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In a recent paper, Conway and Kochen proposed what is now known as the
“Free Will theorem” which, among other things, should prove the impossibil-
ity of combining GRW models with special relativity, i.e., of formulating rel-
ativistically invariant models of spontaneous wavefunction collapse. Since their
argument basically amounts to a non-locality proof for any theory aiming at
reproducing quantum correlations, and since it was clear since very a long time
that any relativistic collapse model must be non-local in some way, we discuss
why the theorem of Conway and Kochen does not affect the program of for-
mulating relativistic GRW models.

KEY WORDS: Free Will theorem; entangled states; non-locality; collapse
models.

1. THE CONWAY-KOCHEN ARGUMENT

We briefly review the argument by Conway and Kochen.(1) Following their
way of presenting it, we do not assume any particular theory underlying
physical phenomena; we only assume that certain particular physical sys-
tems exist—independently of how they are described by any theory—upon
which measurements can be made; more specifically, we assume that there
exist systems which we call “particles of spin 1”, upon which operations
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which we call “measurement of the square of the spin along the direction
n” can be performed (n denotes any direction in the three-dimensional
space); we call S2

n the outcome of such a kind of measurement along the
direction n. We assume that when x, y, z represent an orthogonal triple of
directions, the three corresponding measurement-operations can be simul-
taneously performed on the system;4 we assume furthermore, in agreement
with Quantum Mechanical rules, that:

S2
n takes only the value 0 or 1, for any n;

For any orthogonal triple x, y, z, one has: S2
x + S2

y + S2
z = 2,

(1)

whenever the three corresponding measurements are (simultaneously) per-
formed. Trivially, properties Eq. (1) imply that one of S2

x , S2
y , S2

z is 0, while
two are 1.

We finally assume the standard formalism of special relativity, in
particular concepts like the backward light-cone and space-like separated
regions of spacetime.

1.1. The Postulates

Conway and Kochen consider the following three axioms:
TWIN: It is possible to produce two spin 1 particles which are in the state
of “total spin 0”, meaning with this that if a measurement of the square
of the spin along the direction n is performed on one particle, giving the
outcome S2

n, then a measurement of the square of the spin along the same
direction n performed on the other particle gives the same outcome S2

n.
Moreover, such a property does not depend on the relative position of
the two particles and on the relative time on which the two experiments
are performed; in particular, it holds true when the two measurements are
space-like separated.
FREE: Each experimenter can freely choose any direction n along which
to perform the measurement.
FIN: Information cannot travel at a speed greater than the speed of light.

In the last axiom, we used the term “information” in an intuitive
sense, without specifying what it means; though we do not like to resort
to such a vague term in setting the axioms of any logical reasoning, we
use it simply to adhere to the original formulation of Ref. 1.

4 This property reflects the well known fact that, in the case of a spin 1 particle, the
squares of the spin operators along three orthogonal directions commute among them-
selves.
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1.2. The Argument

Let us consider two spin 1 particles which are in a state of total spin
0; let us label with “a” one of the two particles and with “b” the other
one, and with “A” an experimenter who performs a measurement on a,
and with “B” one who performs a measurement on b. Let n, m and � be
three orthogonal axis along which A decides to perform three practically
simultaneous measurements of the square of the spin of particle a.

We assume that the outcome of the measurement of the square of the
spin of particle a along the direction n is a function of all the informa-
tion α contained in the backward light-cone of the particle (with respect
to the spacetime point where the measurement is performed), and of the
other two directions5 m and � chosen by A:

S2
a:n ≡ S2

a:n(m, �;α) (2)

(we have slightly changed the notation from S2
n to S2

a:n in order to distin-
guish when S2

n refers to a measurement performed on particle a and when
it refers to a measurement performed on particle b, along the direction n).

In a similar way, if B decides to simultaneously measure the square of
the spin of particle b along three orthogonal directions i, j, k, we assume
that the outcome S2

i may depend only on the information β contained in
the backward light-cone and on the other two directions j, k chosen by B:

S2
b:i ≡ S2

b:i (j, k;β) (3)

Assume finally that the two experimenters perform their measurements
at space-like separated regions, so that there cannot be any exchange of
information among them before the two measurements are over. The argu-
ment now goes as follows.

Because of TWIN, if A and B choose a common axis n, then the two
outcomes must be perfectly correlated:

S2
a:n(m, �;α) = S2

b:n(j, k;β) (4)

for any direction n. But, because of FREE, B can choose to perform his
measurement along any orthogonal triple n, k, j , with n fixed. Because of

5 The necessity of allowing, in principle, that the outcome along n depends on the other
chosen directions follows from the so-called Kochen–Specker theorem Ref. 2.
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FIN, such a choice cannot affect S2
a:n(m, �;α). This means that the out-

come of the spin measurement along n cannot depend on which other two
orthogonal directions j, k are chosen by the experimenter, i.e.:

S2
b:n(j, k;β) = S2

b:n(β). (5)

Obviously, a similar conclusion holds for S2
a:n.

The contradiction now arises because, as it is well known, a function
like S2

a:n(α) or S2
b:n(β) cannot exists.(2) As a consequence, the outcome S2

a:n
of the measurement of the square of the spin of particle a (or b) cannot
be uniquely determined by the past information contained in the backward
light-cone from the region where A (or B) performs its measurement.

1.3. Comments

The provocative conclusion of Conway and Kochen is that the parti-
cles’ response to the experiment is free, i.e. that the outcome of an experi-
ment cannot be entirely determined by the previous information accessible
to whom performs the measurement, but indeed the moral stemming out
of the above argument is well known and less surprising: no local theory
exists which fully agrees with quantum mechanical predictions. As a mat-
ter of fact, what Conway and Kochen have shown is that the three pos-
tulates listed above, plus the existence of a functional relation between the
outcomes of certain spin experiments and certain “information”, lead to
a contradiction, from which they conclude that such a functional relation
cannot exist. But indeed, after the work of Bell it is well known that the
conclusion is a different one: nature is non-local, i.e. FIN is wrong, if,
as the authors seem to suggest, information—apart from its ambiguous
meaning—includes everything which might possibly determine an event (in
our case, the outcome of a certain experimental procedure). And indeed,
the above argument was first proposed by Heywood and Redhead(3) and
by Stairs,(4) further explored by Brown and Svetlichny(5) and subsequently
generalized by Elby(6) (see also Ref. 7); in these papers the above theorem
is correctly presented as a non-locality proof, its novelty being that it dif-
fers from the original proof by Bell, by combining ideas previously related
only to contextuality.6

The reason why after Bell’s work one has to conclude that Nature is
non-local is the following: Bell’s theorem does not require the existence
of a functional relation between the outcomes of experiments and past

6 We thank S. L. Adler and D. Dürr for having brought the above papers to our attention.
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information. It simply requires the FREE assumption, the analog of the
TWIN axiom for 1/2-spin particles, and Bell’s definition of locality, which
in some sense is the analog of the FIN axiom, even though it is expressed
in clearer mathematical and physical terms. From these three axioms—we
insist: without assuming any other functional dependence—one can derive
an inequality which turns out to be violated by Nature. Accordingly, one
of the three axioms must be wrong. Since TWIN has been experimentally
verified and no-one is willing to deny FREE, then Bell’s locality must be
violated: Nature, in a very precise sense, is non-local.

Here we do not want to discuss the merits of the different proofs,
whether Bell’s definition of locality is more or less general than those
which have been subsequently proposed, included the above FIN axiom;
the moral is basically the same as the one given by Bell’s theorem: any the-
ory, in one way or another, must be non-local if it has to be empirically
equivalent to Quantum Mechanics.

We stress it once more: the series of experiments performed by A.
Aspect(8,9) proved that Nature, by violating Bell’s inequalities, violates
Bell’s condition of locality: this means, as far as we understand physics
now, that Nature is non-local, that something happening in some region
of space can affect the state of far away systems. On the other hand, as
proven in Refs. 10,11 for a quantum theory with the reduction postu-
late, such non-locality cannot be used to signal at a speed greater than
the speed of light; this is what has been called the “peaceful coexis-
tence” between Quantum Mechanics and Special Relativity,(12) which ren-
ders Quantum Mechanics compatible with Special Relativity in spite of its
non-local character.

People working on collapse models were of course aware of this non-
locality constraint which any collapse model, whether relativistic or not,
has to obey in order to be compatible with Quantum Mechanics; thus,
for them, the argument of Conway and Kochen does not come as a
surprise.

But there is something more. In applying their theorem to GRW
models, Conway and Kochen mistakenly assume that the response of a
particle (i.e. the outcome of a measurement) may depend only on the
jumps which occurred in the backward light-cone of the spacetime point
where the measurement occurs, since they regard the jumps as informa-
tion which must fulfill FIN. But this cannot possibly be the right picture,
even at a relativistic level, if the GRW model is to account for the non-
local features of entangled quantum systems, which have been elucidated
by Bell’s work; we now discuss this issue in more detail.
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2. MODELS OF SPONTANEOUS WAVEFUNCTION COLLAPSE

We briefly review some of the main features of the GRW model of
spontaneous wavefunction collapse, which are relevant for the present dis-
cussion. We will first present the non-relativistic GRW model(13) and then
comment on possible relativistic generalizations.

2.1. The GRW Model

The starting point of the GRW model is that the wavefunction alone
is the complete mathematical description of all physical phenomena, it
represents the maximum knowledge one can have, in principle, about the
state of a physical system, both microscopic and macroscopic. Since mac-
roscopic objects are always well localized in space, while the Schrödinger
equation allows for superpositions of different macroscopic states, one has
to modify the standard quantum evolution in order to provide a consistent
and unified description of micro- and macro-phenomena. This is done in
the following way.

Let us consider a system of N particles; let H be the Hilbert space
associated to it and H the standard quantum Hamiltonian of the system.
The model is defined by the following postulates:

1. At random times, each particle experiences a sudden jump of the
form:

ψt −→ Ln(x)ψt
‖Ln(x)ψt‖ , (6)

where ψt is the statevector of the whole system at time t , immedi-
ately prior to the jump process. Ln(x) is a linear operator which is
conventionally chosen equal to:

Ln(x) = 4

√(α
π

)3
exp

[
−α

2
(qn − x)2

]
, (7)

where α is a new parameter of the model which sets the the width
of the localization process, and qn is the position operator associ-
ated to the nth particle. The random variable x corresponds to the
place where the jump occurs.

2. Between two consecutive jumps, the statevector evolves according
to the standard Schrödinger equation.
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3. The probability density for a jump taking place at the position x is
given by:

pn(x) ≡ ‖Ln(x)ψt‖2; (8)

the probability density for the different particles are independent.

4. Finally, it is assumed that the jumps are distributed in time accord-
ing to a Poissonian process with frequency λ, which is the second
new parameter of the model.

The standard numerical values for α and λ are7:

λ ∼ 10−16 s−1

α ∼ 10−10 cm−2, (9)

which have been chosen in such a way to guarantee a very good agree-
ment of GRW with standard quantum mechanics and, at the same time, to
ensure an almost instantaneous localization of the wavefunction of classi-
cal macro-objects, thus suppressing the unwanted superpositions of differ-
ently located macro-states.

The evolution being stochastic, any initial state ψ0 evolves in time
into an ensemble of states {ψt(ω)}, where ω labels the possible different
ways the jumps might occur.

The statistical operator ρt associated to such an ensemble satisfy the
following Lindblad-type equation:

d

dt
ρt = − i

–h
[H, ρt ] − λ

N∑
n=1

(
ρt −

∫
d3x Ln(x)ρtLn(x)

)
. (10)

The GRW model and similar models which have appeared in the literature
have been extensively studied (see Refs. 15,16 for a review of the subject);
in particular, the following three important properties have been proved:

• At the microscopic level, quantum systems behave almost exactly as
predicted by standard Quantum Mechanics, the differences between
the predictions of the GRW model and of Quantum Mechan-
ics being so tiny that they cannot be detected with present-day
technology.

7 Recently S. L. Adler proposed a radically different numerical value for the collapse rate
λ; see Ref. 14.
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• At the macroscopic level, wavefunctions of macro-objects are
almost always very well localized in space, so well localized
that their centers of mass behave, for all practical purposes, like
point-particles moving according to Newton’s laws.

• In a measurement-like situation, e.g. of the von Neumann type,
GRW reproduces—as a consequence of the modified dynamics—
both the Born probability rule and the postulate of wave-packet
reduction.

Accordingly, models of spontaneous wavefunction collapse provide a uni-
fied description of all physical phenomena, at least at the non-relativistic
level, and a consistent solution to the measurement problem of Quantum
Mechanics.

2.2. Features of the GRW Model

There are some important properties of the GRW model, which all
non-relativistic collapse models share, and which are relevant for the sub-
sequent discussion.

2.2.1. Non-Linearity and Stochasticity

The jump process is non-linear, since the probability of a jump taking
place at x depends on the square norm of the statevector after the hitting.
It is also intrinsically stochastic; the model assumes that Nature is funda-
mentally random; needless to say, such a property is important in order to
recover quantum probabilities when measurement situations are taken into
account, but also for other reasons which will be clear soon.

2.2.2. Non-Locality

The model is manifestly non-local; let us take as an example the fol-
lowing entangled state of two particles a and b:

ψ(xa, xb) = 1√
2

[
ψ	1(xa) ψ	2(xb) + ψ	3(xa) ψ	4(xb)

]
, (11)

where ψ	1(x) is a normalized wavefunction well localized within the
region 	1 of space, and similarly for the other three terms in Eq. (11); 	1,
	2, 	3 and 	4 label four regions which are arbitrarily far away from each
other. Let us suppose that an experimenter A decides to measure the posi-
tion of particle a, while an experimenter B decides to measure the position
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of particle b. The full initial state of the two particles plus the two appa-
rata is:

ψbefore(xa, xb; yA, yB) = 1√
2

[
ψ	1(xa) ψ	2(xb) + ψ	3(xa) ψ	4(xb)

]
⊗φReady(yA)φReady(yB), (12)

where φ(yA) and φ(yA) denote the (localized) states of, let us say, the
pointers of the two apparata, which initially are both in a state which is
“ready” for the measurement.

Now, let us suppose that the position of particle a is measured
slightly before that of particle b. The dynamics of the GRW model tells
that—because of the spontaneous jumps whose effect is amplified when a
macro-object like a measuring apparatus enters into play—the final state
of the pointer of the apparatus will be perfectly localized in space and will
correspond either to the outcome A : 	1 or to the outcome A : 	3, each
occurring with a probability almost identical to that given by the Born
probability rule; let us suppose that the first possibility occurs. Then, the
GRW dynamics implies that the initial state Eq. (12), after the first mea-
surement, practically reduces to:

ψafter(xa, xb; yA, yB) = ψ	1(xa) ψ	2(xb)⊗ φA : 	1
(yA)φReady(yB). (13)

We see that, because of the (local) jumps which occurred on the pointer
of the measuring device used by A to measure the position of particle a,
also particle b has been almost instantaneously localized in space, in this
case within 	2, no matter how distant 	2 is from 	1; in fact, as we see
from state Eq. (13), a subsequent measurement of the position of particle
b will give (almost) certainly the outcome B : 	2. In a similar way, if the
outcome of the first measurement had been A : 	3, then particle b would
have been immediately localized around 	4, and this would be confirmed
by any subsequent measurement of its position.

Accordingly, there is a perfect and non-local correlation between the
region where particle a is located after a measurement and the region
where particle b is located by that same measurement done on its far
away partner. Note, however, that the jumps acting on the pointer (and
determining in this way the outcome of a measurement) are the conse-
quence of a perfectly local interaction between the pointer and the sto-
chastic background which enters in the dynamical evolution; it is only the
entanglement between the two particles which renders the overall effect
fundamentally non-local.
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The crucial point to understand is that this non-local feature of the
collapse mechanism is not a consequence of the fact that the GRW model
is non-relativistic;8 on the contrary, such a peculiar feature is necessary in
order to reproduce the quantum correlations for EPR states like Eq. (11),
which have been confirmed by all experiments. In other words, after the
work of Bell and the experiments of Aspect which have shown that Nature
is fundamentally non-local, any GRW model (whether relativistic or not)
has to embody such a non-local behavior in order to reproduce quantum
correlations.

2.2.3. No Faster-Than-Light

One might wonder whether the non-local character of the jump pro-
cess might be used to send faster-than-light signals, but in Ref. 17 it has
been proven that this is not possible, and the physical reason is quite sim-
ple to understand: since jumps are intrinsically random, they cannot be
controlled to implement faster-than-light communication, and as soon as
one averages over all possible jumps, their non-local character vanishes.

Accordingly, like standard Quantum Mechanics, also the GRW model
shares the “peaceful coexistence” between relativity and non-locality,
which is one of the lessons we had lo learn from Bell’s inequalities. Indeed,
Bell himself has stated:(18) “ . . . I am particularly struck by the fact that
the [GRW] model is as Lorentz invariant as it could be in the non-rela-
tivistic version. It takes away the ground of my fear that any exact for-
mulation of quantum mechanics must conflict with fundamental Lorentz
invariance”.

The formal aspects of this nice feature of the theory consists in
the fact that GRW violates Bell’s locality condition by violating outcome
independence, just as standard non-relativistic quantum mechanics does.
Before proceeding it is useful to recall that Bell’s locality assumption has
been proved(19,20) to be equivalent to the conjunction of the two logi-
cally independent conditions, parameter independence and outcome inde-
pendence. To clarify the matter let us fix our notation. We will denote by λ
all parameters (which may include the quantum mechanical statevector or
even to reduce to it alone) that specify completely the state of an individ-
ual physical system. For simplicity we will refer to a standard EPR-Bohm
setup and we will denote by pABλ (x, y; n,m) the joint probability of getting
the outcome x in a measurement at A and y in a measurement at B. Obvi-
ously we assume that the experimenters at A and B can make a free-will

8 Indeed, it would be very easy to devise a local jump process, even for entangled states,
which in any case would lead to a conflict with quantum mechanical predictions.
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choice of the directions n and m along which they will perform their mea-
surements. They can also choose not to perform the measurement. Bell’s
locality assumption can be expressed as

pABλ (x, y; n,m) = pAλ (x; n, ∗)pBλ (y; ∗,m), (14)

where the symbol ∗ appearing on the r.h.s. denotes that the corresponding
measurement is not performed. As already anticipated, the above condi-
tion has been proved to be equivalent to the conjunction of the two fol-
lowing conditions:

pAλ (x; n,m) = pAλ (x; n, ∗); pBλ (y; n,m) = pBλ (y; ∗,m) (15)

and

pABλ (x, y; n,m) = pAλ (x; n,m)pBλ (y; n,m), (16)

where we have denoted, e.g. by the symbol pAλ (x; n,m) the probability
of getting, for the given settings n,m, the outcome x at A. The first
conditions express Parameter independence, i.e. the requirement that the
probability of getting an outcome at A(B) is independent of the setting
chosen at B(A), while the last conditions (Outcome independence) expresses
the requirement that the probability of an outcome at one wing does not
depend on the outcome obtained at the other wing.

We are now in the conditions of discussing briefly this point with ref-
erence to the twined state of total spin 0 of Conway and Kochen:

|φsinglet〉 = 1√
3

[|Sa:n = +1〉|Sb:n = −1〉 + |Sa:n = −1〉|Sb:n = +1〉
−|Sa:n = 0〉|Sa:n = 0〉] , (17)

the states |Sa:n = +1〉, |Sa:n = 0〉, |Sa:n = −1〉 and the similar ones for par-
ticle b being the eigenstates belonging to the indicated eigenvalues of the
spin component along an arbitrary direction n. Let us now consider par-
ticle b. If particle a is not subjected to any measurement, the probabilities
of the two outcomes for S2

b:n are9:

P(S2
b:n = 1) = 2

3
,

P (S2
b:n = 0) = 1

3
. (18)

9 As already remarked the GRW model gives practically the same predictions and has the
same effects as standard quantum mechanics with the wave packet reduction postulate.



180 Bassi and Ghirardi

Suppose now that particle a has been subjected to a measurement of S2
a:n:

the outcome is either 1 or 0; then P(S2
b:n = 1) = 1 and P(S2

b:n = 0) = 0 or
viceversa, according to the outcome which has been obtained. Such prob-
abilities differ from those of no measurement on particle a. This shows
that the theory exhibits Outcome Dependence. However, if one performs
a non-selective measurement on particle a, one gets the outcome 1 with
probability 2

3 and the outcome 0 with probability 1
3 . Since reduction takes

place to the states 1√
2

[|Sa:n = +1〉|Sb:n = −1〉 + |Sa:n = −1〉|Sb:n = +1〉]
and |Sa:n = 0〉|Sb:n = 0〉, respectively, the probabilities of the two outcomes
for a measurement on particle b coincide precisely with those of the case
of no measurement. The model then does not exhibit Parameter Depen-
dence. Concluding: the GRW model violates locality by violating only out-
come independence and, as well known, since this feature of the theory
does not forbid having a relativistic quantum theory, it therefore does not
forbid relativistic dynamical reduction processes.

2.2.4. Stochastic Galilean Invariance

When dealing with a theory like the GRW model which contem-
plates a stochastic evolution, one has to be careful in specifying the pre-
cise meaning of the theory being invariant under the transformations of a
symmetry group. In the non-relativistic case this group is naturally iden-
tified with the Galilei group, which, however, in the present case must be
restricted to the so called Galilei semigroup (GS) which contains only for-
ward time translations, since the theory has a built in arrow of time.

Let us then consider an observer O who prepares a system in a state
|�O0 〉 and lets it evolve, under the combined effect of the purely Hamil-
tonian evolution and the random localization processes up to time t , get-
ting the state |�Ot (ω)〉. Here ω specifies the precise localizations processes
which have taken place in the interval (0, t). Obviously, since the local-
izations are random processes, the state |�Ot (ω)〉 has a certain probabil-
ity P�O0

(ω), which depends on the initial state and the localizations which
took place, of being the state describing the situation at time t .

Let us consider now another observer O ′ which is related to O by
a transformation g ∈ GS. We know how the states associated by O and
O ′ are related: O ′ associates to the system states which are obtained from
those of O by the unitary operator Ug implementing the transformation
g ∈ GS on the Hilbert space of the system.

We can now make precise the notion of stochastic invariance. The
theory is invariant for the transformations of the Galilei semigroup if
its dynamics implies that the transformed initial state Ug|�O0 (ω)〉 has
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precisely the probability P�O0
(ω) (i.e. the one characterizing the evolution

for O) of evolving into the transformed state Ug|�Ot (ω)〉. In Ref. 21 this
has been proved to be authomatically true within GRW if the hamiltonian
governing the pure Schrödinger evolution is invariant for the considered
transformation, in the usual sense of standard quantum mechanics. In sim-
ple words, the GRW model is stochastically invariant under the transfor-
mations of the Galilei semigroup.10

2.3. Relativistic GRW Models

In the past years a great deal of work has been done in order to
formulate a relativistic version of the GRW model, and some interesting
results have been achieved, even though no final, fully satisfactory model
is available yet. To be coincise, it suffices here to make only a few general
remarks, all of which should be clear from the previous discussion of the
GRW model:

• Any relativistic extension of the GRW model must be non-linear
and stochastic in order to provide a solution to the measurement
problem of Quantum Mechanics.

• Such an extension must be also non-local, if it aims at reproduc-
ing quantum correlations for EPR types of experiments, in particu-
lar when they are performed at space-like separated regions; in one
way or another, the jump process, even though it is triggered locally,
must “propagate" practically instantaneously. As a consequence, the
(stochastic) equation for the evolution of the statevector |ψt 〉 must
be highly non-local.

• At the same time, the extension must satisfy the no faster-than-
light constraint, in order to be compatible with special relativity.

10 In a recent nice paper,(22) the authors have appropriately stressed the necessity of
enriching the pure formal structure of a theory by what they have denoted as its Primi-
tive Ontology (PO) and they have mentioned that for the GRW model one can at least
choose two PO’s, which they call the Flashes Ontology and the Mass Density Ontol-
ogy, respectively (we refer the interested reader to the paper). Here we remark simply
that the invariance property we have just discussed implies that the GRW theory can be
claimed to be invariant according to the definition they have used for this purpose: To
say that a theory has a given symmetry is to say that the possible histories of the PO,
those which are allowed by the theory, when transformed according to the symmetry, will
again be possible histories for the theory, and the probability distribution on the histories
supplied by the theory, when transformed, will again be a possible probability distribution
for the theory.
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From the previous analysis the strategy one has to adopt in
order to achieve such a result should be clear: due to stochas-
ticity, only the average effect of the jump processes, not the sin-
gle realizations of the jumps, can be controlled; accordingly, the
statistical properties of the jump mechanism must be chosen in
such a way that, when the average over all possible realizations
is taken, no non-local feature can be exploited to send signals at
a speed greater than the speed of light. Stated in more mathe-
matical terms, while the equation for |ψt 〉 must be non-local, the
equation for the statistical operator ρt must be local in the sense
that no measurement done in any region of space can in any
way alter instantaneously the statistical distribution of the out-
comes with respect to measurements done at space-like separated
regions.

• Finally, the extension will not be Lorentz invariant in the ordinary
sense, but in the stochastic sense previously discussed in connection
with the GRW model.

Of course, the major difficulty is to put all these ideas into a
consistent model, with a working equation; as already remarked, no fully
satisfactory model has been developed so far, but we want to draw atten-
tion to Ref. 23, where a general framework for relativistic reduction
models is presented. In the quoted paper the analysis is performed with
reference to a toy model which does not assume a specific dynamics for
the reduction mechanism (this is where the difficulty in making the GRW
model relativistically invariant lies, and the reason why this problem is still
open), but it allows one to conclude that there is no reason of principle
forbidding the relativistic reduction program. Within this framework, fol-
lowing previous ideas of Aharonov and Albert on relativistic formulations
of the postulate of wave-packet reduction,(24–26) the collapse mechanism is
supposed to occur instantaneously along all spacelike hypersurfaces cross-
ing the center of the jump process; in spite of this superluminal effect,
the whole picture is perfectly Lorentz invariant (in the stochastic sense),
it agrees with quantum mechanical predictions, it does not lead to any
contradiction, e.g. it does not allow faster-than-light signalling and, more-
over, different inertial observers always agree on the outcomes of exper-
iments. Another model has been recently proposed by Tumulka:(27) it
is based on the multi-time formalism with N Dirac equations, one per
particle, and up to now it works only for non-interacting particles. The
open question is whether it can be consistently generalized to include also
interactions.
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3. THE CONWAY-KOCHEN ARGUMENT AND RELATIVISTIC
GRW

From the previous analysis it should be clear why the argument by
Conway and Kochen does not apply to possible relativistic extensions of
the GRW model: since such an extension must necessarily be non-local
in order to reproduce quantum correlations, it must violate FIN, and the
whole argument breaks down. We now repeat again the argument in the
light of a GRW-like description of quantum phenomena, to see where and
how non-locality enters into play, and also to point out a mistake made
by Conway and Kochen in discussing the collapse process. Let us consider
again the singlet state Eq. (17) of total spin 0 for two spin 1 particles,
and let us assume that the two observes A and B perform the two mea-
surements of the square of the spin in two space-like separated regions of
spacetime; the complete state of the two particles plus the two apparata is:

|ψbefore〉 = |φsinglet〉 ⊗ φReady(yA)φReady(yB). (19)

Needless to say, the FREE axiom must be true, thus B is free to measure
along any triple of directions. Let us suppose that, with respect to a given
reference frame, he is the first who does the measurement; he chooses the
triple n, j, k and obtains e.g. the result:

S2
b:n(j, k;β) = 1, S2

b:j (n, k;β) = 1, S2
b:k(n, j ;β) = 0. (20)

Now the crucial point comes. If we require the putative GRW model to
fulfill the TWIN axiom, i.e. if we require (and we want to require it) the
model to agree with quantum mechanical predictions, then we must admit
that, as a consequence of the measurement made by B on particle b - i.e.
as a consequence of the jumps acting on the device used by B in such a
way to determine the required outcome - the whole state of the two par-
ticles must change almost immediately (and in a non-local manner) from
the state Eq. (19) to the new state:

|ψafter〉 = |Sa:k = 0〉|Sb:k = 0〉 ⊗ φReady(yA)φB : Sb:k = 0(yB); (21)

only in this way we can be sure that, if A decides to measure the square of
the spin of particle a along the same three directions n, j, k chosen by B,
he will certainly get the same results which B obtained. We stress it again:
a non-local and almost instantaneous collapse from state Eqs. (19) to (21)
is necessary in order for the putative model to account for the quantum
correlations involving entangled states.
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But now we see that the state of particle a has changed because of
something which happened outside its backward light-cone (the jumps act-
ing on the device used by B at a space-like separated distance), and this
change will affect the response of a to spin measurements. Moreover, the
new state of particle a depends on the choice of directions chosen by
B to measure the square of the spin of particle b. Because of this non-
local dependence, the argument of Conway and Kochen does not hold
anymore.

In their criticism of relativistic GRW models, Conway and Kochen
mistakenly assume that the jump processes somehow have a local char-
acter, i.e. that only the jumps which occurred in the backward light-
cone can affect the behaviour of a particle. But, as we have seen this
is not the right picture: the reduction mechanism, even though it is
triggered by a perfectly local particle-apparatus interaction, must have
a well-defined non-local character such that the outcome of the mea-
surement which A performs on particle a does—indeed, it must—depend
on the outcome of the measurement performed by B on b (or vice-
versa), in particular on the choice of directions made by B, even when
the two measurements occur at space-like separated regions. Accordingly,
the putative model deliberately violates FIN, because the jumps (which
Conway an Kochen regard as part of information) propagate instanta-
neously. But this does not necessarily generate a conflict with special rel-
ativity since, as previously discussed, such jumps must be such that they
cannot be used to send signals at a speed greater than the speed of
light.11

Of course, one might wonder how it is possible to reconcile such a
highly non-local behaviour of the jump mechanism with special relativity;
as we pointed out in Sec. 2, this is still an open problem, a tentative solu-
tion to which has been given in Refs. 23 and 27.

To conclude, because relativistic extensions of the GRW model which
reproduce quantum mechanical correlations must be non-local in one
way or another, the Conway and Kochen argument does not apply
to them: the problem of finding a fully convincing relativistic model
of spontaneous wavefunction collapse remains open. Of course it is a
difficult problem, but there is no reason of principle which makes it
impossible.

11 Contrary to Conway and Kochen, we think that the jump processes should not be
regarded as information, whatever this word precisely means. The reason is that they
cannot be known ahead of time, they cannot be controlled, and they cannot be used to
convey other information . . . , i.e. they do not behave as what is typical of information.
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