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The Wigner Function as Distribution Function

M. Revzen1

Received June 16, 2005 / Published online July 26, 2006

Some entangled states have nonnegative Wigner representative function. The
latter allow being viewed as a distribution function of local hidden variables.
It is argued herewith that the interpretation of expectation values using such
distribution functions as local hidden variable theory requires restrictions per-
taining to the observables under study. The reasoning lead to support the view
that violation of Bell’s inequalities that is always possible for entangled states
hinges not only on the states involved but also whether the dynamical variables
have their values defined even when they cannot be measured.

KEY WORDS: Bell’s inequality; local hidden variables; phase space; Wigner
function; distribution function; dispersive variables.

1. INTRODUCTION

It is indeed and honour and pleasure to contribute to Santos’s Festschrift.
I know Emilio for many years (and even had the delightful experience of
collaborating with him)—and, like many others, have developed a great
affection for him as a man and respect for him as a scientist and thinker.
And although his interests are and were wide in scope I think that its fair
to say that his foremost (scientific) love is devoted to the so called Founda-
tion of Quantum Mechanics (QM) and in particular the problem of phys-
ical reality and locality in nature.

For this reason I thought that I shall use this opportunity to express
my own thoughts on this loveable enigma: so our main concern in this
note shall be the issue of local hidden variables (LHVs) in QM. In this
regard I wish first to distinguish “locality” from “LHVs”. Whereas the
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first “simply” means Einstein locality—the latter means that our (favour-
ite) theory is underpinned with the notion that its dynamical variables
(DVs) (i.e. its observables) can be accounted for in full via specification
of local variables. In the following we will deviate from Santos rigorous
approach and, rather, consider explicit example wherein one can see the
crucial importance of having LHVs to fish out Bell’s inequality violation
(BIQV). The example we consider is wherein arena of our “hidden vari-
ables (HV)” is the phase space, i.e. our “HV” are (q, p) (for one degree
of freedom). Our example coincides with the problem posed by Bell(1)

“Einstein Podolsky and Rosen (EPR) and Eugene Paul Wigner (EPW)
problem”.(2) We shall, so it claimed herewith, clarify the above problem
via using it to illustrate the relevance of LHVs theory for the validity
of Bell’s inequality(3) rather than locality. So, as in Ref. 1, we consider
the “simple” DV of A(q, p) = sgnq, i.e. we take as our DV the sign of
the coordinate of our particle’s location, q (or the quadrature sign, if we
deal with the Electro–Magnetic field). Of course we must also know the
probability of having the particular “HVs”: (q, p), viz, we must know the
“state” of our system, e.g. the distribution function for our (q, p) which
we label by W(q, p). We have of course, W(q, p) � 0,

∫
W(q, p)dq dp = 1.

Thus with our system in the “state” W(q, p) the expected value for the
DV A(q, p) = sgnq = ±1 is given by

〈sgnq〉 =
∫ ∞

∞
dq dpW(q, p)sgnq. (1)

We may now wish to evaluate a “rotated” DV sgnq ′ with q ′(q, p) = aq +
bp, here the numbers (a, b) specify the “orientation” of q ′ in terms of the
original HV: (q, p). The expectation value of the “rotated” DV is given
by Eq. (1) with sgnq replaced by sgnq ′(q, p). This illustrates a funda-
mental property of LHV: LHV give the value of the DV without regard
to whether or not it is measureable. In our example we have the value
of sgnq and sgnq ′ even though we can measure, i.e. observe its expected
value, of only one DV at a time. In the language of EPR,(4) all observ-
ables have “physical reality” even if, in QM, they are represented by non-
commuting operators.

In his article entitled (scented with an impish whiff) “EPR correla-
tions and EPW distributions”, Bell(1) studied the possibility of underpin-
ning quantum theory with LHVs(3) in the case of two spinless particles.
He analyzed the correlations arising from measurements of positions of
these particles in free space—a situation closer to the original one envis-
aged by EPR(4)—utilizing the fact that Wigner’s distribution(5) simu-
lates a local “classical” model of such correlations in phase space. Bell
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suggested(1) that the nonnegativity of the Wigner function for certain
quantum-mechanical states would preclude BIQV with such states when
one considers the correlations constructed from a dichotomic variable
defined as the sign of the coordinates of the particles. I would like to
review(2) our study in this and argue that Bell’s inequality was derived for
LHV theories and thus is only preferially relevant to the problem of local-
ity. Indeed since QM as a theory disallows the assignment of simultenous
values to noncommuting DV—which is assumed in the derivation of BIQV
is mute as far as the respect or disrespect of locality in QM; rather, it is
the LHV underpinning possibility, is what BIQV remove.

We first recall a few properties of the Wigner function.(6) One can
show that the expectation value of any operator Â in a state defined by
the density matrix ρ̂ can be expressed as

Tr(ρ̂Â) =
∫

dλWρ̂(λ)W
Â
(λ), (2)

where W
Q̂

(λ) is the Wigner representative of the quantal operator Q̂

defined in Eq. (6), and λ designates the appropriate phase space coordi-
nates, i.e., λ = (q, p) = (q1, . . . , qn, p1, . . . , pn), n being the number
of degrees of freedom. It should be noted that in Bell’s considerations
of LHVs, the values of the observables obey the so-called Bell’s factor-
ization,(3,7) which leaves the value of each observable independent of the
“setting” of the other. In the expressions for two-particle correlations in
terms of the Wigner representatives, when each of the DVs depends on its
own phase-space coordinates, this factorization is satisfied automatically.
This is our justification for referring to the description in terms of the
Wigner function as local.(1)

We illustrate the above considerations using the two-mode squeezed
state (TMSS) |ζ 〉, defined as

|ζ 〉 = expζ(a†b†−ab) |00〉 ≡ S(ζ )|00〉, (3)

this equation defines the operator S. Here, the operators a, a† refer to the
beam of channel 1, while b, b† refer to those of channel 2 (Ref. 8). In the
limit of the squeezing parameter ζ increasing without limit, the state (3)
approaches the EPR state(4) |EPR〉 = δ(q1 − q2) (here the subscripts refer
to the channels), as can be readily seen writing the state (3) in the coor-
dinate representation as (we use well known normal ordering formula)(9)
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〈q1q2|ζ 〉 = 1
cosh ζ

∑

n=0

tanhnζ 〈q1q2|nn〉

ζ→∞−→ ∼δ(q1 − q2). (4)

Now, the Wigner function, Wζ , of the TMSS is given by Banaszek and
Wodkiewicz(10)

Wζ (q1, q2, p1, p2) = 1
π2

exp
[
−cosh(2ζ )

(
q2

1 + q2
2 + p2

1 + p2
2

)

−2sinh(2ζ )(q1q2 − p1p2)
]
. (5)

It is clearly nonnegative for all qs and ps, and thus may be considered as
a distribution in phase space (q1, q2, p1, p2) associated with the state |ζ 〉.
Thus we may refer to the variables (q1, q2, p1, p2) as LHV’s, and correla-
tions weighed with Wζ (q1, q2, p1, p2) should preclude BIQV for DVs for
which this may be a legitimate view.(11)

As was mentioned above, Bell suggested(1) that the nonnegativity of
the Wigner function of the EPR state would preclude BIQV with this state
when one considers the correlations of a dichotomic variable defined as
the sign of the coordinates of the particles. The correlations considered in
that work are those that are involved in the CHSH(12) inequality, i.e., the
inequality that is often studied in terms of the Bell operator.(13) (In the
present paper, Bell’s inequality and BIQV refer to this CHSH inequality.)
Bell’s original argument that nonnegativity of Wigner’s function suffices
to preclude BIQV was shown(14) to be inaccurate. Difficulties in handling
normalization of the EPR state considered by Bell were shown to involve
a misleading factor.

The TMSS’s were studied extensively since the early 1980s in con-
nection with BIQV in general and, in particular, for their connection to
the EPR state.(15−21) These studies focused on the polarization as the
observable DV. Banaszek and Wodkiewicz(10) noted that while the Wigner
function of the TMSS is nonnegative, it allows for BIQV, when the DV
involved in the correlations is the parity. Their study was extended by
Chen et al.(22) who showed, by using appropriately defined spin-like vari-
ables (which, together with the parity operator, close an SU (2) algebra),
that the TMSS, |ζ 〉, allows the maximal possible(23,24) BIQV for ζ → ∞,
i.e., when it is maximally entangled(25) and, as stated above, it tends to
the EPR state. An alternative parametrization (termed configurational) for
spin-like operators was given in Ref. 26. This choice of DVs is more con-
venient for our analysis as it involves the DVs considered by Bell and
admits a simple interpretation.
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Our study aims at clarifying the relation between the nonnegative
Wigner function of the TMSS, |ζ 〉, for all values of ζ , the DVs involved
in the CHSH inequality(12,13) and the possibility of BIQV. The latter, by
Bell’s theorem,(3,7) prohibits the underpinning of the theory with a LHVs
theory. Note that this attribute (nonnegativity) of the Wigner function
depends on the variables over which it is defined.(27)

The paper is organized as follows. In the next section, we describe
the properties that should be required of a QM problem in order that
its translation in terms of Wigner representatives can be legitimately
considered as a LHVs theory. We then divide the problem indicated in
the last paragraph into three levels. The first level, which the works
hitherto addressed, is to consider BIQV with the TMSS, viz., with a
state having nonnegative Wigner function. In this connection we give, in
Sec. 3, a brief review of Chen et al.(22) considerations and those of
Ref. 26. We argue that the former approach(22) involves, exclusively, DVs
whose Wigner representatives are physically unsuitable for allowing a
LHVs theory underpinning (in addition, they do not fulfil the property of
boundedness, a mathematical condition that enters the derivation of Bell’s
inequality). Such DVs that are ineligible for a LHVs theory in phase space
(the domain of Wigner’s function(27)) are termed improper or dispersive
DVs—the definition of these terms and their justification is also included
in Sec. 2. We then consider the next level of the problem, viz., where in
addition to having the nonnegative Wigner function of |ζ 〉, we have a DV
that is proper (or nondispersive), i.e., one that can be accounted for by
the LHVs that the phase space provides (indeed it is the very one con-
sidered by Bell(1): the sign of the coordinate of the particle). However, we
show that its mates, i.e., its rotated (we use here the spin analogy) part-
ner(s) which, with it, must be present in the Bell operator,(13) are disper-
sive (they are also not bounded) and hence, again, no LHVs theory can
be sustained here. We also discuss the alternative approach of retaining
the original DVs and rotating the wave function and show that in this
case it leads to a non nonnegative Wigner function. In Sec. 4, we finally
study the last level which is the one considered by Bell. In addition to
having the nonnegative Wigner function and the proper DV—its “rotated”
mates are now obtained by time evolution with a “free” Hamiltonian. For
this case we show that the evolved DV remains nondispersive, or alterna-
tively (perhaps less surprising), the “rotated” wave function continues to
give rise to a nonnegative Wigner function. We thus arrive at the con-
clusion that Bell’s expectation(1) that the EPR state will not allow BIQV
is confirmed. However, our approach underscores the importance of the
perhaps not sufficiently stressed assumption involved in the derivation of
Bell’s inequalities,(3,12) viz., that the LHVs theory be such that the DVs
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are defined simultaneously, even when they cannot be measured simulta-
neously. This point was noted before.(28−33) Indeed, such a requirement
is tantamount to having the LHVs endowing physical reality (in the EPR
sense(4)) to the DVs measurable attributes.

To remain close to the formalism as discussed by Bell,(1) we shall
throughout refer to changes in the DVs as “evolution”. This retains com-
plete generality, since to define the evolution we can choose a Hamiltonian
leading to the required change.

2. HIDDEN VARIABLES AND WIGNER’S TRANSFORM

We now discuss a specific way of implementing the above LHVs pro-
gram in terms of the theory of Wigner’s transforms, We define the Wigner
representative W

Q̂
(q, p) of the quantal operator Q̂ (for one degree of free-

dom) as(34)

W
Q̂

(q, p) =
∫

e−ip·y
〈

q + 1
2
y

∣
∣
∣Q̂

∣
∣
∣ q − 1

2
y

〉

dy (6)

while the Wigner function for the density operator is defined with an extra
factor of 1

2π
for each degree of freedom, i.e., for one degree of freedom:

Wρ̂(q, p) = 1
2π

∫
e−ip·y

〈

q + 1
2
y

∣
∣ρ̂

∣
∣ q − 1

2
y

〉

dy. (7)

Then one can prove that the expectation value of an operator Â with the
density matrix ρ̂ is(34)

Tr(ρ̂Â) =
∫

Wρ̂(q, p)W
Â
(q, p)dq dp. (8)

It can be shown(35) that the only wave function whose Wigner trans-
form is nonnegative is a Gaussian: in this case, the associated Wigner
transform is apparently interpretable as a probability density in phase
space (see Eq. (8)). The TMSS of Eq. (3) is an example where this inter-
pretation is indeed feasible. If, in addition, the Wigner representatives of
the DVs under study are of the proper, or nondispersive, nature required
above, we have a candidate for a LHVs theory, where the LHVs are repre-
sented by the canonical variables q and p. It seems clear from the outset
that it will be rather exceptional for a DV to fall into this category. It is
the purpose of the discussion that follows in the present section to identify
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a class of operators Â that do correspond to proper DVs. Although the
analysis is certainly not exhaustive, it serves the purpose of indicating a
number of sufficient conditions leading to proper DVs. For simplicity, the
analysis will be restricted to systems with only one degree of freedom.

Consider a function f (x), where −∞ � x � ∞, bounded as
|f (x)| � 1.

1. We define the operator Â1 = f (q̂) through its spectral representa-
tion as

Â1 = f (q̂) =
∫ ∞

−∞
|q ′〉f (q ′)〈q ′|dq ′. (9)

The eigenvalues of this operator are f (x), so that its spectrum lies in the
interval [−1, 1]. For instance:

(a) f (x) = tanh x gives a continuous spectrum in the interval [−1, 1].

(b) f (x) = sgnx (where the sgn function takes on the value 1 for x >

0 and −1 for x < 0) has a discrete spectrum, consisting of the two
values 1 and −1.

One can easily show that the Wigner transform of the operator f (q̂)

of Eq. (9) is

Wf (q̂)(q
′, p′) = f (q ′) (10)

a function which takes on, as its values, precisely the eigenvalues of the
operator f (q̂). According to our nomenclature, we are thus dealing with
a proper dynamical variables. In these examples we see the nondispersive
property explicitly, since

W[f (q̂)]k (q
′, p′) = [

Wf (q̂)(q
′, p′)

]k
. (11)

2. Similar considerations apply to the operator Â2 = f (p̂).
3. Another case, which is very relevant for our future considerations,

is that of the operator

Â3 = f ( ˆ̄q), (12)

where

ˆ̄q = aq̂ + bp̂ (13)

(a and b being numerical constants) is a linear combination of the posi-
tion and momentum operators q̂ and p̂. If we add, to Eq. (13), the fol-
lowing one:
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ˆ̄p = cq̂ + dp̂, (14)

c and d being numerical constants satisfying the condition

ad − bc = 1, (15)

then the pair of Eqs. (13) and (14) can be considered as a transforma-
tion from the canonical position and momentum operators q̂ and p̂ to
the new ones ˆ̄q and ˆ̄p. Thanks to the condition (15), the commutator
[q̂, p̂] = [ ˆ̄q, ˆ̄p] = i is preserved and the transformation is canonical: it
is the quantum-mechanical counterpart(36) of the classical linear canon-
ical transformation obtained from Eqs. (13) and (14) by removing the
“hats” and considering the q, p, q̄ and p̄ as c-number canonical variables;
in the classical problem it is the Poisson bracket that is preserved by the
transformation.

We find

Wf (aq̂+bp̂)(q
′, p′) = Wf (q̂)(aq ′ + bp′, cq ′ + dp′) (16)

and, using Eq. (10) for the right-hand side, we finally obtain

Wf (aq̂+bp̂)(q
′, p′) = f (aq ′ + bp′), (17)

which clearly reduces to Eq. (10) when a = 1 and b = 0.
Right after Eq. (??) we identified the spectrum of f (aq̂ +bp̂) as f (x).

Now, Eq. (17) tells us that the Wigner transform of this operator takes on,
as its values, exactly the eigenvalues of the quantum-mechanical operator:
we are thus dealing with a proper DV. As a result, we have found a class of
observables, i.e., f (aq̂ + bp̂) which, together with their Wigner transforms,
i.e., f (aq ′ + bp′), may be termed proper DVs.

3. THE EPR–EPW PROBLEM

As outlined in the Introduction, we consider the so-called EPR–EPW
problem(1,14) in successive levels. The first level is: Given a state, |ζ 〉 in
our case, whose Wigner representative function is nonnegative, does such
a state allow BIQV?

The answer to this was shown(10,22) to be in the affirmative. The DV
considered was the parity, Sz (N̂ being the number operator),

Sz ≡
∞∑

n=0

[|2n + 1〉〈2n + 1| − |2n〉〈2n|] = −(−1)N̂ . (18)
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In Ref. 20, “rotated” parity operators were introduced:

Sx =
∞∑

n=0

[|2n + 1〈2n| + |2n〉〈2n + 1|], (19)

Sy = i

∞∑

n=0

[|2n〉〈2n + 1| − |2n + 1〉〈2n|]. (20)

These operators close an su(2) algebra and are viewed as components of
a three-dimensional vector operator. We may thus consider a “rotation” in
parity space by, e.g.,

S′
x(ϑ) = e

iϑ
2 SzSxe

−iϑ
2 Sz = Sx cos ϑ − Sy sin ϑ = S · n (21)

with n a unit vector which, in this case, is in the “x − y” plane of the
parity space. It will be convenient for us later to refer to the above as the
“time evolution” of Sx under the “Hamiltonian” Sz in Eq. (21): in this way
we refer to the “rotation” angle, ϑ , as the time, t . Sticking to the geomet-
ric notation, the Bell operator(13) is (the superscripts refer to the channels,
a, a† being channel 1 and b, b† channel 2)

B̂ = S1 · n S2 · m + S1 · n′ S2 · m

+ S1 · n S2 · m′ − S1 · n′ S2 · m′ (22)

and the Bell inequality we study is

| ˆ〈B〉| � 2. (23)

Varying n, n′ and m, m′ to maximize |〈B̂BB〉| for the state |ζ 〉 we get(26)

|〈ζ |B̂|ζ 〉| = 2
√

1 + F 2(ζ ), (24)

F(ζ ) = 〈ζ |S1
xS2

x |ζ 〉 = tanh 2ζ. (25)

Thus the state |ζ 〉 allows BIQV, even though the Wigner function of
the corresponding density operator may be viewed as a probability den-
sity of LHVs (the phase space coordinates). However, as was stressed in
Sec. 1, this does not violate Bell’s theorem which prohibits BIQV for a
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LHVs theory. Thus the correlations appearing in the Bell operator have
the structure(6)

〈ζ |S1
z S2

z |ζ 〉 =
∫ ∞

−∞
dp1 dq1 dp2 dq2Wζ (p1, q1, p2, q2)

× WS1
z
(p1, q1)WS2

z (p2,q2)
. (26)

Here, the factorization of the Wigner function of the two channels is auto-
matic. As explained in detail in Sec. 2, for the right-hand side of Eq. (26)
to be interpretable as a LHVs theory, aside from a nonnegative Wigner
function for the state, Wζ , we require that the Wigner representatives of
the DVs, the Sz’s in this case, give the observable values of these DVs, viz.,
the eigenvalues of the quantal parity operator (for the phase point: q, p).
As already indicated, we refer to a DV with this property as a proper or
nondispersive DV.(37) This is not the case for any of the parity operators,
Si(i = x, y, z); in fact, e.g., we can easily verify that

WSz(q, p) = −πδ(α) = −πδ(q)δ(p), α = q + ip. (27)

This clearly is not an eigenvalue of the parity operator (which is ±1).
Thus in this case this DV is improper or dispersive.(37) Therefore, we are
not dealing here with a LHVs theory. (In addition, Eq. (27) makes clear
the assertion made in Sec. 1 that the Wigner representative of Ŝz violates
the property of boundedness.)

We have thus completed the discussion of the first level of the
EPR–EPW problem: nothing new was gained but we considered examples
that will serve us below.

The second level of the EPR–EPW problem is when, in addition to
having a nonnegative Wigner function for the state, we have a DV whose
Wigner representative is the value of the DV—i.e., it is a proper or nondis-
persive DV. Would this situation allow BIQV? Would it conform to Bell’s
theorem? Recently,(11,26) an alternative configuration was discussed for the
parity operators. In this alternative configuration the operators are given
in the q representation. Denoting the operators in this configuration by
�i(i = x, y, z), we have

�z ≡ −
∫ ∞

0
dq [|E〉〈E | − |O〉〈O|] = Sz, (28)

here,

|E〉 = 1√
2

[|q〉 + | − q〉] , |O〉 = 1√
2

[|q〉 − | − q〉] , (29)

so that
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�z = −
∫ ∞

−∞
dq [|q〉〈−q|] . (30)

The equality 〈n|�z|n′〉 = 〈n|Sz|n′〉 is easily verifiable. The natural vectorial
operators that close an su(2) algebra with �z are

�x =
∫ ∞

0
dq [|E〉〈O| + |O〉〈E |] , (31)

�y =
∫ ∞

0
dq [|E〉〈O| − |O〉〈E |] . (32)

We note that �x is diagonal in q, i,e.,

�x =
∫ ∞

0
dq [|q〉〈q| − | − q〉〈−q|] = sgn(q̂) (33)

is the spectral representation of �x . Its Wigner function is

W�x (q, p) = sgn q, (34)

i.e., it gives the eigenvalues (±1) of the operator and hence is a proper
(nondispersive) DV, just as in the discussion of Eq. (9), case (b), of
Sec. 2. In this case, with �i , much like in the previous case (with the
Si, i = x, y, z) it is easy to get BIQV by selecting the appropriate orienta-
tional parameters. For convenience, while retaining complete generality, we
consider the choice of the orientational parameters by choosing the
times (for both channels) of the evolution of �1

x(t1), �
2
x(t2) under the

Hamiltonian H = �z. (we note that Bell(1) considered the same case with
ζ → ∞, i.e. the EPR state, but with the free Hamiltonian, H = p2/2).

Direct calculations show that by appropriate choices of the times
(t1, t ′1 and t2, t

′
2) we get, for our case,

〈B̂〉 = 2
√

2F̄ (2ζ ), F̄ = 2
π

arctan (sinh 2ζ ). (35)

Thus we see that in this case, where seemingly the quantal description
may be given a LHVs underpinning, we get a BIQV which, we are told,
is an impossibility. However, the present Bell operator involves not only
the “proper” DV, �x , but also �y which evolves via our Hamiltonian,
H = �z. The latter, i.e., πy , is not a proper DV. In fact, its Wigner repre-
sentative is given by
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W�y (q, p) = −δ(q)P 1
p

, (36)

where P stands for the “principal value”. Thus, once again, no LHVs
underpinning for the correlation involved in Eq. (35) is possible, after all.
(The boundedness condition for the Wigner representatives is violated as
well.)

We may attempt to consider the problem in a Schrödinger-like man-
ner by applying the time evolution operator to the state |ζ 〉; this, however,
leads to a new state, |ζ ′〉, whose Wigner function is no longer nonnega-
tive over all phase space. This can be proven most readily by considering
an alternative expression for the state |ζ 〉 obtained in Ref. 26, i.e.,

|ζ 〉 =
∫ ∞

0

∫ ∞

0
dq dq ′[(g+ + g−)|EE ′〉 + (g+ − g−)|OO′〉], (37)

where

g ± (q, q, ; ζ ) = 〈qq ′|S(±ζ )|00〉
= 1√

π
exp

{
− 1

2
[q2 + q

′2 ± 2qq ′tanh(2ζ )]

× cosh(2ζ )
}
. (38)

Using this expression for |ζ 〉, we have directly

e−iγ�z |ζ 〉 = |ζ ′〉 = cos γ |ζ 〉 + sin γ | − ζ 〉 (39)

and the Wigner function of |ζ ′〉 is no longer nonnegative.(35)

4. BILINEAR HAMILTONIANS

Level 3 of our EPR–EPW problem is the study of cases wherein:
(1) The states have nonnegative Wigner representatives which, at some
limit, reduce to the EPR state—our |ζ 〉 is such a state. (2) There is a DV
(= observable) that is nondispersive (= proper), i.e., such that the Wigner
representative of its quantal version gives its eigenvalues in terms of our
LHVs: p, q—our �x is such a DV. We inquire for possible BIQV when
this DV evolves via Hamiltonians which leave the Wigner representative
of the state under study nonnegative. Alternatively, we inquire for BIQV
when our DVs evolve by Hamiltonians which allow the initially proper DV
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to remain so. In the next paragraphs we study the relationship between
these two alternatives.

The only nonnegative Wigner functions are gaussians.(35) Since gaus-
sians remain gaussians under linear transformations, it follows that
single-channel Hamiltonians that leave the Wigner function non-negative
are bilinear ones. We will consider:

H0(i) = 1
2
(p̂2

i + w2
i q̂

2
i ), (40)

where the subscript i = 1, 2 denotes the channel. For simplicity we shall
consider, in H0, the frequency wi = 1 for both channels.

We consider the harmonic oscillator Hamiltonian H0 first. Evolution
of the state |ζ 〉, Eq. (3), under H0, during a time t1 for channel 1 and t2
for channel 2, gives:

|ζ(t1, t2)〉 = |ζ ′〉 = exp−ζ(a†b†e−iθ−abeiθ ) |00〉, (41)

where θ = t1 + t2. The corresponding Wigner function can be obtained
either directly from the state (41), or from Eq. (5), applying Eq. (??) with
a = cos ti , b = sin ti , c = − sin ti and d = cos ti , with the result

Wζ(θ) = 1
π2

exp
{ − cosh(2ζ )

(
q2

1 + q2
2 + p2

1 + p2
2

)

−2 sinh(2ζ )[(q1q2 − p1p2) cos θ

−(q1p2 + q2p1) sin θ ]
}
. (42)

Direct evaluation of

E(t1, t2) =
∫ ∞

−∞
dq dpWζ(θ)(q, p)�1

x�
2
x (43)

dq dp = dq1dq2dp1dp2 gives (see Appendix)

E(t1, t2) = χ

π
, cos χ = tanh(2ζ ) cos θ. (44)

We have used the notation of Ref. 1

E(t1, t2) = P++(θ) + P−−(θ) − P−+(θ) − P+−(θ). (45)

The first subscript refers to the eigenvalue (i.e., ±1) of �1
x and the second

subscript refers to that of the second channel �2
x : i.e., P++ is the integral
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of Wζ(θ)(q, p) (see Eq. (43)) over the region q1 > 0, q2 > 0, etc. The alter-
native view, i.e., allowing �i

x to evolve in time, while keeping Wζ fixed, is
readily done (see Appendix) by noting that �i

x(ti) = sgn(q̂i cos ti +p̂i sin ti )

and computing the resulting integral for E(t1, t2)

E(t1, t2) =
∫ ∞

−∞
dq dpWζ (q, p)�1

x(t1)�
2
x(t2) (46)

for this case upon the change of variables: q̄i = qi cos ti + pi sin ti and
p̄i = −qi sin ti + pi cos ti . We obviously obtain the same answer at the
end. Perhaps more elegantly, one can find the Wigner representative of the
time evolution of �i

x by applying the general result (17) of Sec. 2, with
a = cos ti , b = sin ti , c = − sin ti and d = cos ti .

It is easily shown (cf Ref. 1) that, in case the time dependence occurs
only in the combination t1 + t2 (which is the case in the present situation
(Eq. (41)), the CHSH inequality(12) implies the following inequality

3P+−(θ) − P+−(3θ) � 0. (47)

In the ζ → ∞ limit, i.e., when the state |ζ 〉 is maximally entangled and
approaches the EPR state, tanh(2ζ ) → 1. In this limit χ → cos−1(cos θ) =
θ (cf. Appendix) and P+−(θ) = 1

2π
θ ; thus the inequality is saturated. It

can be shown that for finite ζ the inequality is always satisfied. Bell sug-
gested that correlations of observables of the type of �

1,2
x (cf. Eq. (43))

for the EPR state, evolving under the free Hamiltonian, would not allow
for BIQV; we observe that this indeed occurs for the harmonic oscillator
Hamiltonian used here.

However, his reasoning perhaps was somewhat misleading: the rea-
son is that it is not only the nonnegativity of the relevant Wigner func-
tion that matters, but also the type of evolution induced in the observables
by the Hamiltonian in question. The fulfillment of the CHSH inequality
in the present case, in which the evolution is induced by the harmonic
oscillator Hamiltonian, is consistent with the discussion given in Sec. 2,
Eq. (17). It is apt to notice that the present evolution is not analogous to
rotation of the spins in the Bohm EPR version. The latter involves what
was termed(26) orientational variation, which leads (depending on the pre-
ferred viewpoint) either to improper (dispersive) DVs even when one starts
with proper DVs, or, alternatively, to a non nonnegative Wigner function.
In either case, BIQV’s do not contradict Bell’s theorem.
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5. CONCLUSIONS AND REMARKS

In this study we took the Clauser et al.(12) inequality as the represen-
tative of the so-called Bell’s inequalities. Indeed this inequality is the often
analyzed and experimentally tested one and is the one used by Bell him-
self in his study of the subject of this work: the relation of the nonnega-
tive Wigner function of the EPR state to possible BIQVs. In some sense,
our results are mundane: no violation is possible when such is not to be
allowed by Bell’s inequality. We subjected the reader to a lengthy deri-
vation and explanation of what we considered points worthy of clarifica-
tion. These were the delineation of what is meant by proper and improper
DVs in the context of the Wigner function as a probability distribution in
phase space, the canonical variables of the latter playing the role of the
LHVs, and showed that a proper observable (= DV) is nondispersive. Thus
only proper DVs can be considered as accountable for by a LHV theory
with the phase space variables (q, p) being the LHVs. A proper DV is one
whose Wigner function representative gives the eigenvalues of the corre-
sponding quantal DV which the LHV theory aims at underpinning.

Now, although the word “local” was repeated several times, locality
as such was not an issue in the present discussion: Bell’s locality condition
is automatically fulfilled as the Wigner function of any DVs that depend
on distinct phase space coordinates factorizes. Thus our discussion under-
scores a tacit assumption in the derivation of the Bell inequality we con-
sider: viz., the DVs must all have a definite value even though they are not
or even cannot be measured simultaneously. This point was noted in the
past.(28−33) In point of fact, two often quoted examples for underpinning
noncommuting DVs with LHVs—Bell’s(3) and Wigner’s(28)—are manifestly
so, although these examples are, perhaps, somewhat artificial. In the pres-
ent work—which in its essence follows Bell’s suggestion(1)—we outlined a
canonical theory which automatically abides by the locality requirement
(the phase space variables are local), and BIQ is abided by in cases where
the DVs are proper ones, even when they are noncommuting.

Our main conclusion is that the validity of Bell’s inequality that we
have considered hinges on the assumption of having definite values for all
the DVs—thus endowing them with physical reality—and not the issue of
locality. Such view warrents, it seems, counterfactual reasoning. Of course
one might ponder what would one mean by a LHVs theory without a defi-
nite value for all the DVs; however this is a separate issue.
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APPENDIX: EVALUATION OF E(t1, t2) FOR THE HARMONIC
HAMILTONIAN

We first evaluate P−+(t1, t2), cf. Eq. (61). The integral, Eq. (59), after
the integration over the p’s and letting q1 → −q1, is

P−+(t1, t2) = 1

π cosh(2ζ )

√
(1 − tanh2(2ζ ) cos2 θ)

×
∫ ∞

0
dq1 dq2 exp

[ − cosh(2ζ )�(θ, ζ )

× (q2
1 + q2

2 − 2q1q2 tanh(2ζ ) cos θ)
]
. (48)

Here θ = (t1 + t2) and �(θ, ζ ) = (1 − tanh(2ζ ))/(1 − tanh(2ζ ) cos2 θ). This
integral is evaluated directly to give

P−+(t1, t2) = 1
2π



π

2
− arctan



 tanh(2ζ ) cos θ
√

(1 − tanh2(2ζ ) cos2 θ)







 .

Similar calculation gives

P++(t1, t2) = 1
2π



π

2
+ arctan



 tanh(2ζ ) cos θ
√

(1 − tanh2(2ζ ) cos2 θ)







.

The equality P++(t, t ′) = P−−(t, t ′) and P+−(t, t ′) = P−+(t, t ′) is easily
verifiable, hence we have

E(t1, t2) = 2P++(θ) − 2P−+(θ) = 2
χ

π
(49)

with tanh(2ζ ) cos θ ≡ cos χ, θ = t1 + t2.
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