〉 = (2π)1/2(2ωp)

−1| + ωp,−p; λ0〉 .

We can now reasonably construct Fock spaces with single time, mul-
tiparticle basis states

|t; p1, n1±; . . . ; pN, nN±; λ0〉 ≡ |t,p1, n1±; . . . ; t,pN, nN±; λ0〉 ,

over all combinations of particle and antiparticle types and, similarly,

|t; p1, n1±; . . . ; pN, nN±〉 ≡ |t,p1, n1±; . . . ; t,pN, nN±〉 .

We can then take consistent time limits for particles and antiparticles alike
to get the incoming and outgoing states

|p1, n1±; . . . ; pN, nN±; λ0〉 = lim
t→−∞ |t; p1, n1±; . . . ; pN, nN±; λ0〉 ,

|p1, n1±; . . . ; pN, nN±〉 = lim
t→+∞ |t; p1, n1±; . . . ; pN, nN±〉 .
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Reorganizing the interaction amplitude of Eq. (17) in terms of these
new asymptotic states gives the more usual form using the scattering
operator Ŝ. Showing explicitly the asymptotic time limit used for each
particle:

〈+∞,p′
1+, n′

1; − ∞,p′
2−, n′

2|Ĝ| − ∞,p1+, n1; +∞,p2−, n2; λ0〉
= 〈+∞,p′

1, n
′
1+; +∞,p2, n2−|Ŝ| − ∞,p1, n1+; −∞,

p′
2, n

′
2−; λ0〉 (20)

= 〈p′
1, n

′
1+; p2, n2−|Ŝ|p1, n1+; p′

2, n
′
2−; λ0〉 .

More generally, consider applying Ŝ to an incoming state of N par-
ticles, giving Ŝ|p1, n1±; . . . ; pN, nN±; λ0〉. Using the resolution of the
identity

∞∑
N=0

∑
ni±

∫
d3p1 · · · d3pN

[
N∏
i=1

2ωpi

]

×|p1, n1±; . . . ; pN, nN±; λ0〉〈p1, n1±; . . . ; pN, nN±| = 1 , (21)

expand the state Ŝ|p1, n1±; . . . ; pN, nN±; λ0〉 as

Ŝ|p1, n1±; . . . ; pN, nN±; λ0〉

=
∞∑
N ′=0

∑
ni±

∫
d3p′

1 · · · d3p′
N ′

⎡
⎣ N ′∏
i=1

2ωp′
i

⎤
⎦ |p′

1, n
′
1±; . . . ; p′

N ′ , n′
N ′±; λ0〉

×〈p′
1, n

′
1±; . . . ; p′

N ′ , n′
N ′±|Ŝ|p1, n1±; . . . ; pN, nN±; λ0〉 .

This shows how Ŝ|p1, n1±; . . . ; pN, nN±; λ0〉 is a superposition of possible
out states, with the square of the scattering amplitude giving the probabi-
lity of a particular out state for a particular in state.

Note that each operator

|p1, n1±; . . . ; pN, nN±; λ0〉〈p1, n1±; . . . ; pN, nN±|

represents not the proposition that the particles have the three-momenta
pi at any one point in time, but, rather, that they have these momenta for
their entire history. Since, by Eq. (21), these operators orthogonally resolve
the identity, these histories do not interfere with each other and are thus
trivially decoherent. This is why the square of the scattering amplitude
gives a classical probability.
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It should also be noted that both |p1, n1±; . . . ; pN, nN±; λ0〉 and
Ŝ|p1, n1±; . . . ; pN, nN±; λ0〉 represent states of the entire “universe” under
consideration. The state |p1, n1±; . . . ; pN, nN±; λ0〉 represents a universe
in which all particles remain free and there are no interactions. This free
particle state does not evolve into Ŝ|p1, n1±; . . . ; pN, nN±; λ0〉. Rather,
Ŝ|p1, n1±; . . . ; pN, nN±; λ0〉 is the state of a different universe, in which
interactions do occur. The operator Ŝ simply provides a convenient
method for constructing the states of the interacting particle universe from
the states of the free particle universe.

3.3. Probabilities

The decoherence of coarse-grained histories allows for a mathema-
tically consistent assignment of probabilities. Physically, the concept of
“probability” here is to be interpreted as meaning the likelihood that an
arbitrary selection from the population of all possible coarse-grained his-
tories will yield a specific history. In other words, the greater the probabi-
lity assigned to a history, the more likely it is that it is actually the history
of the “universe” under consideration.

Of course, it is not immediately clear how the assignment of probabi-
lities to entire histories relates to the statistics of physical results of mea-
surement processes occuring within those histories. Before continuing, I
would like to briefly consider this point.

To simplify further discussion, let a single Greek letter, say α,
represent an entire configuration p1,p2, . . . of on-shell particle three-
momenta. In this notation, incoming states |p1, n1±; . . . ; pN, nN±; λ0〉 are
denoted as simply |α; λ0〉 and outgoing states |p′

1, n
′
1±; . . . ; p′

N ′ , n′
N ′±〉

become |α′〉. The resolution of the identity from Eq. (21) is then
∫

dα |α; λ0〉〈α| = 1 ,

where
∫

dα denotes the entire set of integrals and summations.
Suppose the same scattering experiment is repeated, independently, n

times. Let |ψi; λ0〉 be the asymptotic free incoming state for the ith repe-
tition. Considered all together, the overall free particle state of this “uni-
verse” of experiments is

|ψ; λ0〉 = |ψ1; λ0〉 · · · |ψn; λ0〉 .
The state Ŝ|ψ; λ0〉 is then the superposition of all possible histories of
interactions among the incoming particles. At a large enough time after all
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the experiments take place, the outgoing particles should be on-shell in a
state 〈α| = 〈α1, . . . , αn|, where each 〈αi | is the outgoing state for the ith
repetition, and the probability for this overall result is |〈α|Ŝ|ψ; λ0〉|2.

If we can neglect interactions between each experiment repetition,
then the scattering amplitude should approximately factor:

〈α|Ŝ|ψ; λ0〉 ≈ 〈α1|Ŝ|ψ1; λ0〉 · · · 〈αn|Ŝ|ψn; λ0〉 .

If the repetitions are widely spacelike separated, then this follows from
the cluster decomposition of Ŝ.(31,32) Thus, the overall probability for
scattering into α is approximately the product of the scattering probabi-
lities for each cluster.

Now, consider a measurement m(αi) taken of each experimental
result. Suppose the measurement determines in which member of a dis-
joint partition of values αi lies. The probability amplitude for a measure-
ment of αi to have the specific (discrete) value mi is

ψi(mi) ≡
∫
mi

dαi 〈αi |Ŝ|ψi; λ0〉 ,

where the integration is over the subset of values corresponding to the
measurement result mi . Assuming identical preparation for the experi-
ments, the ψi should all be the same function ψ(m).

The overall weighted measurement state is then

ψ(m1) · · ·ψ(mn)|m1〉 · · · |mn〉 , (22)

where |mi〉 is the measuring instrument eigenstate for the measurement
of the ith experimental result. Once again, this overall state represents a
specific coarse-grained history in which the specific measurement results
m1, . . . , mn are obtained for the n repetitions of the scattering experiment.
The question to be asked is how the relative frequency of any given
result in this set compares to the quantum mechanically predicted pro-
babilities |ψ(mi)|2 (see also Refs. 33,34 for discussions of this question
in the context of traditional and many-worlds interpretations of quantum
mechanics).

Define the relative frequency of some specific measurement result �
within the set m1, . . . , mn to be

f�(m1, . . . , mn) ≡ 1
n

n∑
i=1

δmi� . (23)
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Since this relative frequency is itself an observable, a relative frequency
operator F̂� can be defined which has relative frequencies as its eigenvalues:

F̂�|m1〉 · · · |mn〉 = f�(m1, . . . , mn)|m1〉 · · · |mn〉 .

Define the average

〈F̂�〉 ≡
∑

m1...mn

f�(m1, . . . , mn)|ψ(m1)|2 · · · |ψ(mn)|2 .

Substituting Eq. (23) and using the normalization
∑ |ψ(mi)|2 = 1 then

gives(33,34)

〈F̂�〉 = |ψ(�)|2 . (24)

Equation (24) is mathematically consistent with the probability inter-
pretation of quantum mechanics. However, this mathematical average still
needs to be connected to physical results. To do this, consider a further
measurement, this time of the relative frequency F̂�. Note that this is a
measurement of the previous measurements mi , perhaps simply by counting
the records of the results of those measurements. The new measurement
results are thus the functions f�(m1, . . . , mn), with corresponding eigens-
tates |f�(m1, . . . , mn)〉.

The overall state

ψ(m1) · · ·ψ(mn)|m1〉 · · · |mn〉|f�(m1, . . . , mn)〉, (25)

then represents the history in which a specific relative frequency is measu-
red for a specific set of scattering results. Since these history states are still
decoherent due to the original set of measurement states, the total proba-
bility for observing a certain relative frequency f� is given by the sum of
the probabilities for each of the states for which nf� of the mi have the
value �. This probability is

p(f�) =
(
n

nf�

)
p
nf�
� (1 − p�)

n(1−f�) ,

where p� = |ψ(�)|2.
The probability p(f�) is just a Bernoulli distribution. By the

de Moivre–Laplace theorem, for large n, this distribution is sharply peaked
about the mean f� = p� = 〈F̂�〉. Thus, the probability becomes almost cer-
tain that a choice of one of the histories (25) will be a history in which



592 Seidewitz

the observed relative frequency will be near the prediction given by the
usual Born probability interpretation. Of course, for finite n, there is still
the possibility of a “maverick” universe in which f� is arbitrarily far from
the expected value—but it would seem that (in most cases, at least) our
universe is simply not one of these.

There have been a number of criticisms in the literature of using rela-
tive frequency as above as the basis for the quantum probability interpe-
tation (see, for example, Refs. 35,36). However, these criticisms relate to
attempts to actually justify the Born probability interpretation itself. My
goal here is more modest: to simply show that, assuming the Born proba-
bility rule applies for history states, that the statistics of repeated measu-
rement results within such a history would be expected to follow a similar
rule. In this regard, criticisms of, e.g., circularity and the need for addi-
tional assumptions, do not apply here (for justification of the Born rule
itself for quantum states, the arguments of Zurek based on “environment-
assisted invariance”(37,38) would seem to be relevent, but I will not pursue
this further here).

3.4. Cosmological States

Extending the ideas from Sec. 3.3, let |�; λ0〉 be the cosmological
state representing the free-particle evolution of the universe from the initial
condition of the big bang. Then Ŝ|�; λ0〉 is a superposition of all possible
interacting particle histories of the universe. Obviously, this really should
also include interactions leading to bound states, not just scattering. For
the purposes of the present discussion, however, it is sufficient to simply
allow that some of the products of the scattering interactions may be com-
posite particles rather than fundamental.

A specific coarse-grained history in this superposition can be iden-
tified by a specific configuration α of all classically observable particles
throughout the life of the universe. (For the present discussion, assume
that this is a large but finite number of particles.) In this case, �(α) =
〈α|Ŝ|�; λ0〉 might reasonably be called the “wave function of the universe,”
since |�(α)|2 is the probability of the universe having the configuration α

given its cosmological state Ŝ|�; λ0〉 (clearly, for this to be the true wave
function of the universe, Ŝ would need to include the effects of all the
actual types of interactions, including gravity(39)). Further, given that
the universe can be decomposed into approximately isolated subsystems,
the overall probability |�(α)|2 will approximately factor into a product of
probabilities for the histories of each of the subsystems.
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Now, consider that any classically measurable quantity should be a
function of some subset of the classical configuration α. Divide α into
α1, α2, . . . (this division need not be complete or disjoint), and let mi(αi)
represent the result of a measurement made on the subset αi . We can then
represent a measuring instrument for mi as having a set of orthogonal
states |mi(αi)〉 representing the various possible measurement outcomes.

Of course, a measuring instrument is, itself, a part of the universe
being measured. And a complete theory of measurement would have to
account for how such an instrument, as a subsystem of the universe,
becomes correlated with some other part of the universe and itself deco-
heres into non-interfering states. However, it is not the intent of this
paper to present such a complete theory (for a discussion of related
issues in a non-relativistic context, see Refs. 37,40 and the references given
there).

For our purposes here, it is sufficient to consider a “measurement
process” to be a process that produces a persistent record of distingui-
shable results correlated with the measured subsystem, based on classical
variables. By definition, such a process can be abstracted into a represen-
tation by orthogonal result states. We can then extend the kind of analy-
sis used in Sec. 3.1 for the two slit experiment, and consider the complete
measurement state of the universe to be

�(α1, α2, . . . )|m1(α1)〉|m2(α2)〉 . . . , (26)

in which the measurement results are correlated with the corresponding
configuration of the universe with probability amplitude given by the wave
function �(α1, α2, . . . ).

Further, suppose some of the measurements are of relative frequencies
of results of repeated experiments. Then, by extension of the argument in
Sec. 3.3, for a large enough number of repetitions within a “typical” his-
tory, the observed relative frequency will accurately reflect the probabilities
as predicted by quantum theory.

It is worth emphasizing again that the universe does not “evolve into”
the state (26). Rather, this state represents a complete coarse-grained his-
tory of the universe, in which the measurement values m1(α1),m2(α2), . . .

are observed, implying the corresponding classical configuration α1, α2, . . .

for the universe. The correlation of the measurements with the configura-
tion of the universe means that the measurement results effectively provide
information on which coarse-grained history the universe is “really in.”

It is in exactly this sense that the universe can be represented as the
eigenstate (26) of the measurements made within it.
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4. CONCLUSION

I would like to conclude with some remarks on the interpretational
implications of the concept of cosmological states defined in Sec. 3.4.

Each cosmological state |α1, α2, . . .〉, with corresponding measurement
state (26), represents a possible, complete, coarse-grained history of the
universe. Of course, each such course-grained history is still a quantum
superposition of many fine-grained histories. However, if we include in the
mi all the measurements made in the entire history of the universe, then
the corresponding measurement states are the finest-grained possible that
can be determined by inhabitants of the universe.

The measurement states themselves are decoherent and orthogonal,
but the distribution of measurement results in any specific coarse-grained
history will still show the effects of interference of the superposed fine-
grained histories (as we saw in the simple case of the two slit experiment
in Sec. 3.1). This reflects the fact that such interference effects really are
observed in our universe.

Now, all measurements ever made so far determine only some very
small portion of a configuration α of the universe. Nevertheless, in prin-
ciple, it is consistent to consider all such measurements to be, indeed,
made on a portion of some overall α, selecting a specific classical his-
tory from the family given by Ŝ|�; λ0〉, and that this is the “real” history
of the universe. The formalism here allows for no further judgement on
the “real” history of the universe beyond the coarse-grained superpositions
determined by the measurement results.

This conception is very much in the spirit of the original work
by Everett(10) on what has become known as the “many worlds” inter-
pretation. The key point is that there is no need to consider any sort
of observation by observation “collapse of the wave function.” Rather,
consistent measurement results are determined by appropriately decohe-
ring histories,(9,11,12) and known measurement results constrain the pos-
sible histories.

However, Everett and his successors(41) generally considered the dyna-
mic evolution of states in time. In this formulation, a measurement process
at a certain time causes a state to “branch” into orthogonal components,
one for each possible measurement result. This leads almost inevitably to
the conception of the continual dynamic creation of “many worlds,” only
one of which is ever really apparent to any observer.

In contrast, in the approach presented here, entire coarse-grained his-
tories of the universe decohere for all time. It is only necessary to consi-
der one of these to be the “real” history of the actual universe, though we
have only very partial information on which history this actually is. There
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is no need to consider the other histories to have any “real” existence at
all. Nevertheless, within the “real” history of our universe, all observations
made at the classical level will be distributed according to the probabilistic
rules of quantum theory.

Instead of a “no collapse” interpretation, this is, in a sense, a “one
collapse” interpretation—the single collapse of the wave function of the
universe into the cosmological state of the entire coarse-grained history of
the universe. It is as if God did indeed play dice with the universe, but
that He threw very many dice just once, determining the fate of the uni-
verse for all space and time.
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