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Categorizing Different Approaches to the Cosmological
Constant Problem
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We have found that proposals addressing the old cosmological constant problem
come in various categories. The aim of this paper is to identify as many differ-
ent, credible mechanisms as possible and to provide them with a code for future
reference. We find that they all can be classified into five different schemes of
which we indicate the advantages and drawbacks.
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1. STATEMENT OF THE PROBLEM

It is clear that the cosmological constant problem is one of the major
obstacles to further progress for both particle physics and cosmology. Actu-
ally, after the remarkable discoveries and subsequent confirmations start-
ing in 1997 (SN)(1–11) (WMAP),(12,13) (Boomerang),(14,15) (SdSS),(16,17)

(Hubble)(18) that the universe really is accelerating its expansion, there
appear to be at present at least three cosmological constant problems.
In a nutshell these are: Why is the cosmological constant so small, why
is it then not exactly equal to zero and why is its energy density today
of the same order of magnitude as the matter energy density? Although
the recent observations concerning the accelerated expansion are usually
attributed to a small, non-vanishing �, alternatives have been suggested,
some of which we briefly discuss.

In this overview however, we will be mainly concerned with the first
of these questions, the so-called “old cosmological constant problem”. To
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phrase it more precisely, the question is why is the effective cosmological
constant, �eff , defined as �eff = �+8πG〈ρ〉 so close to zero.2 Or, in other
words, why is the vacuum state of our universe (at present) so close to the
classical vacuum state of zero energy, or perhaps better, why is the result-
ing four-dimensional curvature so small, or why does Nature prefer a flat
spacetime?

The different contributions to the vacuum energy density coming from
ordinary particle physics and graviton loops, would naively give a value for
〈ρ〉 of order M4

P (assuming a Planck-scale cutoff for the standard model),
which then would have to be (nearly) cancelled by the unknown “bare” value
of �. Note at this point that only the �eff is observable, not �.

This cancellation has to be better than about 120 decimal places
if we compare the zero-point energy of a scalar field, using the Planck
scale as a cut-off, and the experimental value of ρvac = 〈ρ〉 + �/8πG,
being 10−47 GeV4. As is well known, even if we take a TeV scale cut-off
the difference between experimental and theoretical results still requires a
fine-tuning of about 59 orders of magnitude. This magnificant fine-tuning
seems to suggest that we miss an important point here. In this paper we
give an overview of the main ideas that have appeared in trying to figure
out what this point might be.

We have found that proposals addressing this problem come in vari-
ous categories. The aim of this paper is to identify as many different, cred-
ible mechanisms as possible and to provide them with a code for future
reference. Our identification code will look as follows, see Table (1).

In other words, an approach examining 6-dimensional supersymmetry
for a solution will be coded Type IAa1.

For reviews on the history of the cosmological constant (problem)
and many phenomenological considerations, see Refs. 19–28.

2. TYPE 0: FINETUNING

One can set the cosmological constant to any value one likes, by sim-
ply adjusting by hand the value of the bare cosmological constant to all,
classical and quantum mechanical, contributions to the vacuum energy.
No further explanation then is needed. This fine-tuning has to be precise
to better than at least 59 decimal places (assuming some TeV scale cut-
off), but that is of course not a practical problem. Since we feel some
important aspects of gravity are still lacking in our understanding and

2 Note that using this definition we use units in which the cosmological constant has
dimension GeV2 throughout. Our metric convention is (− + ++).
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Table 1. Classification of different approaches

Type 0: Just Finetuning

Type I: Symmetry
A: Continuous (a) Supersymmetry

(b) Scale invariance
(c) Conformal Symmetry

B: Discrete (d) Imaginary Space
(e) Energy → − Energy
(f) Holography
(g) Sub-super-Planckian
(h) Antipodal Symmetry
(i) Duality Transformations

Type II: Back-reaction Mechanism (a) Scalar
(b) Gravitons
(c) Screening Caused by Trace Anomaly
(d) Running CC from Renormalization Group

Type III: Violating Equiv. Principle (a) Non-local Gravity, Massive Gravitons
(b) Ghost Condensation
(c) Fat Gravitons
(d) Composite graviton as Goldst. boson

Type IV: Statistical Approaches (a) Hawking Statistics
(b) Wormholes
(c) Anthropic Principle, Cont.
(d) Anthropic Principle, Discrete

Each of them can also be thought of as occurring (1) Beyond 4D, or (2) Beyond
Quantum Mechanics, or both.

nothing can be learned from this “mechanism”, we do not consider this to
be a physical solution. However, it is a possibility that we can not totally
ignore and it is mentioned here just for sake of completeness.

3. TYPE I: SYMMETRY PRINCIPLE

A natural way to understand the smallness of a physical parameter is
in terms of a symmetry that altogether forbids any such term to appear.
This is also often referred to as “naturalness”: a theory obeys naturalness
only if all of its small parameters would lead to an enhancement of its
exact symmetry group when replaced by zero. Nature has provided us with
several examples of this. Often mentioned in this respect is the example of
the mass of the photon. The upper bound on the mass (squared) of the
photon from terrestrial measurements of the magnetic field yields

m2
γ � O(10−50)GeV2. (1)
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The most stringent estimates on �eff nowadays give

�eff � O(10−84)GeV2 (2)

We “know” the mass of the photon to be in principle exactly equal to 0,
because due to the U(1) gauge symmetry of QED, the photon has only
two physical degrees of freedom (helicities). In combination with Lorentz
invariance this sets the mass equal to zero. A photon with only two trans-
verse degrees of freedom can only get a mass if Lorentz invariance is bro-
ken. This suggests that there might also be a symmetry acting to keep the
effective cosmological constant an extra 34 orders of magnitude smaller.

A perhaps better example to understand the smallness of a mass is
chiral symmetry. If chiral symmetry were an exact invariance of Nature,
quark masses and in particular masses for the pseudoscalar mesons
(π,K, η) would be zero. The spontaneous breakdown of chiral symmetry
would imply pseudoscalar Goldstone bosons, which would be massless in
the limit of zero quark mass. The octet (π,K, η) would be the obvious
candidate and indeed the pion is by far the lightest of the mesons. Mak-
ing this identification of the pion as a pseudo-Goldstone boson associated
with spontaneous breaking of chiral symmetry, we can understand why the
pion-mass is so much smaller than for example the proton mass.

3.1. Supersymmetry

One symmetry with this desirable feature is supersymmetry. The
quantum corrections to the vacuum coming from bosons are of the same
magnitude, but opposite sign compared to fermionic corrections, and
therefore cancel each other. The vacuum state in an exactly supersymmet-
ric theory has zero energy. However, supersymmetric partners of the Stan-
dard Model particles have not been found, so standard lore dictates that
SUSY is broken at least at the TeV scale, which induces a large vacuum
energy.

One often encounters some numerology in these scenarios, e.g.,
Ref. 29, linking the scale of supersymmetry breaking Msusy, assumed to
be of order TeV, and the Planck mass MP , to the cosmological constant.
Experiment indicates

Msusy ∼ MP

(
�

M2
P

)α
with α = 1

8
. (3)

The standard theoretical result however indicates Msusy ∼ �1/2.
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However, to discuss the cosmological constant problem, we need to
bring gravity into the picture. This implies making the supersymmetry
transformations local, leading to the theory of supergravity or SUGRA
for short, where the situation is quite different. In exact SUGRA the low-
est energy state of the theory, generically has negative energy density: the
vacuum of supergravity is AdS.3 This has inspired many to consider so-
called no-scale supergravity models. See Ref. 20 or supersymmetry text-
books such as Ref. 31 for excellent reviews.

The important point is that there is an elegant way of guaranteeing a
flat potential, with V = 0 after susy-breaking, by using a nontrivial form
of the Kähler potential G. For a single scalar field z we have

V = eG
[
∂zG∂z∗G

∂z∂z∗G
− 3
]

= 9e4G/3

∂z∂z∗G
(∂z∂z∗e

−G/3), (4)

where κ2, the gravitational constant, has been set equal to one. A flat
potential with V = 0 is obtained if the expression in brackets vanishes for
all z, which happens if

G = −3 log(z+ z∗), (5)

and one obtains a gravitino mass:

m3/2 = 〈eG/2〉 = 〈(z+ z∗)−3/2〉, (6)

which as required is not fixed by the minimization of V . Thus provided we
are prepared to choose a suitable, non-trivial form for the Kähler poten-
tial G, it is possible to obtain zero CC. Moreover, the gravitino mass is
left undetermined; it is fixed dynamically through non-gravitational radia-
tive corrections. The minimum of the effective potential occurs at

Veff ≈ −(m3/2)
4, (7)

where in this case after including the observable sector and soft symme-
try-breaking terms we will have m3/2 ≈ MW . Such a mass is ruled out
cosmologically(32) and so other models with the same ideas have been

3 This negative energy density can also be forbidden by postulating an unbroken R-
symmetry. D = 11 SUGRA is a special case; its symmetries implicitly forbid a CC term,
see Ref. 30.



618 Nobbenhuis

constructed that allow a very small mass for the gravitino, also by choos-
ing a specific Kähler potential, see Ref. 33.

That these constructions are possible is quite interesting and in the
past there has been some excitement when superstring theory seemed to
implicate precisely the kinds of Kähler potential as needed here, see for
example Ref. 34. However, that is not enough, these simple structures are
not expected to hold beyond zeroth order in perturbation theory.

3.1.1. Unbroken SUSY

To paraphrase Witten:(35) “Within the known structure of physics,
supergravity in four dimensions leads to a dichotomy: either the symmetry
is unbroken and bosons and fermions are degenerate, or the symmetry is
broken and the vanishing of the CC is difficult to understand”. However,
as he also argues in the same article, in 2 + 1 dimensions, this unsatisfac-
tory dichotomy does not arise: SUSY can explain the vanishing of the CC
without leading to equality of boson and fermion masses, see also Ref. 36.

The argument here is that in order to have equal masses for the
bosons and fermions in the same supermultiplet one has to have unbro-
ken global supercharges. These are determined by spinor fields which are
covariantly constant at infinity. The supercurrents Jµ from which the
supercharges are derived are generically not conserved in the usual sense,
but covariantly conserved: DµJµ = 0. However, in the presence of a cova-
riantly constant spinor (Dµε = 0), the conserved current ε̄J µ can be con-
structed and therefore, a globally conserved supercharge:

Q =
∫
d3xε̄J 0. (8)

But in a 2 + 1 dimensional spacetime any state of non-zero energy pro-
duces a geometry that is asymptotically conical at infinity.(37) The spinor
fields are then no longer covariantly constant at infinity(38) and so even
when supersymmetry applies to the vacuum and ensures the vanishing of
the vacuum energy, it does not apply to the excited states. This is special to
2 + 1-dimensions. Explicit examples have been constructed in Refs. 39–42.
Two further ideas in this direction, one in D < 4 and one in D > 4 are,(43,44)

however the latter later turned out to be internally inconsistent.(45)

In any case, what is very important is to make the statement of
“breaking of supersymmetry” more precise. As is clear, we do not observe
mass degeneracies between fermions and bosons, therefore supersymmetry,
even if it were a good symmetry at high energies between excited states, is
broken at lower energies. However, and this is the point, as the example of
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Witten shows, the issue of whether we do or do not live in a supersym-
metric vacuum state is another question. In some scenarios it is possible
to have a supersymmetric vacuum state, without supersymmetric excited
states. This really seems to be what we are looking for. The observations
of a small or even zero CC could point in the direction of a (nearly)
supersymmetric vacuum state.

Obviously the question remains how this scenario and the absence
nevertheless of a supersymmetric spectrum can be incorporated in 4
dimensions, where generically spacetime is asymptotically flat around mat-
ter sources, instead of asymptotically conical.

3.2. Imaginary Space

So far, the most obvious candidate-symmetry to enforce zero vacuum
energy density, supersymmetry, does not seem to work; we need something
else. What other symmetry could forbid a cosmological constant term?
Einstein’s equations are

Rµν − 1
2
gµνR −�gµν = −8πGTµν. (9)

As was first observed by ’t Hooft (unpublished), we can forbid the cosmo-
logical constant term by postulating that the transformations:

x → ix, t → it, gµν → gµν (10)

are symmetry operations.4 The different objects in Einstein’s equations
transform under this as follows:

�λµν = 1
2
gλρ

[
∂µgνρ + ∂νgµσ − ∂ρgµσ

]→ −i�λµν,
Rµν = ∂ν�

λ
µλ − ∂λ�

λ
µν − �ρµν�

σ
ρσ + �ρµσ�

σ
νρ → −Rµν,

R = gµνRµν → −R.
Furthermore we have

Tµν → −Tµν (11)

as long as there are no vacuum terms in the expression for Tµν . So
Einstein’s equations transforms as

Gµν −�gµν = −8πGTµν → −Gµν −�gµν = +8πGTµν. (12)

4 A related suggestion was made in Ref. 46.
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Therefore, if we postulate (10) as a symmetry of nature, a CC term is for-
bidden! Classically E ∼ p2 and therefore E → −E.

However, at first sight, this symmetry does not seem to ameliorate the
situation much, since this transformation is not a symmetry of the Stan-
dard Model. In particular, we have

p2 = m2 with pµ = i∂µ → −ipµ (13)

Therefore, imposing (10) as a symmetry of nature, seems to imply that
either there exists a copy of all known matter particles with negative mass
squared, or that all particles should be massless. In the second case, if
we take this symmetry seriously, we should conclude that the smallness of
the cosmological constant and the smallness of particle masses (relative to
the Planck-scale) although of quite a different order of magnitude, have a
common origin.

Another approach is to view this symmetry in combination with
boundary conditions. Generally in quantum field theory we Fourier trans-
form our field and impose (often periodic) boundary conditions only on
its components in real space. Perhaps the vacuum state does not have
to satisfy boundary conditions. In that case it would not matter whether
one would impose boundary conditions in either real or imaginary space.
Excited states, have to obey boundary conditions, and would violate the
symmetry.

Besides, since the transformation (10) effectively changes spacelike
dimensions into timelike dimensions and vice versa, a natural playground
to study its implications could be a 2 + 2- or 3 + 3-dimensional spacetime.
The possibility of extra timelike dimensions is not very often considered,
because it is assumed that the occurrence of tachyonic modes prevents the
construction of physically viable models. However, it was shown in Ref. 47
that these constraints might not be as severe as to rule out this option
beforehand. Extra timelike dimensions have been tried before to argue for
a vanishing cosmological constant, see Ref. 48.

3.3. Energy → − Energy

Another approach in which negative energy states are considered has
been recently proposed in Ref. 49. Here the discrete symmetry E → −E
is imposed explicitly on the matter fields by adding to the Lagrangian an
identical copy of the normal matter fields, but with an overall minus sign:

L = √−g
(
M2
P lR −�0 + Lmatt(ψ,Dµ)− Lmatt(ψ̂,Dµ)+ · · ·

)
, (14)
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where �0 is the bare cosmological constant. The Lagrangian with fields
ψ̂ occurring with the wrong sign is referred to as the ghost sector. The
two matter sectors have equal but opposite vacuum energies, and therefore
cancelling contributions to the cosmological constant.

Crucial in this reasoning is that there is no coupling other than grav-
itational between the normal matter fields and their ghost counterparts,
otherwise the Minkowski vacuum would not be stable. This gravitational
coupling moreover has to be sufficiently small in order to suppress the
gravitationally induced interactions between the two sectors and to make
sure that the quantum gravitational corrections to the bare cosmological
constant are kept very small. It is therefore necessary to impose a UV
cutoff on these contributions of order 10−3 eV, corresponding to a length
scale of about 100µm.5

Moreover, in order to ensure stability of the vacuum, also some new
Lorentz symmetry violating physics is required to suppress processes where
normal matter particles and ghosts emerge from the vacuum. In addition,
one also has to assume that the ghost sector is rather empty, compared to
the normal matter sector, in order not to spoil standard cosmology with
such an exotic type dark matter.

3.4. Scale Invariance, e.g., Conformal Symmetry

The above symmetry might be viewed as a specific example of the
more general framework of conformal symmetry, gµν → f (xµ)gµν . Mass-
less particles are symmetric under a bigger group than just the Lorentz
group, namely, the conformal group. This group does not act as symme-
tries of Minkowski spacetime, but under a (mathematically useful) comple-
tion, the “conformal compactification of Minkowski space”. This group is
15-dimensional and corresponds to SO(2, 4), or if fermions are present,
the covering group SU(2, 2). Conformal symmetry forbids any term that
sets a length scale, so a cosmological constant is not allowed, and indeed
also particle masses necessarily have to vanish.

General coordinate transformations and scale invariance, i.e., gµν →
fgµν , are incompatible in general relativity. The R

√−g term in the
Einstein–Hilbert action is the only quantity that can be constructed from
the metric tensor and its first and second derivatives only, that is invari-
ant under general coordinate transformations. But this term is not even
invariant under a global scale transformation gµν → fgµν for which f

5 In Section 5.3 a proposal by one of the authors of Ref. 49 is discussed in which such
a cutoff is argued to arise from the graviton not being a point-like particle but having
this finite size.
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is constant. R transforms with Weyl weight −1 and
√−g with weight +2.

There are two ways to proceed to construct a scale invariant action: intro-
ducing a new scalar field,(50,51) that transforms with weight −1, giving rise
to so-called scalar–tensor theories, or consider Lagrangians that are qua-
dratic in the curvature scalar. We consider the second. Pioneering work in
this direction was done in Refs. 52–56. See for example Refs. 57, 58 for
some recent studies and many references.

Gravity can be formulated under this bigger group, leading to “Con-
formal gravity”, defined in terms of the Weyl tensor, which corresponds to
the traceless part of the Riemann tensor:

SG = −α
∫
d4x

√−gCλµνκCλµνκ

= −2α
∫
d4x

√−g
(
RµνR

µν − 1
3
R2
)

+ (boundary terms), (15)

where Cµνλκ is the conformal Weyl tensor, and α is a dimensionless
gravitational coupling constant. Thus the Lagrangian is quadratic in the
curvature scalar and generates field equations that are fourth-order differ-
ential equations. Note that the a cosmological constant term is not
allowed, since it violates conformal invariance. Based on the successes of
gauge theories with spontaneously broken symmetries and the generation
of the Fermi-constant, one may suggest to also dynamically induce the
Einstein action with its Newtonian constant as a macroscopic limit of a
microscopical conformal theory. This approach has been studied especially
by Mannheim and Kazanas, see Refs. 59–64 to solve the CC problem.

These fourth-order equations reduce to a fourth-order Poisson
equation:

∇4B(r) = f (r), (16)

where B(r) = −g00(r) and the source is given by

f (r) = 3(T 0
0 − T rr )/4αB(r). (17)

For a static, spherically symmetric source, conformal symmetry allows one
to put grr = −1/g00 and the exterior solution to (15) can be written:(64)

grr = −1/g00 = 1 − β(2 − 3βγ )/r − 3βγ + γ r − kr2. (18)

The non-relativistic potential reads

V (r) = −β/r + γ r/2 (19)
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which for a spherical source can be completely integrated to yield

B(r > R) = − r
2

∫ R

0
dr ′f (r ′)r ′2 − 1

6r

∫ R

0
dr ′f (r ′)r ′4. (20)

Compared to the standard second-order equations:

∇2φ(r) = g(r) → φ(r > R) = −1
r

∫ R

0
dr ′g(r ′)r ′2 (21)

we see that the fourth-order equations contain the Newtonian potential in
its solution, but in addition also a linear potential term that one would
like to see dominate over Newtonian gravity only at large distances. The
factors β and γ in for example (19) are therefore given by

β(2 − 3βγ ) = 1
6

∫ R

0
dr ′f (r ′)r ′4, γ = −1

2

∫ R

0
dr ′f (r ′)r ′2. (22)

Note in passing that in the non-relativistic limit of GR the (0, 0)-com-
ponent, where Rij 
 (1/2R − �)gij and therefore R = gµνRµν 
 R00 +
3(1/2R − �), or R 
 −2R00 + 6� using also that R00 
 (−1/2)∇2g00
becomes

∇2φ = 4πG
(
ρ − �

4πG

)
, (23)

the Poisson equation for the normal Newtonian potential modified with a
cosmological constant. This can easily be solved to give

φ = −GM
r

+ 1
6
�r2. (24)

However, modifying gravity only at large distances cannot solve the
cosmological constant problem. The (nearly) vanishing of the vacuum
energy and consequently flat and relatively slowly expanding spacetime is
a puzzle already at distance scales of say a meter. We could expect devi-
ations of GR at galactic scales, avoiding the need for dark matter, but at
solar system scales GR in principle works perfectly fine. It seems hard to
improve on this, since the world simply is not scale invariant.

There is also a more serious problem with the scenario of Mannheim and
Kazanas described above. In order for the linear term not to dominate already
at say solar system distances, the coefficient γ has to be chosen very small. Not
only does this introduce a new kind of fine-tuning, it is simply not allowed to
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chose these coefficients at will. The linear term will always dominate over the
Newtonian 1/r-term, in contradiction with the perfect agreement of GR at
these scales. See also Ref. 65 who raised the same objection.

This scenario therefore does not work.

3.4.1. Λ as Integration Constant, Unimodular Theory

Another option is to reformulate the action principle in such a way
that a scale dependent quantity like the scalar curvature, remains unde-
termined by the field equations themselves. These are the so-called “uni-
modular” theories of gravity, see e.g., Refs. 66, 67. Note that although the
action is not globally scale invariant, Einstein’s equations in the absence of
matter and with vanishing cosmological constant is. The dynamical equa-
tions of pure gravity in other words, are invariant with respect to global
scale transformations, and since we have that R = 0, they are scale-free,
i.e., they contain no intrinsic length scale.

There is a way to keep the scale dependence undetermined also after
including matter which also generates a cosmological constant term. This
well-known procedure,(68,69) assumes

√−g = σ(x) → δ
√−g = 0, (25)

where σ(x) is a scalar density of weight +1. The resulting field equations
are

Rµν − 1
4
gµνR = −κ

(
Tµν − 1

4
gµνT

)
. (26)

The covariant derivative DµGµν = DµTµν = 0 still vanishes and from this
one obtains

R − κT = −4�, (27)

where � now appears as an integration constant and the factor of 4 has
been chosen for convenience since substituting this back we recover the
normal Einstein equations with cosmological constant.

Recently, some arguments have been put forward in which a sort of
unimodular theory is supposed to originate more naturally as a result of
“the quantum microstructure of spacetime being capable of readjusting
itself, soaking up any vacuum energy”, see Refs. 24, 70, 71.

Obviously this does not solve anything, nor does it provide a better
understanding of the cosmological constant. The value of the integration
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constant � has to be inserted by hand in order to arrive at the correct
value.

Besides, sometimes it is concluded that there are two inequivalent
Einstein equations for gravity, describing two theories that are only equiv-
alent classically, but not quantum mechanically. The group of canonical
transformations is much larger than that of unitary transformations in
Hilbert space, forcing one to quantize in “preferred” coordinates. We do
not agree with this point of view. The constraint gµνδgµν = 0 just reflects
a choice of coordinates, a certain gauge.

This issue is closely related to the question of the measure of the
quantum gravity functional integral (see discussions by B.S. DeWitt,(72,73)

’t Hooft(74,75)): Is the integration variable gµν , gµν or some other func-
tion of the metric? The differences in the amplitudes for these theories
all appear in the one-loop diagrams, in the form of quartically divergent
momentum-independent ghost loops. These all disappear after renormal-
ization and therefore the theories are indistinguishable physically.

3.5. Holography

Gravitational holography(76) limits the number of states accessible to
a system. The entropy of a region generally grows with its covering area
(in Planck units) rather than with its volume, implying that the dimension
of the Hilbert space, i.e., the number of degrees of freedom describing a
region, is finite and much smaller than expected from quantum field the-
ory. Considering an infinite contribution to the vacuum energy is not cor-
rect because states are counted that do not exist in a holographic theory
of gravity.

It is a symmetry principle since there is a projection from states in the
bulk-volume, to states on the covering surface.

In Refs. 77, 78 it is noted that in effective field theory in a box of size
L with UV cutoff M the entropy S scales extensively, as S ∼ L3M3. A free
Weyl fermion on a lattice of size L and spacing 1/M has 4(LM)

3
states and

entropy6 S ∼ (LM)3. The corresponding entropy density s = S/V then is
s = M3. In d = 4 dimensions quantum corrections to the vacuum energy
are therefore of order:

ρvac = �

8πG
+ 〈ρ〉 = �

8πG
+ O(s4/3), (28)

6 For bosons the number of states is not limited by a lattice cutoff alone, so in this argu-
ment one has to limit oneself to fermions. For bosons there are an infinite number of
states, in contradiction to the conjecture of the Holographic Principle.
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since both 〈ρ〉 and s are dominated by ultraviolet modes (see also Ref. 79).
Thus finite s implies finite corrections to 〈ρ〉.

Using a cutoff M, E ∼ M4L3 is the maximum energy for a system
of size L. States with L < Rs ∼ E, or L > M−2 (in Planckian units)
have collapsed into a black-hole. If one simply requires that no state in
the Hilbert space exists with Rs ∼ E > L, then a relation between the
size L of the region, providing an IR cutoff, and the UV cutoff M can be
derived. Under these conditions entropy grows no faster than A3/4 ∼ L3/2,
with A the area. If these black hole states give no contribution to 〈ρ〉, we
obtain

〈ρ〉 ∼ s4/3 ∼
(
L3/2

L3

)4/3

∼ L−2. (29)

In Ref. 77 this same scaling was obtained by assuming that S < A as
usual, but that the delocalized states have typical Heisenberg energy 1/L:

〈ρ〉 ∼ s

L
∼ L2

L3L
∼ L−2. (30)

Plugging in for L the observed size of the universe today the quantum cor-
rections are only of order 10−10 eV4.

However, this does not yield the correct equation of state.(79) During
matter dominated epochs, to which WMAP and supernova measurements
are sensitive, the horizon size grows as the RW-scale factor, a(t)3/2, so the
above arguments imply

�eff (L) ∼ a(t)−3, (31)

or, w ≡ p/ρ = 0 at largest scales, since ρ(t) ∼ a(t)−3(1+w). The data on
the other hand give w < −0.78 (95% CL). In for example(76,78) �(L) is
at all times comparable to the radiation + matter energy density, which is
also argued to give problems for structure formation.(80)

Holography-based scenarios thus naively lead to a cosmological con-
stant that is far less constant than what the data require. This makes a
connection between holography and dark energy a lot harder to under-
stand.7

7 In Ref. 81 in a different context a similar relation between the CC and the volume of
the universe is derived, thus suffering from the same drawbacks.
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More recently however, another proposal was made(82) where instead
L is taken to be proportional to the size of the future event horizon:

L(t) ∼ a(t)

∫ ∞

t

dt ′

a(t ′)
. (32)

This L describes the size of the largest portion of the universe that any
observer will see. This could be a reasonable IR cutoff. It is argued that
in this case the equation of state parameter w can be close enough to −1
to agree with the data. This relation is rather ad hoc chosen, and its deeper
meaning, if any, still has to be discovered.

Another reason to discuss holography in the context of the cosmo-
logical constant problem lies in trying to reconcile string theory with the
apparent observation of living in a de Sitter spacetime. The discussion
centers around the semi-classical result that de Sitter space has a finite
entropy, inversely related to the cosmological constant, see for example
Ref. 83. Thus one may reason that de Sitter space should be described
by a theory with a finite number of independent quantum states and that
a theory of quantum gravity should be constructed with a finite dimen-
sional Hilbert space. In this reasoning a cosmological constant should be
understood as a direct consequence of the finite number of states in the
Hilbert space describing the world. Ergo, the larger the cosmological con-
stant, the smaller the Hilbert space. However, in Ref. 84 it is argued that
this relation between the number of degrees of freedom and the CC is not
so straightforward.

3.6. “Symmetry” between Sub- and Super-Planckian Degrees of Freedom

This rather speculative reasoning originates from a comparison with
condensed matter physics and is due to Volovik, see for example Refs. 85–92.
The vacuum energy of superfluid 4Helium, calculated from an effec-
tive theory containing phonons as elementary bosonic particles and no
fermions is

ρ� = √−gE4
Debye (33)

with g the determinant of the acoustic metric, since c is now the speed
of sound, and EDebye = �c/a, with a the interatomic distance, which
plays the role of the Planck length. However, in the condensed matter case,
the full theory exists: a second quantized Hamiltonian describing a collec-
tion of a macroscopic number of structureless 4Helium bosons or 3Helium
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fermions, in which the chemical potential µ acts as a Lagrange multiplier
to ensure conservation of the number of atoms:

H − µN =
∫
dxψ†(x)

[
−∇2

2m
− µ

]
ψ(x)

+
∫
dxdyV (x − y)ψ†(x)ψ†(y)ψ(y)ψ(x). (34)

Using this Hamiltonian H to calculate the energy density of the
ground state we get

Evac = E − µN = 〈vac|H − µN |vac〉. (35)

An overall shift of the energy in H is cancelled in a shift of the chemical
potential. Exact calculation shows that not only the low energy degrees of
freedom from the effective theory, the phonons, but also the higher energy,
“trans-Planckian” degrees of freedom have to be taken into account.

Besides, for a liquid of N identical particles at temperature T in a vol-
ume V in equilibrium, the relation between the energy E and pressure P
is given by the Gibbs–Duhem equation

E = T S + µN − PV. (36)

Therefore at T = 0 the energy density of the ground state becomes

ρvac ≡ Evac

V
= −Pvac, (37)

the same equation of state as for the vacuum state in GR. Using just ther-
modynamic arguments, it is argued that in the infinite volume, zero tem-
perature limit, this gives exactly zero vacuum energy density as long as
there are no external forces, i.e., no pressure acting on the quantum liquid.
And assuming there is no matter, no curvature and no boundaries which
could give rise to a Casimir effect.(86)

The conclusion therefore is that, if these thermodynamic arguments
are also valid in a gravitational background for the universe as a whole
and up to extremely high energies, one would expect a perfect cancellation
between sub- and super-Planckian degrees of freedom contributing to the
vacuum energy, resulting in zero cosmological constant.

Moreover, it is also argued that a non-zero cosmological constant
arises from perturbations of the vacuum at non-zero temperature. The vac-
uum energy density would be proportional to the matter energy density,
solving the coincidence problem as well.
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A similar result is obtained by Ref. 93. In their formulation the world is
like a crystal. The atoms of the crystal are in thermal equilibrium and exhibit
therefore zero pressure, making the cosmological constant equal to zero.

Both approaches strongly depend on the quantum systems reaching
their equilibrium state. However, in the presence of a cosmological con-
stant, the matter in the universe never reaches its equilibrium state.(94)

3.7. Interacting Universes, Antipodal Symmetry

This is an approach developed by Linde(95,96) arguing that the vac-
uum energy in our universe is so small because there is a global interac-
tion with another universe where energy densities are negative. Consider
the following action of two universes with coordinates xµ and yα respec-
tively (xµ, yα = 0, 1, . . . , 3) and metrics gµν(x) and ḡαβ(y), containing
fields φ(x) and φ̄(y):

S=N
∫
d4xd4y

√
g(x)

√
ḡ(y)

[
M2
P

16π
R(x)+L(φ(x))−M2

P

16π
R(y)−L(φ̄(y))

]
,

(38)

and where N is some normalization constant. This action is invariant
under general coordinate transformations in each of the universes sepa-
rately. The important symmetry of the action is φ(x) → φ̄(x), gµν(x) →
ḡαβ(x) and under the subsequent change of the overall sign: S → −S. He
calls this an antipodal symmetry, since it relates states with positive and
negative energies. As a consequence we have invariance under the change
of values of the effective potentials V (φ) → V (φ)+c and V (φ̄) → V (φ̄)+c
where c is some constant. Therefore nothing in this theory depends on the
value of the effective potentials in their absolute minima φ0 and φ̄0. Note
that because of the antipodal symmetry φ0 = φ̄0 and V (φ0) = V (φ̄0).

In order to avoid the troublesome issues of theories with negative
energy states, one has to assume that there can be no interactions between
the fields φ(x) and φ̄(y). Therefore also the equations of motion for both
fields are the same and similarly, also gravitons from both universes do not
interact.

However some interaction does occur. The Einstein equations are

Rµν(x)− 1
2
gµνR(x) = −8πGTµν(x)− gµν

〈
1
2
R(y)+ 8πGL(φ̄(y))

〉
, (39)

Rαβ(y)− 1
2
ḡαβR(y) = −8πGTαβ(y)− ḡαβ

〈
1
2
R(x)+ 8πGL(φ(x))

〉
. (40)
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Here Tµν is the energy–momentum tensor of the fields φ(x) and Tαβ the
energy-momentum tensor for the fields φ̄(y) and the averaging means

〈R(x)〉 =
∫
d4x

√
g(x)R(x)∫

d4x
√
g(x)

, (41)

〈R(y)〉 =
∫
d4y

√
ḡ(y)R(y)∫

d4y
√
ḡ(y)

, (42)

and similarly for 〈L(x)〉 and 〈L(y)〉.
Thus there is a global interaction between the universes X and Y .

The integral over the whole history of the Y -universe changes the vac-
uum energy density of the X-universe. Assuming then that at late times the
fields settle near the absolute minimum of their potential we have

Rµν(x)− 1
2
gµνR(x) = −8πGgµν

[
V (φ̄0)− V (φ0)

]− 1
2
gµνR(y), (43)

Rαβ(y)− 1
2
ḡαβR(y) = −8πGgαβ

[
V (φ0)− V (φ̄0)

]− 1
2
gαβR(x). (44)

Thus at late stages the effective cosmological constant vanishes:

R(x) = −R(y) = 32
3
πG

[
V (φ0)− V (φ̄0)

] = 0, (45)

since because of the antipodal symmetry φ0 = φ̄0 and V (φ0) = V (φ̄0).
This could also be seen as a back-reaction mechanism, from one uni-

verse at the other.

3.8. Duality Transformations

3.8.1. S-Duality

A different proposal was considered in Ref. 97, where S-duality act-
ing on the gravitational field is assumed to mix gravitational and matter
degrees of freedom. The purpose is to show that whereas the original met-
ric may be (A)dS, de dual will be flat. It is assumed that

Rba ≡ Rcabc = �δab (46)

with � the cosmological constant. The mixing between gravitational and
matter degrees of freedom is obtained through a new definition of the
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gravitational dual of the Riemann tensor, including the field strength Fabcd
of a 3-form field Aabc. which equation of motion is simply Fabcd = ωεabcd ,
with ω some constant, see also Section 6.1:

R̃abcd = 1
2
εabef

(
R
ef
cd + F

ef
cd

)
+ 1

12
εabcd ,

F̃abcd = −1
2
εabcdR (47)

such that

˜̃
Rabcd = −Rabcd,
˜̃
Fabcd = −Fabcd . (48)

The equations of motion for the dual tensors become

R̃ab = 3ωδab,

F̃abcd = −1
3
�εabcd ≡ ω̃εabcd . (49)

Therefore it seems that if the vev ω would vanish, the dual Ricci tensor,
in casu the dual cosmological constant would also vanish. Hence the con-
clusion is that if we would “see” the dual metric, determined by the dual
Riemann tensor, we would observe a flat spacetime.

However, with assumption (46), the trace of the left-hand-side of Ein-
stein’s equation vanishes by definition. Hence, also the trace of the energy-
momentum tensor should vanish, which in general is not the case. The
field equations therefore appear to be inconsistent with the above assump-
tion, unless ω = 0, which makes the addition of the field strength term
useless. This scenario, even aside from the other assumptions, therefore
cannot work.

Note that S-duality is an important concept in stringtheory. If theo-
ries A and B are S-dual then fA(α) = fB(1/α). It relates type I stringthe-
ory to the SO(32) heterotic theory, and type IIB theory to itself.

3.8.2. Hodge Duality

This duality between a r-form and a (D − r)-form in D dimensions
is studied,(98) where the cosmological constant is taken to be represented
by a 0-form field strength, which is just a constant. This is related to the
unimodular approach of Section 3.4.1 in the sense that they try to intro-
duce the cosmological constant in a different way in the Einstein–Hilbert
action.
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3.9. Summary

A symmetry principle as explanation for the smallness of the cos-
mological constant in itself is very attractive. A viable mechanism that
sets the cosmological constant to zero would be great progress, even if �
would turn out to be non-zero. Since supersymmetry does not really seem
to help, especially some form of scale invariance stands out as a serious
option. Needless to say, it is hard to imagine how scale invariance could
be used, knowing that the world around us is not scale invariant. Particle
masses are small, but many orders of magnitude larger than the observed
cosmological constant.

Another option might be that a symmetry condition enforcing ρvac
equal to zero, could be reflected in a certain choice of boundary condi-
tions. In such a scenario, the vacuum state would satisfy different bound-
ary conditions then excited states. The x → ix transformation of Section
3.2 could be an example of this.

4. TYPE II: BACK-REACTION MECHANISMS

In this approach it is argued that any cosmological constant will
be automatically cancelled, or screened, to a very small value by back-
reaction effects on an expanding space. The effective cosmological con-
stant then is small, simply because the universe is rather old. Often these
effects are studied in an inflationary background, where a cosmological
constant is most dominant. The physical idea of this mechanism can be
understood in the context of the energy–time uncertainty principle. For
a particle with mass m and co-moving wavevector k in a spacetime with
scalefactor a(t) we have

E(k, t) =
√
m2 + ‖k‖2/a2(t). (50)

Thus growth of a(t) increases the time a virtual particle of fixed m and k
can exist and, during inflation, virtual particles with zero mass and long
enough wavelength can exist forever. The rate (�) at which they emerge
from the inflationary vacuum depends upon the type of particle. Most
massless particles are conformally invariant. In that case, � gives the num-
ber of particles emerging from the vacuum per unit conformal time η, so
the number per unit physical time is

dn

dt
= dη

dt

dn

dη
= �

a
. (51)
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Their emergence rate thus falls like 1/a(t). This means that although those
that are produced can exist forever, only very few are created, and their
total effect during inflation is negligible, see e.g., Ref. 99.

However, two familiar massless particles are not conformally invari-
ant, massless minimally coupled scalars and gravitons. Therefore in these
two sections we consider their effects in more detail.

It should be noted that there exists a no-go theorem, derived by
Weinberg, see Ref. 20 for details. The theorem states that the vacuum
energy density cannot be cancelled dynamically, using a scalar field, with-
out fine-tuning in any effective four-dimensional theory with constant
fields at late times, that satisfies the following conditions:

1. General Covariance.

2. Conventional four-dimensional gravity is mediated by a massless
graviton.

3. Theory contains a finite number of fields below the cutoff scale.

4. Theory contains no negative norm states.

Under these rather general assumptions the theorem states that the poten-
tial for the compensator field, which should adjust the vacuum energy to
zero, has a runaway behavior. This means that there is no stationary point
for the potential of the scalar field that should realize the adjustment, and
thus the mechanism cannot work.

4.1. Scalar Field, Instabilities in dS-Space

The first attempts to dynamically cancel a “bare” cosmological con-
stant were made by referring to instabilities in the case of a scalar field in
de Sitter space. A massless minimally coupled scalar field φ has no de Sit-
ter-invariant vacuum state and the expectation value of φ2 is time-depen-
dent. However, this breaking of de Sitter invariance is not reflected by the
energy–momentum tensor, since Tµν only contains derivatives and hence is
not sensitive to long-wavelength modes. This changes if one includes inter-
actions. Consider for example a λφ4. Then

〈Tµν〉 ∼ λ〈φ2〉2gµν ∝ t2. (52)

So in this case it is possible for 〈Tµν〉 to grow for some time, until higher
order contributions become important. The infrared divergence results in a
mass for the field which in turn stops the growth of 〈Tµν〉, see for example
Ref. 100, 101.
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Another illustrative, but unsuccessful attempt has been given by
Dolgov.(102) He used a rather simple classical model for back-reaction:

L = 1
2

(
∂αφ∂

αφ − ξRφ2
)
, (53)

where R is the scalar curvature and ξ a negative constant. The scalar field
energy–momentum tensor at late times approaches the form of a cosmo-
logical constant term:

8πG〈Tµν〉 ∼ �0gµν + O(t−2). (54)

�0 = 3H 2 stands for the effective value of the cosmological constant dur-
ing a de Sitter phase so the leading back-reaction term cancels this effect.
The kinetic energy of the growing φ-field acts to cancel the cosmological
constant. The no-go theorem of the previous section is circumvented, since
the scalar field is not constant at late times.

Unfortunately, not only the cosmological constant term is driven to
zero, Newton’s constant is also screened:

Geff = G0

1 + 8πG|ξ |φ2
∼ 1
t2
, (55)

where G0 is the “bare” value of G at times where φ = 0. This is a fatal
flaw of many of such approaches.

Other models of this kind were also studied by Dolgov, see Refs. 103–
105 but these proved to be unstable, leading quickly to a catastrophic cos-
mic singularity.

As we discussed, Weinberg’s no-go theorem is widely applicable to
such screening mechanisms. However, it was noted in e.g., Ref. 106, that
conformal anomalies might provide a way around this. The Lagrangian
obtains an additional term proportional to

√
gφ�

µ
µ, where �µµ is the effect

of the conformal anomaly.
However, as already noted by Weinberg,(20) this does not provide a

loophole to get around the no-go theorem. The reason is that, although
the field equation for φ now looks like

∂L
∂φ

= √−g (T µµ +�µµ
)
, (56)

which may suggest an equilibrium value for φ with zero trace, this is not
sufficient for a flat space solution. The Einstein equation for a constant
metric now becomes
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0 = ∂Leff

∂gµν
∝ e2φL0 + φ�µµ, (57)

and the extra factor of φ shows that these two conditions are not the
same. The reason is that the term �

µ
µ does not simply end up in T

µ
µ .

4.1.1. Radiative Stability in Scalar Field Feedback Mechanism

Another approach deserves to be mentioned here. This concerns a
model that does not solve the cosmological constant problem, but does
seem to provide a way to protect a zero or small cosmological constant
against radiative corrections, without using a symmetry.(107,108) This is
achieved using a scalar field with a non-standard, curvature dependent
kinetic term, such that in the limit where the scalar curvature goes to zero,
the kinetic term vanishes.

S =
∫
d4x

√−g
(
R

2κ2
+ αR2 + Lkin − V (φ)

)
,

Lkin = κ−4Kq

2qf 2q−1
, (58)

where q is a constant that has to be q > 1/2 for stability reasons, and f

is a function of the scalar curvature R, postulated to vanish at R = 0 and
that behaves near R = 0 as

f (R) ∼
(
κ4R2

)m
(59)

with κ the Planck length. The parameter α is assumed to be α > 0 to
stabilize gravity at low energies, m is an integer that satisfies 2(m − 1) >
q(2q − 1) and K ≡ −κ4∂µφ∂µφ.

The true value of the vacuum energy in this approach is not zero,
but the peculiar dynamics makes the universe settle down to a near zero
energy state. The scalar field stops rolling and its kinetic terms diverges.

The two main problems with this scenario are (1) This specific kinetic
term is chosen by hand, not motivated by a more fundamental theory, (2)
all other fields settle to their ground state faster than the vacuum energy,
making the universe empty, and reheating necessary, to thermally populate
the universe again.

Other models where some dynamical feedback mechanism is proposed
based on a non-standard kinetic term can be found in Refs. 109–112. An
interesting conjecture is made on the existence of a conformal fixed point,
possibly related to dilatation symmetry.(113) However, these models still
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need fine-tuning, and it is unclear whether they are experimentally viable,
see Ref. 108.

4.2. Dilaton

A natural scalar field candidate to screen the cosmological constant
could be the dilaton, which appears in string theory an compactified
supergravity theories. In the presence of a dilaton, all mass scales arise
multiplied with an exponential:

V0(φ) ∼ M4e4λφ (60)

with φ the dilaton, and λ a coupling constant. The minimum of this
obtained for the value φ0 = −∞, which is known as the “dilaton run-
away problem”: couplings depend typically on φ, and these tend to go to
zero, or infinity sometimes, in this limit. Moreover, all mass scales have
this similar scaling behavior, so particle masses also vanish. Besides, the
dilaton itself is nearly massless when it reaches the minimum of its poten-
tial, leading to long-range interactions that are severely constrained. Note
that quintessence ideas can only be maintained as long as the new hypo-
thetical scalar particle does not couple to the standard model fields, con-
trary to the dilaton.

In summary, the dynamical cancellation of a cosmological constant
term by back-reaction effects of scalar fields is hard to realize. Let’s focus
therefore on a purely gravitational back-reaction mechanism.

4.3. Gravitons, Instabilities of dS-Space

Gravitational waves propagating in some background spacetime affect
the dynamics of this background. This back-reaction can be described by
an effective energy–momentum tensor τµν .

4.3.1. Scalar-type Perturbations

In Refs. 114, 115 the back-reaction for scalar gravitational perturba-
tions is studied. It is argued this might give a solution to the CC problem.

At linear order, all Fourier modes of the fluctuations evolve inde-
pendently. However, since the Einstein equations are non-linear, retain-
ing higher order terms in the perturbation amplitude leads to interactions
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between the different perturbation modes: they define a gravitational back-
reaction.

The idea is first to expand Einstein equations to second order in the
perturbations, then to assume that linear terms satisfy equations of motion
(and hence cancel). Next the spatial average is taken of the remaining
terms and the resulting equations are regarded as equations for a new
homogeneous metric g(0,br)µν , where the superscript (0, br) denotes first the
order in perturbation theory and the fact that back-reaction is taken into
account:

Gµν

(
g
(0,br)
αβ

)
= −8πG

[
T (0)µν + τµν

]
(61)

and τµν contains terms resulting from averaging of the second order met-
ric and matter perturbations:

τµν =
〈
T (2)µν − 1

8πG
G(2)µν

〉
. (62)

In other words, the first-order perturbations are regarded as contribut-
ing an extra energy–momentum tensor to the zeroth-order equations of
motion; the effective energy–momentum tensor of the first-order equations
renormalizes the zeroth-order energy–momentum tensor. This is a some-
what tricky approach and it is not clear whether one can consistently
derive the equations of motion in this way, see for example Refs. 116–122.

Now work in longitudinal gauge and take the matter to be described
by a single scalar field for simplicity. Then there is only one independent
metric perturbation variable denoted φ(x, t). The perturbed metric is

ds2 = (1 + 2φ)dt2 − a(t)2(1 − 2φ)δij dxidxj . (63)

Calculating the τ00 and τij elements and using relations valid for the
period of inflation, Brandenberger’s main result is that the equation of
state of the dominant infrared contribution to the energy–momentum ten-
sor τµν which describes back-reaction, takes the form of a negative CC:

pbr = −ρbr , ρbr < 0. (64)

This leads to the speculation that gravitational back-reaction may lead to
a dynamical cancellation mechanism for a bare CC since τ 0

0 ∝ 〈φ2〉, which
is proportional to IR phase space and this diverges in a De Sitter uni-
verse. Long wavelength modes are those with wavelength longer than H ,
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and as more and more modes cross the horizon, 〈φ2〉 grows. To end infla-
tion this way, however, takes an enormous number of e-folds, see Ref. 123
for a recent discussion.

However, as pointed out in Ref. 122, the spatially averaged metric is
not a local physical observable: averaging over a fixed time slice, the aver-
aged value of the expansion will not be the same as the expansion rate at
the averaged value of time, because of the non-linear nature of the expan-
sion with time. In other words, locally this “achieved renormalization”,
i.e., the effect of the perturbations, is identical to a coordinate transfor-
mation of the background equations and not a physical effect. A similar
conclusion was obtained in Refs. 124–125.

Brandenberger and co-workers have subsequently tried to improve
their analysis by identifying a local physical variable which describes the
expansion rate.(126,127) This amounts to adding another scalar field that
acts as an independent physical clock. Within this procedure they argue
that back-reaction effects are still significant in renormalizing the cosmo-
logical constant.

It is however far from clear whether this scenario is consistent and
whether the effects indeed are physical effects. One of the main points is
that by performing a coordinate transformation, one can locally always
find coordinates such that at a given point P , g′

µν(x
′
P ) = ηµν and

∂g′
µν/∂x

′
α = 0 evaluated at x = xP , simply constructing a local inertial

frame at the point P . The second and higher order derivatives of the met-
ric can of course not be made to vanish and measure the curvature. The
perturbations are small enough that we do not notice any deviation from
homogeneity and isotropy, but are argued to be large enough to alter the
dynamics of our universe, which sounds contradictory. In Ref. 128 espe-
cially, on general grounds these effects are argued to be unphysical and
therefore cannot provide a solution to the cosmological constant problem.

Besides, this build-up of infrared scalar metric perturbations (vacuum
fluctuations, stretched beyond the Hubble-radius) is set in an inflationary
background and since the individual effects are extremely weak a large
phase-space of IR-modes, i.e., a long period of inflation, is needed. The
influence on today’s cosmological constant is unclear.

4.3.2. Long-Wavelength Back-Reaction in Pure Gravity

Closely related are studies by Tsamis and Woodard, see Refs. 129–
135 concerning the back-reaction of long-wavelength gravitational waves in
pure gravity with a bare cosmological constant. Leading infrared effects in
quantum gravity are, contrary to what is often assumed, similar to those
of QED, see Ref. 136.
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When � �= 0, the lowest dimensional self-interaction term is of dimen-
sion three, a three-point vertex with no derivatives (corresponding to the
�

√−g-term). The IR behavior of the theory with cosmological constant
is therefore very different from that without. Tsamis and Woodard chris-
ten it Quantum Cosmological Gravity, or QCG for short, and study it on
an inflationary background. Here the infrared divergences are enhanced:
since the spatial coordinates are exponentially expanded with increasing
time, their Fourier conjugates, the spatial momenta, are redshifted to zero.
The IR effects originate from the low end of the momentum spectrum, so
they are strengthened when this sector is more densely populated.

Since other particles are either massive, in which case they decouple
from the infrared, or conformally invariant, and therefore do not feel the
de Sitter redshift, gravitons must completely dominate the far IR. The typ-
ical strength of quantum gravitational effects during inflation at scale M is

G� = 8π
(
M

MP

)4

, (65)

which for GUT-scale inflation becomes G� = 10−11 and for electroweak-
scale inflation G� = 10−67.

The classical background in conformal coordinates is

−dt2 + e2Htdx · dx = �2
(
−du2 + dx · dx

)
, (66)

� ≡ 1
Hu

= exp(H t) (67)

and H 2 ≡ 1
3�. For convenience, perturbation theory is formulated in

terms of a pseudo-graviton field ψµν :

gµν ≡ �2g̃µν ≡ �2(ηµν + κψµν), (68)

where κ2 ≡ 16πG.
Because of homogeneity and isotropy of the dynamics and the initial

state, the amputated 1-point function, can be written in terms of two func-
tions of conformal time u:

Dρσµν 〈0|κψρσ (x)|0〉 = a(u)η̄µν + c(u)δ0
µδ

0
ν , (69)

where Dρσµν is the gauge fixed kinetic operator, and a bar on ηµν indicates
that temporal components of this tensor are deleted:

ηµν = η̄µνδ
(0)
µ δ(0)ν . (70)
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The pseudo-graviton kinetic operator Dρσµν splits in two parts, a term pro-
portional to DA ≡ �(∂2 + 2

u2 )�, which is the kinetic operator for a mass-
less minimally coupled scalar, and a part proportional to DC ≡ �∂2�, the
kinetic operator for a conformally coupled scalar.

After attaching the external legs one obtains the full 1-point function,
which has the same form, but with different components:

〈0|κψρσ (x)|0〉 = A(u)η̄µν + C(u)δ0
µδ

0
ν . (71)

The functions A(u) and C(u) obey the following differential equations:

−1
4
DA [A(u)− C(u)] = a(u),

DCC(u) = 3a(u)+ c(u). (72)

The functions a(u) and A(u) on the one hand, and c(u) and C(u) on
the other, are therefore related by retarded Green’s functions GretA,C for the
massless minimally coupled and conformally coupled scalars:

A(u) = −4Gret
A [a](u)+Gret

C [3a + c](u),

C(u) = Gret
C [3a + c](u) (73)

In terms of these functions A(u) and C(u) the invariant element in comov-
ing coordinates reads

ĝµν(t, x)dxµdxν = −�2 [1 − C(u)] du2 +�2 [1 + A(u)] dx · dx. (74)

This gives the following identification:

R(t) = �
√

1 + A(u),

d(t) = −�
√

1 − C(u)du, and d(Ht) = −
√

1 − C(u)d[ln(Hu)] (75)

Using this we can find the time dependence of the effective Hubble param-
eter:

Heff (t) = d

dt
ln (R(t)) = H√

1 − C(u)

(
1 −

1
2u

d
du
A(u)

1 + A(u)

)
. (76)
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The backreaction of the IR gravitons therefore acts to screen the bare
cosmological constant, originally present. The improved results8 in terms
of

ε ≡
(
κH

4π

)2

= G�

3π
= 8

3

(
M

MP

)4

(77)

turn out to be

A(u) = ε2
{

172
9

ln3(Hu)+ (subleading)
}

+ O(ε3), (78)

C(u) = ε2
{

57 ln2(Hu)+ (subleading)
}

+ O(ε3). (79)

Using (75) we find:

Ht = −
{

1 − 19
2
ε2 ln2(Hu)+ · · ·

}
ln(Hu). (80)

This implies that ln(Hu) ≈ −Ht to very good approximation, therefore
A(u) can be written:

A(u) = −172
9
ε2(H t)3 + · · · (81)

and we arrive at

Heff (t) ≈ H + 1
2
d

dt
ln(1 + A),

≈ H

{
1 −

86
3 ε

2 (H t)2

1 − 172
9 ε

2 (H t)3

}
. (82)

The induced energy density, which acts to screen the original cosmological
constant present gives

ρ(t) ≈ �

8πG

{
− 1
H

Ȧ

1 + A
+ 1

4H 2

(
Ȧ

1 + A

)2}

≈ �

8πG


−

172
3 ε

2 (H t)2

1 − 172
9 ε

2 (H t)3
+
(

86
3 ε

2 (H t)2

1 − 172
9 ε

2 (H t)3

)2

 . (83)

8 Papers before 1997 yield different results.
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This can be written more intuitively, to better see the magnitude of the
effect as follows:

Heff (t) = H

{
1 − ε2

[
1
6
(H t)2 + (subleading)

]
+ O(κ6)

}
(84)

and the induced energy density and pressure, in powers of H :

ρ(t) = �

8πG
+ (κH)H 4

26π4

{
−1

2
ln2 a + O(ln a)

}
+ O(κ4),

p(t) = − �

8πG
+ (κH)H 4

26π4

{
1
2

ln2 a + O(ln a)
}

+ O(κ4). (85)

The number of e-foldings needed to make the backreaction effect
large enough to even end inflation is

N ∼
(

9
172

)1/3 ( 3π
G�

)2/3

=
(

81
11008

)1/3 (
MP

M

)8/3

, (86)

where M is the mass scale at inflation and MP the Planck mass. For infla-
tion at the GUT scale this gives N ∼ 107 e-foldings. This enormously
long period of inflation, much longer than in typical inflation models, is
a direct consequence of the fact that gravity is such a weak interaction.

In other words, the effect might be strong enough to effectively kill
any cosmological constant present, as long as such a long period of infla-
tion is acceptable. There do exist arguments that the number of e-folds is
limited to some 85, see Ref. 137 for details, but these are far from estab-
lished. Another issue is that these results have been obtained for a very
large cosmological constant during inflation. It is unclear what this means
for the present day vacuum energy of the universe. Perturbative techniques
break down when the effect becomes too strong, making this difficult to
answer.

This breaking however is rather soft, since each elementary interac-
tion remains weak. Furthermore, a technique following Starobinski(138) is
used in which non-perturbative aspects are absorbed in a stochastic back-
ground that obeys the classical field equations.(134)

It is then argued(134) that eventually the screening must overcom-
pensate the original bare cosmological constant, leading to a period of
deflation. This happens because the screening at any point derives from a
coherent superposition of interactions from within the past lightcone and
the invariant volume of the past lightcone grows faster as the expansion
slows down. Now thermal gravitons are produced that act as a thermal
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barrier, that grows hotter and denser as deflation proceeds. Incoming vir-
tual IR modes scatter off this barrier putting a halt to the screening pro-
cess. The barrier dilutes and the expansion takes over again.

However, discussions are still going on, debating whether these screen-
ing effects are real physical effects, or gauge artifacts, see Refs. 128, 139,
140. Especially, the argued cumulative nature of the effect, makes it hard
to understand how local physics is affected.

Another objection may be raised in that throughout the above calcu-
lation, the “primordial” cosmological constant � was used. The mecha-
nism, however, screens the cosmological constant, which implies that the
effective cosmological constant should be used instead. The strength of the
effect would then be even weaker, since this is controlled by G�. A much
larger number of e-folds would then be necessary to stop inflation.

4.4. Screening as a Consequence of the Trace Anomaly

In Refs. 141–143 it is argued that the quantum effects of the trace
anomaly of massless conformal fields in 4 dimensions leads to a screen-
ing of the cosmological constant. The effective action of 4D gravity yields
an extra new spin-0 degree of freedom in the conformal sector, or trace of
the metric. At very large distance scales this trace anomaly induced action
dominates the standard Einstein action and gives an IR fixed point where
scale invariance is restored.

The idea is similar to that in Section 4.3.2. One tries to find a ren-
ormalization group screening of the cosmological constant in the IR, but
instead of taking full quantum gravity effects, only quantum effects of the
conformal factor are considered. See also Ref. 144 for a related earlier study.

The authors conclude that the effective cosmological constant and
inverse Newton’s constant in units of Planck mass decreases at large dis-
tances and that GN� → 0 at the IR fixed point in the infinite volume limit.

However, the cosmological constant problem manifests itself already
at much smaller distances and moreover, it is unclear whether this scenario
is compatible with standard cosmological observations. Moreover, like the
other approaches in this chapter, it relies heavily on quantum effects hav-
ing a large impact at enormous distance scales. As argued in the previous
section, it is debatable whether these effects can be sufficiently significant.

4.5. Running � from Renormalization Group

In Refs. 94, 145–149 a related screening of the cosmological constant
is studied, viewing � as a parameter subject to renormalization group
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running. The cosmological constant than becomes a scaling parameter
�(µ), where µ is often identified with the Hubble parameter at the cor-
responding epoch, in order to make the running of � smooth enough to
agree with all existing data.(150)

However, renormalization group equations give logarithmic correc-
tions, which makes it hard to see how this can ever account for the
suppression of a factor of 10120 needed for the cosmological constant.
Although this running is very slow, it could possibly be measured as a
quintessence of phantom dark energy and be consistent with all data, as
long as 0 � |ν| � 1.(151) As a solution to the cosmological constant prob-
lem, it obviously cannot help.

In Refs. 149, 152, it is argued that there may be a UV fixed point at
which gravity becomes asymptotically free. If there would be an IR fixed
point at which �eff = 0 this could shed some new light on the cosmo-
logical constant problem. This scaling also effects G, making it larger at
larger distances.

4.5.1. Triviality as in λφ4 Theory

The Einstein Hilbert action with a cosmological constant can be
rewritten as:(153)

S = − 3
4π

∫
d4x
√

−ĝ
(

1
12
R(ĝ)φ2 + 1

2
ĝµν∂µφ∂νφ − λ

4!
φ4
)

(87)

after rescaling the metric tensor as

gµν = ϕ2ĝµν, ds2 = ϕ2d̂s2 (88)

and defining

φ = ϕ√
G
, � = λ

4G
. (89)

Now it is suggested that the same arguments first given by Wilson,(154)

that are valid in ordinary λφ4-theory, might also hold here and that this
term is suppressed quantum mechanically.

It is noted that perturbative running as in normal λφ4-theory is by far
not sufficient, but the idea is that perhaps there might be some non-pertur-
bative suppression. Similar ideas have been contemplated by Polyakov.(155)
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4.6. Summary

Finding a viable mechanism that screens the original possibly large
cosmological constant to its small value today, is a very difficult task.
Weinberg’s no-go theorem puts severe limits on this approach. Back-
reaction effects, moreover, are generally either very weak, or lead to other
troublesome features like a screened Newton’s constant.

The underlying idea however that the effective cosmological constant
is small simply because the universe is old, is attractive and deserves full
attention.

5. TYPE III: VIOLATING THE EQUIVALENCE PRINCIPLE

An intriguing way to try to shed light on the cosmological constant
problem is to look for violations of the equivalence principle of gen-
eral relativity. The near zero cosmological constant could be an indication
that vacuum energy contrary to ordinary matter-energy sources does not
gravitate.

The approach is based not on trying to eliminate any vacuum energy,
but to make gravity numb for it. This requires a modification of some
of the building blocks of general relativity. General covariance (and the
absence of ghosts and tachyons) requires that gravitons couple universally
to all kinds of energy. Moreover, this also fixes uniquely the low energy
effective action to be the Einstein–Hilbert action. If gravity were not med-
iated by an exactly massless state, this universality would be avoided. One
might hope that vacuum energy would then decouple from gravity, thereby
eliminating the gravitational relevance of it and thus eliminate the cosmo-
logical constant problem.

5.1. Extra Dimensions, Braneworld Models

Since the Casimir effect troubles our notion of a vacuum state, the
cosmological constant problem starts to appear when considering dis-
tances smaller than a millimeter or so. Therefore, extra dimensions with
millimeter sizes might provide a mechanism to understand almost zero
4D vacuum energy, since in these scenarios gravity is changed at distances
smaller than a millimeter. This size really is a sort of turn-over scale.
Somehow all fluctuations with sizes between a Planck length and a mil-
limeter are cancelled or sum up to zero.
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Besides, it is conceivable that the need to introduce a very small cos-
mological constant or some other form of dark energy to explain an accel-
erating universe nowadays, is a signal that general relativity breaks down
at very large distance scales. General relativity however, works very well
on scales from 10−1 mm to at least 1014 cm, the size of the solar system.
This puts severe constraints on alternative theories. Extra-dimensional
models, like the early Kaluza–Klein scenarios, generically have additional
degrees of freedom, often scalar fields, that couple to the four dimen-
sional energy–momentum tensor and modify four-dimensional gravity. A
four dimensional massless graviton has two physical degrees of freedom,
a five dimensional one five, just like a massive 4-dimensional graviton.9

There are however, strong experimental constraints on such scalar–tensor
theories of gravity, see for example Refs. 156, 157.

A lot of research in this direction in recent years has been devoted
to braneworld models in D = 4 + N dimensions, with N extra spatial
dimensions. In this setting the cosmological constant problem is at least
as severe as in any other, but new mechanisms of cancelling a vacuum
energy can be thought of. The general idea is that our world is confined
on a hypersurface, a brane, embedded in a higher dimensional spacetime.
The standard model fields are restricted to live on a 3-brane, while only
gravitons can propagate in the full higher dimensional space. To reproduce
the correct 4-dimensional gravity at large distances three approaches are
known. Usually one takes the extra dimensions to cover a finite volume
and compactifies the unseen dimensions. One of the earliest approaches
was by Rubakov and Shaposhnikov(158) who unsuccessfully tried to argue
that the 4D cosmological constant is zero, since 4D vacuum energy only
curves the extra dimensions.

In this chapter we will first briefly review the Randall–Sundrum mod-
els and show why they cannot solve the cosmological constant problem.
Next we focus on the DGP-model with infinite volume extra dimensions.
This is a very interesting setup, but also a good example of the diffi-
culties one faces in deconstructing a higher dimensional model to a via-
ble 4D world meeting all the GR constraints. A rather more speculative
but perhaps also more promising approach is subsequently discussed, in
which Lorentz invariance is spontaneously broken to yield a Higgs mecha-
nism analog for gravity. Before concluding with a summary, we discuss yet

9 In general, the total number of independent components of a rank 2 symmetric tensor in
D dimensions is D(D + 1)/2, however, only D(D − 3)/2 of those correspond to physical
degrees of freedom of a D-dimensional massless graviton; the remaining extra compo-
nents are the redundancy of manifestly gauge and Lorentz invariant description of the
theory.
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another option, where one considers the graviton to be a composite par-
ticle.

5.1.1. Randall–Sundrum Models, Warped Extra Dimensions

There are in fact two different models known as Randall–Sundrum
models, dubbed RS-I and RS-II. We begin with RS-I.

This model consists of two 3-branes at some distance from each other
in the extra dimension. One brane, called the “hidden brane” has positive
tension, while the other one, the “visible brane”, on which we are sup-
posed to live, has negative tension. Both branes could have gauge theo-
ries living on them. All of the Standard Model fields are localized on the
brane, and only gravity can propagate through the entire higher dimen-
sional space.

The equation of motion looks as follows:

M∗
√
G

(
RAB − 1

2
GABR

)
−M∗�

√
GGAB

= Thid
√
ghidg

hid
µν δ

µ
Aδ

ν
Bδ(y)+ Tvis

√
gvisg

vis
µνδ

µ
Aδ

ν
Bδ(y − y0) (90)

with notations

ghid
µν (x) = Gµν(x, y = 0), gvis

µν(x) = Gµν(x, y = y0). (91)

Furthermore,M∗ is the 5-dimensional Planck mass, which has to satisfyM∗ �
108 GeV, in order not to spoil Newtonian gravity at distances l � 0.1 mm.

The y-direction is compactified on an orbifold S1/Z2. With the above
assumptions for the brane-tensions and bulk CC, it can be shown that
there exists the following static solution, with a flat 4D-metric:

ds2 = e−|y|/Lηµνdxµdxν + dy2. (92)

The minus sign in the exponential factor occurs because of the assumption
that our visible brane has a negative tension. As a result of this “warp-
factor”, all masses on the visible brane are suppressed, compared to their
natural value. For the Higgs mass for example, one obtains

m2 = e−y0/Lm2
0 (93)

a small hierarchy in y0/L therefore leads to a large hierarchy between m

and m0, which would solve the “ordinary” hierarchy problem.



648 Nobbenhuis

Moreover, despite the fact that the brane tension on the visible brane
is negative, it is possible that it still has a flat space solution. Fine-tuning
is necessary to obtain this result, and besides, this solution is not unique.
Other, non-flat space solutions also exist. Therefore, this cannot help in
solving the cosmological constant problem, but it is interesting to see that
a 4D cosmological constant can be made to curve only extra dimensions.

Alternatively, the extra dimensions can be kept large, uncompactified,
but warped, as in the Randall–Sundrum type-II models, in which there is
only one brane. In this case the size of the extra dimensions can be infi-
nite, but their volume

∫
dy

√
G, is still finite. The warp-factor causes the

graviton wavefunction to be peaked near the brane, or, in other words,
gravity is localized, such that at large 4D-distances ordinary general rel-
ativity is recovered. The same bound as in RS-I applies to the 5D Planck
mass.

The action now reads

S = 1
2
M3

∗
∫
d4x

∫ +∞

−∞
dy

√
G(R5 − 2�5)+

∫
d4x

√
g(�4 + LSM), (94)

where �4 denotes the 4D brane tension and �5 the bulk cosmological
constant, which is assumed to be negative. The equation of motion derived
from this action, ignoring now L is

M∗
√
G

(
RAB − 1

2
GABR

)
= −M3

∗�5
√
GGAB +�4

√
ggµνδ

µ
Aδ

ν
Bδ(y), (95)

indicating that the brane is located at y = 0. This equation has the same
flat space solution as above, but, again, at the expense of fine-tuning �5
and �4.

Gravity in the 4D subspace reduces to GR up to some very small
Yukawa-type corrections. Unfortunately however, with regard to the cos-
mological constant problem, the model suffers from the same drawbacks
as RS-I. All fundamental energy scales are at the TeV level, but the vac-
uum energy density in our 4D-world is much smaller.

5.1.2. Self-Tuning Solutions

Transmitting any contribution to the CC to the bulk parameters, in
such a way that a 4D-observer does not realize any change in the 4D
geometry seems quite spurious. It would become more interesting if this
transmission would occur automatically, without the necessity of re-tuning
the bulk quantities by hand every time the 4D vacuum energy changes.
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Models that realize this are called self-tuning models (see for example Ref.
159). A severe drawback that all these models face is that this scenario
does not exclude “nearby curved solutions”. This means that in principle
there could exist solutions for neighboring values of some bulk parame-
ters, which result in a curved 4D space. Besides, there are additional prob-
lems such as a varying effective Planck mass, or varying masses for fields
on the brane. So far no mechanism without these drawbacks has been
found. See Refs. 160, 161 for recent studies in favor of this approach.

Another serious problem is that in many proposals, the 4D brane tension
creates a deficit angle in the bulk, which easily becomes larger than 2π . The
cosmological constant problem rises again in a different fine-tuning problem.
For a recent review of this approach and many references, see Ref. 162.

A related approach, considering a warped higher dimensional geom-
etry, is studied in Refs. 163–166. It is argued that once a cosmological
constant vanishes in the UV, there exist solutions such that it will not be
regenerated along the renormalization group flow. Any vacuum energy is
cancelled by a decreasing warp factor, ensuring a flat space solution on the
brane. However, these are not the solutions and there exists no argument
why they should be preferred. Note however, that this is quite contrary to
ordinary renormalization group behavior, as studied in Section 4.5.

5.1.3. Infinite Volume Extra Dimensions

In Refs. 167–172, a model based on infinite volume extra dimen-
sions is presented. Embedding our spacetime in infinite volume extra
dimensions has several advantages. If they are compactified, one would
get a theory approaching GR in the IR, facing Weinberg’s no-go theo-
rem again. Details of how these large dimension models circumvent the
no-go theorem can be found in Ref. 170. Moreover, often the assump-
tion is made that the higher-dimensional theory is supersymmetric and
that susy is spontaneously broken on the brane. These breaking effects can
be localized on the brane only, without affecting the bulk, because the
infinite volume gives a large enough suppression factor. Apart from that,
an unbroken R-parity might be assumed to forbid any negative vacuum
energy density in the bulk.

They start with the following low-energy effective action:

S = M2+N
∗

∫
d4xdNy

√
GR +

∫
d4x

√
g
(
E4 +M2

PR + LSM
)
, (96)

where M2+N∗ is the (4 + N)-dimensional Planck mass, the scale of the
higher dimensional theory, GAB the (4 + N)-dimensional metric, y are
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the “perpendicular” coordinates and E4 = M2
P l�, the brane tension, or

4D cosmological constant. Thus the first term is the bulk Einstein–Hilbert
action for (4 + N)-dimensional gravity and the M2

PR term is the induced
4D-Einstein–Hilbert action. So there are two free parameters: M∗ and E .
M∗ is assumed to be very small, making gravity in the extra dimensions
much stronger than in our 4D world. The 4D-Planck mass in this setup
is a derived quantity.(173)

Gravity on the brane can be recovered either by making a decompo-
sition into Kaluza–Klein modes, or by considering the 4D graviton as a
resonance, a metastable state with a mass given by mg ∼ M3∗/M2

P l .
The higher dimensional graviton can be expanded in 4D Kaluza–

Klein modes as follows:

hµν(x, yn) =
∫
dNmεmµν(x)σm(yn), (97)

where εmµν(x) are 4D spin-2 fields with mass m and σm(yn) are their wave-
function profiles in the extra dimensions. Each of these modes gives rise
to a Yukawa-type gravitational potential, the coupling-strength to brane
sources of which are determined by the value of σm at the position of the
brane, say y = 0:

V (r) ∝ 1

M2+N∗

∫ ∞

0
dmmN−1|σm(0)|2 e

−rm

r
. (98)

However, in this scenario there is a cut-off of this integral; modes with
m > 1/rc have suppressed wavefunctions, where rc is some cross-over scale,
given by rc = M2

P l/M
3∗ ∼ H−1

0 . For r � rc the gravitational potential is
1/r, dominated by the induced 4D kinetic term, and for r � rc it turns to
1/r2, in case of one extra dimension. In ordinary extra dimensional grav-
ity, all |σm(0)| = 1, here however:

|σm(0)| = 4
4 +m2r2

c

, (99)

which decreases for m � rc. Therefore, the gravitational potential inter-
polates between the 4D and 5D regimes at rc. Below rc almost normal
4D gravity is recovered, while at larger scales it is effectively 5-dimensional
and thus weaker. This could cause the universe’s acceleration.

The question now is, whether there exist solutions such that the 4D
induced metric on the brane is flat: gµν = ηµν . Einstein’s equation from
(96) now becomes (up to two derivatives):
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M2+N
∗

(
RAB − 1

2
GABR

)
+ δ(N)M2

P

(
R − 1

2
gµνR

)
δ
µ
Aδ

ν
B

= E4δ
(N)(y)gµνδ

µ
Aδ

ν
B. (100)

In case of one extra dimension it is not possible to generate a viable
dynamics with a flat 4D metric. For N � 2, however, solutions of the the-
ory can be parameterized as

ds2 = A2(y)gµν(x)dx
µdxν − B2(y)dy2 − C2(y)y2d�2

N−1, (101)

where y ≡
√
y2

1 + · · · + y2
n and the functions A,B,C depend on E4 and

M∗:

A,B,C =
(

1 −
(
yg

y

)N−2
)α,β,γ

, (102)

where α, β, γ correspond to A,B,C respectively, and depend on dimen-
sionality and yg is the gravitational radius of the brane:

yg ∼ M−1
∗

( E4

M4∗

)1/(N−2)

for N �= 2. (103)

Most importantly, one explicitly known solution, with N = 2, generates
a flat 4D Minkowski metric and R(g) = 0.(174) The 4D brane tension is
spent on creating a deficit angle in the bulk. However, one has to fine-tune
this tension in order not to generate a deficit angle larger than 2π . So also
the N = 2 model does not work.

For N > 2 consistent solutions possibly do exist with a flat 4D metric.
However, these are not the only solutions, and besides, their interpretation
is rather complicated because of the appearance of a naked singularity.
Spacetime in 4+N dimensions looks like �4×SN−1×R+, where �4 denotes
flat spacetime on the brane, and SN−1 ×R+ are Schwarzschild solutions in
the extra dimensions.

They argue that the final physical result is

H ∼ M∗

(
M4∗
E4

)1/(N−2)

. (104)

According to the 4D result, N = 0, the expansion rate grows as E4
increases, but for N > 2 the acceleration rate H decreases as E4 increases.
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In this sense, vacuum energy can still be very large, it just gravitates very
little; 4D vacuum energy is supposed to curve mostly the extra dimensions.

This scenario has been criticized for different reasons, which we will
come to in Section 5.1.5. The most important issue raised is that, since
gravity has essentially become massive in this scenario, the graviton has
five degrees of freedom, and especially the extra scalar degree of freedom,
often leads to deviations of GR at small scales.

5.1.4. Non-local Gravity

From a 4D-perspective, this approach can also be viewed as to make
the effective Newton’s constant frequency and wavelength dependent, in
such a way that for sources that are uniform in space and time it is
tiny:(175)

M2
P l

(
1 + F(L2∇2)

)
Gµν = Tµν. (105)

Here F(L2∇2) is a filter function:

F(α) → 0 for α � 1,

F(α) � 1 for α � 1. (106)

L is a distance scale at which deviations from general relativity are to be
expected and ∇2 ≡ ∇µ∇µ denotes the covariant d’Alembertian. Thus (105)
can be viewed as Einstein’s equation with (8πGeff

N )
−1 = M2

P l(1 + F). It
is argued that for vacuum energy F(0) is large enough, such that it will
barely gravitate, resulting in a very small curvature radius R:

M2
P (1 + F(0))Gµν=

(
M2
P + M̄2

)
Gµν and R=− 4E4

M2
P + M̄2

. (107)

To reproduce the observed acceleration a value M̄ is needed M̄ ∼ 1048 GeV
for a vacuum energy density of TeV level, and a M̄ ∼ 1080 GeV for E4 of
Planck mass value, which is about equal to the mass of the universe.

In terms of the graviton propagator, it gets an extra factor (1 +
F(k2L2))−1 and therefore goes to zero when F(0) → ∞, instead of gen-
erating a tadpole.

In the limit L → ∞ one arrives at

M2
P lGµν − 1

4
M̄2gµνR̄ = Tµν, (108)

just the zero mode part of Gµν , which is proportional to gµν , where
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R̄ ≡
∫
d4x

√
gR∫

d4x
√
g
, (109)

R̄ thus is the spacetime averaged Ricci curvature, which vanishes for all
localized solutions, such as stars, black holes and also for FRW models.
For de Sitter space however, R̄ �= 0, but a constant and equal to R̄ = R∞,
with R∞ the asymptotic de Sitter curvature.

At the price of losing 4D-locality and causality, the new averaged
term is both non-local and acausal, a model is constructed in which a
huge vacuum energy does not lead to an unacceptably large curvature.
The Planck scale is made enormous for Fourier modes with a wavelength
larger than a size L. Such sources would feel gravity only due to their cou-
pling with the graviton zero mode. This zero mode however, is very weakly
coupled to brane sources since it is suppressed by the volume of the extra
dimensions.

It is argued that the acausality has no other observable effect. More-
over, it has been claimed that non-locality should be an essential element
in any modification of GR in the infrared that intends to solve the cosmo-
logical constant problem.(167) The argument is that it takes local, causal
physics a time 1/L to respond to modifications at scale L ∼ 1028 cm, and
thus in particular to sources which have characteristic wavelength larger
than H−1

0 , “such as vacuum energy”.(171)

The non-localities in this case appear in the four dimensional trunca-
tion of the 4 +N -dimensional theory of Section 5.1.3. There is an infinite
number of degrees of freedom below any non-zero energy scale. Therefore,
in order to rewrite the model as an effective four dimensional field theory,
and infinite number of degrees of freedom have to be integrated out. This
results in the appearance of non-local interactions, despite the fact that the
full theory is local.

Another idea based on a model of non-local quantum gravity and
field theory due to Moffat,(176,177) also suppresses the coupling of gravity
to the vacuum energy density and also leads to a violation of the Weak
Equivalence Principle.

5.1.5. Massive Gravitons

A much studied approach to change general relativity in the infrared
which is not simply a variety of a scalar–tensor theory, is to allow for tiny
masses for gravitons, like in the Fierz–Pauli theory of massive gravity,(178)

and in the example above. Note in passing that due to mass terms, gravi-
tons might become unstable and could possibly decay into lighter par-
ticles, for example photons. If so, gravity no longer obeys the standard
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inverse-square law, but becomes weaker at large scales, leading to acceler-
ated cosmic expansion.

Of course, the extra degrees of freedom, extra polarizations of a mas-
sive graviton, could also become noticeable at much shorter distances,
putting severe constraints on such scenarios. In the UV the new scalar
degrees of freedom become strongly coupled, where the effective the-
ory breaks down and the physics becomes sensitive to the unknown
UV-completion of the theory.

A severe obstacle massive gravity theories have to overcome is some-
thing known as the Van Dam, Veltman, Zakharov, or (vDVZ), disconti-
nuity.(179,180) vDVZ argued that in the massive case, even with extremely
small graviton mass, the bending of light rays passing near the sun would
be too far off from experimental results in the massive case, that the
mass of the graviton has to be exactly equal to zero. The physical reason
indeed being, that even in the limit where the mass of the graviton goes to
zero, there is an additional scalar attraction, which distinguishes the the-
ory from Einstein’s GR.

In the DGP model, the extra dimensions are infinitely large, and in
the literature, there is an ongoing discussion whether this model is experi-
mentally viable and capable of avoiding the massive gravity difficulties, see
Refs. 181–186 for criticism. It appears that indeed also this model suffers
from strong interactions at short distances due to the scalar polarization
of the massive graviton, that can be understood in terms of a propagating
ghosts-like degree of freedom.

The deviations of GR are argued to take place at distances set by
rc ≡ M2

P /M
3∗ . The one-graviton exchange approximation breaks down at

distances R∗ ∼ (Rsr
2
c )

1/3,(181) called the Vainshtein scale, with RS the
Schwarzschild radius of the source. R∗ is very large for astrophysical sources,
which suggests that the DGP model may describe our universe. For distances
larger than R∗ gravity deviates significantly from GR, yet for smaller dis-
tances it should yield (approximately) the same results. However, quantum
effects become important at much smaller distances scales, given by

rcrit =
(
r2
c

M2
P

)1/3

, (110)

which can be as small as a 1000 km, for rc ∼ H ∼ 1028 cm. These strong
interactions can be traced back to the appearance of a negative norm state.
This is however a controversial result, also argued for in Ref. 182, yet waived
away in Ref. 187. Further studies are necessary to settle this question.

The Schwarzschild solutions in the DGP model are also heavily
debated and it is not yet clear what the correct way is to calculate these,
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and whether they will eventually lead to consistent phenomenological
behavior. For a recent study and references, see Ref. 188.

In the next section we will consider an alternative, that does not suf-
fer from this “strong coupling problem”.

In Ref. 189 bounds on graviton masses are discussed using the LISA
space interferometer.

5.2. Ghost Condensation or Gravitational Higgs Mechanism

In this framework gravity is modified in the infrared as a result of
interactions with a “ghost condensate”, leading among other things to a
mass for the graviton, see Ref. 190.

Assume that for a scalar field φ we have

〈φ̇〉 = M2 → φ = M2t + π (111)

and that it has a shift symmetry φ → φ+a so that it is derivatively coupled,
and that its kinetic term enters with the wrong sign in the Lagrangian:

Lφ = −1
2
∂µφ∂µφ + · · · (112)

The consequence of this wrong sign is that the usual background with
〈φ〉 = 0 is unstable and that after vacuum decay, the resulting background
will break Lorentz invariance spontaneously.

The low energy effective action for the π has the form:

S ∼
∫
d4x

[
1
2
π̇2 − 1

2M2
(∇2π)2 + · · ·

]
, (113)

so that the π ’s have a low energy dispersion relation like

ω2 ∼ k4

M2
(114)

instead of the ordinary ω2 ∼ k2 relation for light excitations. Time-transla-
tional invariance is broken, because 〈φ〉 = M2t and as a consequence there
are two types of energy, a “particle physics” and a “gravitational” energy
which are not the same. The particle physics energy takes the form

Epp ∼ 1
2
π̇2 +

(∇2π
)2

2M2
+ · · · , (115)
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whereas the gravitational energy is

Egrav = T00 ∼ M2π̇ + · · · (116)

Although time-translation- and shift-symmetry are broken in the back-
ground, a diagonal combination is left unbroken and generates new “time”
translations. The Noether charge associated with this unbroken symmetry
is the conserved particle physics energy. The energy that couples to gravity
is associated with the broken time translation symmetry. Since this energy
begins at linear order in π̇ , lumps of π can either gravitate or anti-gravi-
tate, depending on the sign of π̇ ! The π thus maximally violate the equiv-
alence principle.

If the standard model fields would couple directly to the condensate
there would be a splitting between particle and anti-particle dispersion
relations, and a new spin-dependent inverse-square force, mediated by π

exchange, which results from the dispersion relation (114). In the non-rel-
ativistic limit, with S the spin:

�L ∼ 1
F

S · ∇π, (117)

where F is some normalization constant. Because of the k4 dispersion
relation, the potential between two sources with spin S1 and spin S2, will
be proportional to 1/r:

V ∼ M4

M̃2F 2

S1 · S2 − 3
(
S1 · r̂

)
r

, (118)

when using only static sources, ignoring retardation effects.
Moreover, not only Lorentz invariance, but also CPT is broken if the

standard model fields would couple directly to the condensate. The leading
derivative coupling is of the form

�L =
∑
ψ

cψ

F
ψ̄σ̄µψ∂µφ. (119)

As noted in Ref. 190, field redefinitions ψ → eicψφ/Fψ may remove these
couplings, but only if such a U(1) symmetry is not broken by mass terms
or other couplings in the Lagrangian. If the fermion field ψ has a Dirac
mass term mDψψ

c, then the vector couplings, for which cψ+cψc = 0, still
can be removed, but the axial couplings remain

�L ∼ 1
F
�̄γ µγ 5�∂µφ. (120)
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After expanding φ = M2t + π this becomes

�L ∼ µ�̄γ 0γ 5� + 1
F
�̄γ µγ 5�∂µπ (121)

with µ = M2/F . This first term violates both Lorentz invariance and CPT,
leading to different dispersion relations for particles and their anti-parti-
cles. A bound on µ is obtained by considering the earth to be moving with
respect to spatially isotropic condensate background. The induced Lorentz
and CPT violating mass term then looks like

µ�̄γ γ 5� · vearth, (122)

which in the non-relativistic limit gives rise to an interaction Hamiltonian:

µS · vearth. (123)

The experimental limit on µ for coupling to electrons is µ � 10−25 GeV(191)

assuming |vearth| ∼ 10−3. For other limits on CPT and Lorentz invariance,
see Refs. 192–194.

If there is no direct coupling, the SM fields would still interact with
the ghost sector through gravity. Interestingly, IR modifications of general
relativity could be seen at relatively short distances, but only after a cer-
tain (long) period of time! Depending on the mass M and the expectation
value of φ, deviations of Newtonian gravity could be seen at distances
1000 km, but only after a time tc ∼ H−1

0 where H0 is the Hubble con-
stant. More general, the distance scale at which deviations from the New-
tonian potential are predicted is rc ∼ MPl/M

2 and their time scale is
tc ∼ M2

P l/M
3.

To see the IR modifications to GR explicitly, let us consider the effec-
tive gravitational potential felt by a test mass outside a source ρm(r, t) =
δ3(r)θ(t), i.e., a source that turns on at time t = 0. This potential is given
by:

�(r, t) = −G
r

[1 + I (r, t)] , (124)

where I (r, t) is a spatial Fourier integral over momenta k, evaluated using
an expansion around flat space; a bare cosmological constant is set to
zero.

I (r, t) = 2
π

{∫ 1

0
du

sin(uR)
(u3 − u)

(
1 − cosh(T u

√
1 − u2)

)

+
∫ ∞

1
du

sin(uR)
(u3 − u)

(
1 − cos(T u

√
u2 − 1)

)}
. (125)
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Here u = k/m, R = mr, T = αM3/2M2
P l , where m ≡ M2/

√
2MPl and α is

a coefficient of order 1. For late times, t � tc, or T � 1, the first integrand
will dominate and I (r, t) can be well approximated by

I (r, t) 
 2√
πT

exp

(
−R

2

8T
+ T

2

)
sin
(
R√

2

)
. (126)

For R � T , there is indeed an oscillatory behavior for the gravitational
potential, growing exponentially as exp(T /2), while for R � T the modi-
fication vanishes.

More general gravitational effects have been studied in Ref. 195,
where moving sources were considered, and in Ref. 196 where inflation
was studied in this context. Moreover, the quantum stability of the con-
densate was studied in Ref. 197.

This highly speculative scenario opens up a new way of looking at
the cosmological constant problem, especially because of the distinction
between particle physics energy, Epp and gravitational energy, Egrav. It has
to be developed further to obtain a better judgement.

5.3. Fat Gravitons

A proposal involving a sub-millimeter breakdown of the point-particle
approximation for gravitons has been put forward by Sundrum.(198)

In standard perturbative gravity, diagrams with external gravitons and
SM-particles in loops (see Fig. 1) give a contribution to the effective CC
of which the dominant part diverges as �4

UV where �UV is some ultra-
violet cutoff. This leads to the enormous discrepancy with experimental
results for any reasonable value of �UV. However, one might wonder what
the risks are when throwing away these diagrams from the effective the-
ory �eff [gµν ], when |k2|, the momentum of the external gravitons, is larger
than some low energy cutoff. Properties at stake are: Unitarity, General
Coordinate Invariance (GCI) and locality. In standard effective theory one
also has diagrams where soft gravitons give corrections to the SM self
energy diagrams (Fig. 1). These cannot be thrown away, since they are
crucial in maintaining the equivalence principle between inertial and grav-
itational masses. However, locally these diagrams are indistinguishable in
spacetime, only globally can we discern their topological difference. Thus
given locality of the couplings of the point particles in the diagrams, we
cannot throw the first diagram away and keep the other. Therefore, it
seems progress can be made by considering a graviton as an extended
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Fig. 1. On the left-hand-side, a typical Standard Model contribution to �eff [gµν ]. On the
right, soft gravitons coupled to loop-correction to SM self-energy. Wiggly lines are gravitons
and smooth lines are SM particles.

object. Define the graviton size:

lgrav ≡ 1
�grav

. (127)

Such a “fat graviton” does not have to couple with point-like locality to
SM loops, but with locality up to lgrav. Thus a fat graviton can distin-
guish between the two types of diagrams, possibly suppressing the first
while retaining the second.

The value of the CC based on usual power counting would then be

�eff ∼ O(�4
grav/16π2). (128)

Comparing with the observational value this gives a bound on the gravi-
ton size of

lgrav > 20µm (129)

which would indicate a short-distance modification of Newton’s law below
20µm. This is however not enough to suppress standard model contribu-
tions to the cosmological constant. A new model by the same author has
been proposed to take into account also these effects, see Section 3.3.

5.4. Composite Graviton as Goldstone boson

Another approach is to consider the possibility that the graviton
appears as a composite Goldstone boson. There exists a theorem by
Weinberg and Witten,(199) stating that a Lorentz invariant theory, with a
Lorentz covariant energy–momentum tensor does not admit a composite
graviton. It is therefore natural to try a mechanism where the graviton
appears as a Goldstone boson associated with the spontaneous breaking
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of Lorentz invariance. Being a Goldstone boson, the graviton would not
develop a potential, and hence the normal cosmological constant problem
is absent, see for example Refs. 200, 201.

However, besides difficulties erasing the traces of broken Lorentz
invariance to make the model agree with observations, also new fine-tun-
ings are introduced.

A composite structure of the graviton has also been contemplated in
Refs. 202, 203, based on more intuitive ideas.

5.5. Summary

Since General Relativity has only been thoroughly tested on solar sys-
tem distance scales it is a very legitimate idea to consider corrections to
GR at galactic and/or cosmological distance scales. However, often these
models are not so harmless as supposed to be. The laws of gravity are also
significantly changed at shorter scales, or the changes lead to violations of
locality. The scenarios described in this section do not directly solve the
cosmological constant problem, but offer new ways of looking at it.

On the more positive side, many theories that predict modifications
of GR in the IR, reproduce Einstein gravity at smaller distances, but up
to some small corrections. These corrections are discussed in Ref. 204 and
could be potentially observable at solar system distance scales. At the lin-
earized level gravity is of the scalar–tensor type, because the graviton has
an extra polarization that also couples to conserved energy–momentum
sources. If these models are correct, an anomalous perihelion precession
of the planets is expected to be observed in the near future.

Besides, submillimeter experiments of Newtonian gravity set ever
more stringent bounds on both extra dimensional approaches and com-
posite graviton scenarios. It would be very exciting to see a deviation of
Newtonian gravity at short distances. On the other hand, observing no
change at all, will seriously discourage the hopes that such a mechanism
might help in solving the cosmological constant problem.

6. TYPE IV: STATISTICAL APPROACHES

6.1. Hawking Statistics

If the cosmological constant could a priori have any value, appear-
ing for example as a constant of integration as in Section 3.4.1, or would
become a dynamical variable by means of some other mechanism, then
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in quantum cosmology the state vector of the universe would be a super-
position of states with different values of �eff . The path integral would
include all, or some range of values of this effective cosmological constant.
The observable value of the CC in this framework is not a fundamental
parameter. Different universes with different values of �eff contribute to
the path integral. The probability of observing a given field configuration
will be proportional to P ∝ exp(−S(�eff )) in which �eff is promoted to
be a quantum number.

Eleven dimensional supergravity contains a three-form gauge field,
with a four-form field strength Fµνρσ = ∂[µAνρσ ].

(205) When reduced
to four dimensions, this gives a contribution to the cosmological con-
stant.(206–210) Hawking(211) used such a three-form gauge field to argue
that the wave function of the universe is peaked at zero cosmological con-
stant. It is the first appearance of the idea that the CC could be fixed by
the shape of the wave function of the universe.

The three-form field Aµνλ has gauge transformations:

Aµνρ → Aµνρ + ∇[µCνρ] with Fµνρσ = ∇[µAνρσ ]. (130)

This field would contribute an extra term to the action:

I = − 1
16πG

∫
d4x

√−g (R + 2�B)− 1
48

∫
d4x

√−gFµνρσFµνρσ . (131)

The field equation for Fµνρσ is

DµF
µνρσ = 0 → √−gFµνρσ = ωεµνρσ (132)

Such a field F has no dynamics, but the F 2 term in the action behaves like
an effective cosmological constant term, whose value is determined by the
unknown scalar field ω, which takes on some arbitrary value. If we sub-
stitute the solution (132) back into the Einstein equation, we find, using
that εµνρσ εµνρσ = ±4!:

T µν = 1
6

(
Fµαβγ F ναβγ − 1

8
gµνFαβγ δFαβγ δ

)
= ±1

2
ω2gµν, (133)

where the sign depends on the metric used: in Euclidean metric εµνρσ εµνρσ
is positive, whereas in Lorentzian metric it is negative. In the Euclidean
action Hawking used:

R = −4�eff = −4(�B − 8πGω2), (134)
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where �B is the bare cosmological constant in Einstein’s equation. It fol-
lows that

SHawking = −�eff
V

8πG
. (135)

The maximum value of this action is given when V is at its maximum,
which Hawking takes to be S4, with radius r = (3�−1

eff )
1/2 and proper cir-

cumference 2πr. Then

V = 24π2

�2
eff

→ S(�) = −3π
M2
P

�eff
(136)

and thus the probability density:

P ∝ exp

(
3π

M2
P

�eff

)
(137)

is peaked at � = 0.
Note that we have used here that the probability is evaluated as the

exponential of minus the effective action at its stationary point. That is,
stationary in Aµνλ, meaning vanishing covariant derivative of Fµνλρ , in
matter fields φ and in gµν . The latter condition simply means that gµν
has to satisfy the Einstein equations. Equation (135) is the effective action
at the stationary point. It is a good thing that we only need the effective
action at its stationary point, so that we do not have to worry about the
Euclidean action not being bounded from below, see for example Ref. 20.

However, Hawking’s argument is not correct, since one should not
plug an ansätz for a solution back into the action, but rather vary the
unconstrained action.(212) This differs a minus sign in this case, the same
minus sign as going from a Lorentzian to a Euclidean metric, �eff =
(�B ± 8πGω2), but now between the coefficient of gµν in the Einstein
equations, and the coefficient of (8πG)−1√g in the action. The correct
action becomes:(212)

S = (−3�eff + 2�B)
−3πM2

P

�2
eff

= −3πM2
P

�B − 12πGω2

(�B − 4πGω2)2
(138)

now for �eff → 0, the action becomes large and positive and conse-
quently, �eff = 0 becomes the least probable configuration.

Besides, in Ref. 213 it is shown that this approach has also other seri-
ous limitations. It is argued that it can only work in the “Landscape” sce-
nario that we discuss in Section 6.3. The reason is that the four-form flux
should be subject to Dirac quantization and the spacing in � then only
becomes small enough with an enormous number of vacua.
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6.2. Wormholes

In a somewhat similar approach Coleman(214) argued that one did
not need to introduce a 3-form gauge field, if one includes the topological
effects of wormholes. This also transforms the cosmological constant into
a dynamical variable. The argument is that on extremely small scales our
universe is in contact, through wormholes, with other universes, otherwise
disconnected, but governed by the same physics as ours. Although the two
ends of a wormhole may be very far apart, in the effective theory of just
our universe, the only effect of wormholes is to add local interactions, one
for each type of wormhole.

The extra term in the action has the form:

Swormohole = −
∑
i

(ai + a
†
i )

∫
d4x

√
ge−SiKi, (139)

where ai and a
†
i are the annihilation and creation operators for a type i

baby universe, Si is the action of a semi-wormhole (one that terminates on
a baby universe), and Ki is some function of fields on the manifold, with
an important exponential factor that suppresses the effects of all worm-
holes, except those of Planckian size.(215–217)

The coefficients of these interaction terms are operators Ai = ai + a
†
i

which only act on the variables describing the baby universes, and com-
mute with everything else. Written in terms of A-eigenstates, the effective
action becomes:

Swormohole = −
∑
i

∫
d4x

√
gαie

−SiKi (140)

with αi the eigenvalues of the operators A, which would be interpreted as
constants of nature, by an observer doing experiments at distance scales
larger than the wormhole scale, i.e., for an observer who cannot detect the
baby universes.

This way, the effective cosmological constant becomes a function of
the ai . Moreover, on scales larger than the wormhole scale, manifolds that
appear disconnected will really be connected by wormholes, and therefore
are to be integrated over.

The sum of all vacuum-to-vacuum graphs is the exponential of the
sum of connected graphs, which gives the probability density P :

P ∝ exp

[∑
CCM

e−Seff (α)

]
, (141)
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where CCM stands for closed connected manifolds. The sum can be
expressed as a background gravitational field effective action, �. The sum
over closed connected manifolds can then be written as a sum over topol-
ogies:

∑
CCM

e−Seff (α) =
∑

topologies

e−�(g) (142)

with g the background metric on each topology and each term on the
right is again to be evaluated at its stationary point. This is progress, since
the leading term in � for large, smooth universes is known, and is the cos-
mological constant term:

� = �(α)

∫
d4x

√
g + · · · , (143)

�(α) being the fully renormalized cosmological constant. Plugging this
back into (141) gives the final result:

P ∝ exp

[
exp

(
3π

M2
P

�eff

)]
, (144)

and thus is even sharper peaked at � = 0 than in Hawking’s case. For
positive CC the maximum volume is taken, like in Hawking’s case, the
4-sphere with r = (3�−1

eff )
1/2. Furthermore, the higher order terms in (143)

are neglected.
An advantage of Coleman’s approach is that he is able to sidestep

many technical difficulties Hawking’s approach suffers from. In particular,
he uses the Euclidean path integral, which is a solution to the Wheeler–
DeWitt equation, only to calculate expectation values of some scalar field.
These are independent of x, because the theory is generally covariant. It
includes an average over the time in the history of the universe that the
expectation value for this operator was measured. This circumvents many
issues related to the notion of time in quantum gravity.

However, both Hawking’s and Coleman’s proposal rely strongly on
using a Euclidean path integral and it is unclear whether this is suitable
for a theory of quantum gravity.

There is also a more direct problem with Coleman’s idea, as put for-
ward by Fishler, Susskind and Polchinski,(218,219) also see Refs. 220, 221.
The problem is that in Coleman’s scenario wormholes of every size will
materialize in the vacuum with maximum kinematically allowed density,
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leading to a universe packed with wormholes of every size. The exponen-
tial suppression factor in (139) is inconsistent with the other assumptions
that quantum gravity is described by a Euclidean path integral, which
is dominated by large scale spherical universes connected by wormholes,
where the amplitude of a large scale universe is of order exp(M2

P /�). In
particular, taking into account the higher order terms in (143), leads to a
violation of the dilute gas approximation, used by Coleman.

In conclusion, wormholes should be left out of the functional integral
of quantum gravity. Rather, their effect is that they renormalize the values
of physical constants in our universe. Most importantly, if for some reason
it is valid to only take Planck-scale wormholes into account, this would
make the wavefunction of the universe in the Euclidean formalism, peak
at zero value of the cosmological constant.

6.3. Anthropic Principle

One of the first to use anthropic arguments related to the value of the
cosmological constant was Weinberg,(222) see also Refs. 223, 224. He even
made the prediction in 1987 that, since the anthropic bound was just a few
orders of magnitude larger than the experimental bounds, a non-zero cos-
mological constant would soon be discovered, which indeed happened.

One can rather easily set anthropic bounds on the value of the cosmo-
logical constant. A large positive CC would very early in the evolution of
the universe lead to an exponentially expanding de Sitter phase, which then
lasts forever. If this would happen before the time of formation of galaxies,
at redshift z ∼ 4, clumps of matter would not become gravitationally bound,
and galaxies, and presumably intelligent life, would not form. Therefore

��(zgal) � �M(zgal) → ��0

�M0
� a3

gal = (1 + zgal)
3 ∼ 125. (145)

This implies that the cosmological constant could have been larger than
observed and still not be in conflict with galaxy formation (note that in
these estimates everything is held fixed, except �� which is allowed to
vary, unless stated otherwise).

A typical observer therefore would measure ρ�∼ρ̃�, with ρ̃� the
value for which the vacuum energy density dominates at about the epoch
of galaxy formation. This is the anthropic prediction and it peaks at
�� ∼ 0.9, in agreement with the experimental value �� ∼ 0.7 at
the 2σ level.(225) It is argued that the agreement can be increased to the
1σ level, by allowing for non-zero neutrino masses.(226) Neutrino masses
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would slow down the growth of density fluctuations, and hence influence
the value of ρ̃�. The sum of the neutrino masses would have to be mν ∼
1 − 2 eV.

On the other hand, a large negative cosmological constant would lead
to a rapid collapse of the universe and (perhaps) a big crunch. To set this
lower anthropic bound, one has to wonder how long it takes for the emer-
gence of intelligent life. If 7 billion years is sufficient, the bound for a flat
universe is � � −18.8 ρ0 ∼ −2 × 10−28 g/cm3, if 14 billion years are
needed, the constraint is � � −4.7 ρ0 ∼ −5 × 10−29 g/cm3.(227)

It makes more sense however, to ask what the most likely value of
the cosmological constant is, the value that would be experienced by the
largest number of observers. Vilenkin’s “Principle of Mediocrity”,(228) stat-
ing that we should expect to find ourselves in a big bang that is typi-
cal of those in which intelligent life is possible, is often used. In order
for such statistics to be meaningful, it is necessary that there are alterna-
tive conditions where things are different. Therefore, it is usually assumed
that there is some process that produces an ensemble of a large number of
universes, or different, isolated pockets of the same universe, with widely
varying properties. Several inflationary scenarios,(229–232) quantum cosmol-
ogies,(211,228,233–235) and string theory(213,236–240) predict different domains
of the universe, or even different universes, with widely varying values for
the different coupling constants. In these considerations it is assumed that
there exists many discrete vacua with densely spaced vacuum energies.

The probability measure for observing a value ρ�, using Bayesian sta-
tistics, can be written as

dP(ρ�) = N(ρ�)P∗(ρ�)dρ�, (146)

where P∗(ρ�)dρ� is the a priori probability of a particular big bang hav-
ing vacuum energy density between ρ� and ρ� + dρ� and is proportional
to the volume of those parts of the universe where ρ� takes values in
the interval dρ�. N(ρ�) is the average number of galaxies that form at
a specified ρ�,

(22) or, the average number of scientific civilizations in big
bangs with energy density ρ�,(23) per unit volume. The quantity N(ρ�) is
often assumed to be proportional to the number of baryons, that end up
in galaxies.

Given a particle physics model which allows ρ� to vary, and a model
of inflation, one can in principle calculate P∗(ρ�), see the above references
for specific models and Ref. 241 for more general arguments. P∗(ρ�)dρ� is
sometimes argued to be constant,(242) since N(ρ�) is only non-zero for a
narrow range of values of ρ�. Others point out that there may be a signifi-
cant departure from a constant distribution.(243) Its value is fixed by the
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requirement that the total probability should be one:

dP(ρ�) = N(ρ�)dρ�∫
N(ρ′

�)dρ
′
�

. (147)

The number N(ρ�) is usually calculated using the so-called “spherical
infall” model of Gunn and Gott.(244) Assuming a constant P∗(ρ�), it is
argued that the probability of a big bang with �� � 0.7 is roughly 10%,
depending on some assumptions about the density of baryons at recombi-
nation.(23,245)

However, it has been claimed that these successful predictions would
not hold, when other parameters, such as the amplitude of primordial
density fluctuations are also allowed to vary.(246,247) These arguments are
widely debated and no consensus has been reached.(248,249)

However, it has been very difficult to calculate the a priori distribu-
tion. The dynamics, leading to a “multiverse” in which there are differ-
ent pocket universes with different values for the constants of nature,
is claimed to be well understood, for example in case of eternal infla-
tion,(230,232,260) but the problem is that the volume of these thermalized
regions with any given value of the constants is infinite. Therefore, to com-
pare them, one has to introduce some cutoff and the results tend to be
highly sensitive to the choice of cutoff procedure.(251–253) In a recent paper
a different method is proposed to find this distribution.(254)

It should be stressed that this approach to the cosmological con-
stant problem is especially used within string theory, where one has stum-
bled upon a wide variety of possible vacuum states, rather than a unique
one.(213,236–240,255,256) By taking different combinations of extra-dimen-
sional geometries, brane configurations, and gauge field fluxes, a wide vari-
ety of states can be constructed, with different local values of physical
constants, such as the cosmological constant. These are the 3-form RR
and NS fluxes that can be distributed over the 3-cycles of the Calabi Yau
manifold. The number of independent fluxes therefore is related to the
number of 3-cycles in the 6-dimensional Calabi Yau space, and can be sev-
eral hundred. In addition, the moduli are also numerous and also in the
hundreds, leading to a total number of degrees of freedom in a Calabi
Yau compactification of order 1000 or more. The number of metastable
vacua for a given Calabi Yau compactification therefore could be 101000,
and the spacing between the energy levels 10−1000M4

P , of which some 10500

would have a vacuum energy that is anthropically allowed. The states with
(nearly) vanishing vacuum energy tend to be those where one begins with
a supersymmetric state with a negative vacuum energy, to which super-
symmetry breaking adds just the right amount of positive vacuum energy.
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This picture is often referred to as the “Landscape”. The spectrum of ρ�
could be very dense in this ‘discretuum’ of vacua, but nearby values of ρ�
could correspond to very different values os string parameters. The prior
distribution would then no longer be flat, and it is unclear how it should
be calculated.

A review of failed attempts to apply anthropic reasoning to models
with varying cosmological constant can be found in Ref. 257. See Ref. 258
for a recent critique. Another serious criticism was given in Ref. 259,
where it is argued that very different universes than our own could also
lead to a small cosmological constant, long-lived stars, planets and chem-
istry based life, for example a cold big bang scenario. An analysis of how
to make an anthropic prediction is made in Ref. 260.

A not very technical and almost foundational introduction to the
anthropic principle is given by Ref. 96.

6.3.1. Discrete Anthropic Principle

It might be worthwhile to make a distinction between a continuous
anthropic principle and a discrete version. Imagine we have a theory at
our hands that describes an ensemble of universes (different possible vac-
uum solutions) with different discrete values for the fine structure con-
stant:

1
α

= n+ O
(

1
n

)
(148)

such that the terms 1/n are calculable. An anthropic argument could then
be used to explain why we are in the universe with n = 137. Such
a version of the anthropic principle might be easier to accept than one
where all digits are supposed to be anthropically determined. Note that
we are already very familiar with such use of an anthropic principle. In
a finite universe, there is a finite number of planets and we live on one of
the (very few?) inhabitable ones. Unfortunately, we have no theory at our
hands to determine the fine structure constant this way, let alone the cos-
mological constant.

6.4. Summary

This very much discussed approach offers a new line of thought, but
so far, unfortunately, predictions for different constants of Nature, like the
cosmological constant and the fine-structure constant, are not interrelated.
We try to look for a more satisfying approach.
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7. CONCLUSIONS

In this paper we categorized the different approaches to the cosmo-
logical constant problem. The many different ways in which it can be
phrased often blurs the road to a possible solution and the wide variety
of approaches makes it difficult to distinguish real progress.

So far we can only conclude that in fact none of the approaches
described above is a real outstanding candidate for a solution of the “old”
cosmological constant problem. Most effort nowadays is in finding a phys-
ical mechanism that drives the Universe’s acceleration, but as we have seen
these approaches, be it by modifying general relativity in the far infrared,
or by studying higher dimensional braneworlds, generally do not convinc-
ingly attack the old and most basic problem.

Since even the sometimes very drastic modifications advocated in the
proposals we discussed do not lead to a satisfactory answer, this seems
to imply that the ultimate theory of quantum gravity might very well be
based on very different grounds than imagined so far. The only way out
could be the discovery of a symmetry that forbids a cosmological constant
term to appear.
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