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Recent proposals to test Bell’s inequalities with entangled pairs of pseudosca-
lar mesons are reviewed. This includes pairs of neutral kaons or B-mesons and
offers some hope to close both the locality and the detection loopholes. Spe-
cific difficulties, however, appear thus invalidating most of those proposals. The
best option requires the use of kaon regeneration effects and could lead to a
successful test if moderate K0 and K̄0 detection efficiencies are achieved.
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1. INTRODUCTION

The correlations shown by the distant parts of certain composite systems
offer one of the most counterintuitive and subtle aspects of quantum
mechanics. This was already evident in 1935, when Einstein, Podolsky and
Rosen (EPR),(1) discussing a gedanken experiment with entangled states,
arrived at the conclusion that the description of physical reality given
by the quantum wave function cannot be complete. Bohr, in his famous
response,(2) noted that EPR’s criterion of physical reality contained an
ambiguity if applied to quantum phenomena: an argument using the com-
plementarity point of view led him to conclude that quantum mechanics,
in the form restricted to human knowledge, “would appear as a completely
rational description of the physical phenomena”.
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For about 30 years the debate triggered by EPR and Bohr remained
basically a matter of philosophical belief. Then, in 1964, Bell(3) interpreted
EPR’s argument as the need for the introduction of additional, unobserv-
able variables aiming to restore completeness, relativistic causality (or local-
ity) and realism in quantum theory. He established a theorem which proved
that any local hidden-variable (i.e., local realistic(4)) theory is incompatible
with some statistical predictions of quantum mechanics. Since then, vari-
ous forms of Bell’s inequalities(5–8) have been the tool for an experimental
discrimination between local realism (LR) and quantum mechanics (QM).

Many experiments have been performed, mainly with entangled pho-
tons(9–13) and ions,(14) in order to confront LR with QM. All these
tests obtained results in good agreement with QM and showed the vio-
lation of non-genuine Bell’s inequalities. Indeed, because of non-idealities
of the apparata and other technical problems, supplementary assumptions
not implicit in LR were needed in the interpretation of the experiments.
Consequently, no one of these experiments has been strictly loophole
free,(10,15,16) i.e., able to test a genuine Bell’s inequality.

It has been proven(8,10,17) that for any entangled state one can derive
Bell’s inequalities without the introduction of (plausible but not testable)
supplementary assumptions concerning undetected events. For maximally
entangled (non-maximally entangled) states, if one assumes that all detec-
tors have the same overall efficiency η, these genuine inequalities are vio-
lated by QM if η > 0.83(18) (η > 0.67(19)). Since such thresholds cannot
be presently achieved in photon experiments, only non-genuine inequalities
have been tested experimentally. They are then violated by QM irrespec-
tively of the detection efficiency values.

Several of these photonic tests violated non-genuine inequalities by
the amount predicted by QM but they could not overcome the detec-
tion loophole. Indeed, local realistic models exploiting detector inefficien-
cies and reproducing the experimental results can be contrived(8,20) for
these tests. Only the recent experiment with entangled beryllium ions of
Ref. 14, for which η � 0.97, did close the detection loophole. But then
the other existing loophole, the locality loophole, remains open due to the
tiny inter-ion separation. Conversely, an experiment with distant entangled
photons(11) closed this latter loophole. In this test, the measurements on
the two photons were carried out under space-like separation conditions,
thus avoiding any exchange of subluminal signals between the two mea-
surement events, but detection efficiencies were too low to close the detec-
tion loophole. In other words, no experiment closing simultaneously both
loopholes has been performed till now.

Extensions to other kinds of entangled systems are thus impor-
tant. Over the past 10 years or so there has been an increased interest
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on the possibility to test LR versus QM in particle physics, i.e., by
using entangled neutral kaons(21−38) or B-mesons.(39−43) This is also a
manifestation of the desire to go beyond the usually considered spin-
singlet case and to have new entangled systems made of massive particles
with peculiar quantum–mechanical properties. Entangled K0K̄0 (B0B̄0)
pairs are produced in the decay of the φ resonance(44) [ϒ(4S) reso-
nance(45)] and in proton–antiproton annihilation processes at rest.(46) For
kaons, the strong nature of hadronic interactions should contribute to
close the detection loophole, since it enhances the efficiencies to detect
the products of kaon decays and kaon interactions with ordinary matter
(pions, kaons, nucleons, hyperons,. . . ). Moreover, the two kaons produced
in φ decays or pp̄ annihilations at rest fly apart from each other at rel-
ativistic velocities and easily fulfill the condition of space-like separation.
Therefore, contrary to the experiment with ion pairs of Ref. 14, the local-
ity loophole could be closed with kaon pairs by using equipments able to
prepare, very rapidly, the alternative kaon measurement settings.

In this contribution our purpose is to review the Bell’s inequalities
proposed to test LR versus QM using entangled pairs of neutral pseudo-
scalar mesons such as K0K̄0 and B0B̄0. These proposals will be discussed
on the light of the basic requirements necessary to establish genuine Bell’s
inequalities.

2. NEUTRAL MESON SYSTEMS

2.1. Single Mesons: Time Evolution and Measurements

In this section, we discuss the time evolution of and the kind of mea-
surements on neutral pseudoscalar mesons. We mainly refer to the most
known case of neutral kaons, but the modifications which apply to neutral
B-mesons are stressed as well. These differences originate from the differ-
ent values of the meson parameters and turn out to have important con-
sequences when testing LR versus QM.

Neutral kaons are copiously produced by strangeness–conserving
strong interaction processes such as π−p → �K0 and pp̄ → K−π+K0,
K+π−K̄0 and so they initially appear either as K0’s (strangeness S =
+1) or K̄0’s (strangeness S =−1). The distinct strong interactions of the
S = +1 and S = −1 kaons on the bound nucleons of absorber mate-
rials project an incoming kaon state into one of these two orthogonal
members of the strangeness basis {K0, K̄0}, and permit the measurement
of S.(26) This strangeness detection is analogous to the projective von
Neumann measurements with two-channel analysers for polarized pho-
tons or Stern–Gerlach set-ups for spin −1/2 particles. Unfortunately, the
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detection efficiency for such strangeness measurements is rather limited.(46)

Indeed, it could be close to 1 only for infinitely dense absorber materials
or for ultrarelativistic kaons, where, by Lorentz contraction, the absorb-
er is seen by the incoming kaon as extremely dense. In this case, kaon–
nucleon strong interactions become much more likely than kaon weak
decays. It would be highly desirable to identify very efficient absorbers.
Since this does not seem to be viable at present, one has to play with
small strangeness detection efficiencies, which originate serious conceptual
difficulties when discussing Bell-type tests for entangled kaons.(34,37)

The kaon time-evolution and decay in free space is governed by the
lifetime basis, {KS, KL}, whose states diagonalize the non-Hermitian weak
Hamiltonian. The proper time propagation of these short- and long-lived
states having well-defined masses mS,L is given by:

|KS,L(τ )〉 = e−imS,Lτ e− 1
2 �S,Lτ |KS,L〉, (2.1)

where �S,L ≡ 1/τS,L are the kaon decay widths and τS = (0.8953 ±
0.0005) × 10−10 s and τL = (5.18 ± 0.04) × 10−8 s(47) the correspond-
ing lifetimes. Being the dynamics of free kaons governed by strangeness
non-conserving weak interactions, K0 − K̄0 mixing and KS − KL interfer-
ences will appear thus producing the well known K0 − K̄0 oscillations in
time. Assuming CPT invariance, the relationship between strong and weak
interaction eigenstates is provided by:(48)

|KS〉 = 1√
2(1+|ε|2) [(1 + ε)|K0〉 + (1 − ε)|K̄0〉],

|KL〉 = 1√
2(1+|ε|2) [(1 + ε)|K0〉 − (1 − ε)|K̄0〉], (2.2)

ε being the CP -violation parameter in the K0 − K̄0 mixing. Weak inter-
action eigenstates are related to the CP eigenstates |K1〉 (CP = +1) and
|K2〉 (CP = −1) by:

|KS〉 = 1√
1+|ε|2

[|K1〉 + ε|K2〉] ,
|KL〉 = 1√

1+|ε|2
[|K2〉 + ε|K1〉] . (2.3)

To observe if a kaon is propagating as a KS or KL at time τ , one
has to identify at which time it subsequently decays. Kaons, which show a
decay between times τ and τ +	τ have to be identified as KS’s, while those
decaying later than τ + 	τ have to be identified as KL’s. The probabilities
for wrong KS and KL identification are then given by exp(−�S 	τ) and
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1 − exp(−�L 	τ), respectively. With 	τ = 4.8 τS, both KS and KL misiden-
tification probabilities reduce to �0.8%. Note that the KS and KL states are
not strictly orthogonal to each other, 〈KS|KL〉 = 2 Re ε/(1 + |ε|2) �= 0, and
their identification cannot be exact even in principle. However, ε is so small
[|ε| � (2.284 ± 0.014) × 10−3(47)] and the decay probabilities of the two
components so different (�S � 579 �L) that the KS versus KL identification
effectively works in many cases.(34) Note also that, contrary to strangeness
measurements, lifetime observations can be made with quite high efficien-
cies; by using detectors with very large solid angles, one can play with almost
ideal efficiencies (ητ � 1) for the detection of the kaon decay products.

Apart from this (only approximate) KS versus KL identification and the
previous (in principle exact) strangeness measurement, no other quantum–
mechanical measurement with dichotomic outcomes is possible for neu-
tral kaons.(34) Only these two complementary observables can be exploited
to establish Bell’s inequalities. This is in sharp contrast to the standard
spin-singlet case and reduces the possibilities of kaon experiments.

The above methods used to discriminate K0 versus K̄0 and KS versus
KL correspond to active measurement procedures since they are performed
by exerting the free will of the experimenter. Indeed, at a chosen time,
either one places a slab of matter or allows for free space propagation.
Contrary to what happens with other two-level quantum systems, such as
spin −1/2 particles or photons, passive measurements of strangeness and
lifetime for neutral kaons are also possible(49) by randomly exploiting the
quantum–mechanical dynamics of kaon decays.

The strangeness content of neutral kaon states can indeed be deter-
mined by observing their semileptonic decay modes, which obey the well
tested 	S = 	Q rule. This rule allows the modes K0 → π− + l+ + νl

and K̄0 → π+ + l− + ν̄l (l = e, µ) but forbids decays into the respec-
tive charge conjugated modes. Obviously, the experimenter cannot induce
a kaon to decay semileptonically and not even at a given time: he or she
can only sort at the end of the day all observed events in proper decay
modes and time intervals. Therefore, this discrimination between K0 and
K̄0 is called a passive measurement of strangeness. As in the case of active
strangeness measurements, the detection efficiency for passive strangeness
measurements is rather limited—it is given by the KL and KS semileptonic
branching ratios, which are �0.66 and �1.1×10−3, respectively.(47) Again,
this poses serious problems when testing LR versus QM.

By neglecting the small CP violation effects (ε = 0 and thus 〈KS |KL〉 =
0), one can discriminate between KS’s and KL’s by leaving the kaons
to propagate in free space and by observing their distinctive nonleptonic
KS →2π or KL→3π decays. This represents a passive measurement of life-
time, since the kaon decay modes—nonleptonic in the present case, instead
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of semileptonic as before—as well as the decay times cannot be in any way
influenced by the experimenter.

We therefore have two conceptually different experimental procedures
to measure each one of the two neutral kaon observables. The active mea-
surement of strangeness is monitored by strangeness conservation while
the corresponding passive measurement is assured by the 	S = 	Q rule.
Active and passive lifetime measurements are possible thanks to the small-
ness of �L/�S and ε, respectively. Note that with the passive measure-
ment method, the mere quantum–mechanical dynamics of kaon decays
decides if the neutral kaon is going to be measured either in the strange-
ness or in the lifetime basis. The experimenter remains totally passive in
such measurements, which are thus clearly different from the usual, active
von Neumann projection measurements.

Both active and passive procedures lead to the same probabilities for
strangeness and lifetime measurements.(49) Considering the evolution of a
neutral kaon produced at τ = 0 as a K0, in both cases one easily obtains
the following transition probabilities:

P(K0(0) → K0(τ )) = 1
4
(e−�Sτ + e−�Lτ )

[
1 + cos (	m τ)

cosh (	� τ/2)

]
, (2.4)

P(K0(0) → K̄0(τ )) = 1
4
(e−�Sτ + e−�Lτ )

[
1 − cos (	m τ)

cosh (	� τ/2)

]
, (2.5)

P(K0(0) → KL(τ )) = 1
2
e−�Lτ , (2.6)

P(K0(0) → KS(τ )) = 1
2
e−�Sτ , (2.7)

where 	m ≡ mL − mS and 	� ≡ �L − �S are determined by strange-
ness oscillation experiments through Eqs. (2.4) and (2.5). The experimen-
tal equivalence of active and passive measurement procedures on single
kaon states and the agreement with quantum–mechanical predictions have
already been established.(47,50,51)

The existence of the two measurement procedures—active and
passive—opens new possibilities for tests of basic principles of QM with
kaons(49)—such as quantum erasure and quantitative formulations of Bohr’s
complementarity—which have no analog for any other two-level quantum
system considered up to date. Unfortunately, as we will see in detail in Sec. 3,
passive measurements are of no interest when testing Bell’s inequalities with
kaons, where only active measurements must be considered.(34,35)

Neutral B-mesons are easily produced at asymmetric B-factories
using high luminosity and asymmetric e+e− colliders operating at the
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J PC = 1−−ϒ(4S) resonance.(45) For these mesons, the strangeness eigen-
states are replaced by the beauty eigenstates |B0〉 and |B̄0〉, while the light
(mL) and heavy (mH) mass eigenstates are |BL〉 and |BH〉. Experimentally,
we know that BL and BH have very similar decay widths: |	�B|/�B <

0.18 at 95% CL, where 	�B = �H − �L and �B = (�L + �H)/2 ≡ 1/τB,
with τB = (1.536 ± 0.014)×10−12 s.(47) With these changes, Eqs. (2.1)–(2.7)
still hold if ε (	m) is replaced by εB0 (	mB = mH − mL), the CP viola-
tion parameter in the B0–B̄0 mixing. Contrary to the kaon case, CP vio-
lation in the B0–B̄0 mixing has not been observed unambiguously, since
〈BL|BH〉 = 2 Re εB0/(1 + |εB0 |2) = (1.0 ± 6.2) × 10−3.(47) Experimen-
tally one knows that for kaons and B-mesons one has |	�| � 2.1 	m and
|	�B| � 0.23 	mB, respectively; thus, the number of flavour oscillations
that one can observe in Eqs. (2.4) and (2.5) is much larger for B-mesons
than for K-mesons.

Concerning neutral B-meson measurements, the main difference with
respect to the neutral kaon case is that active flavour (strangeness or
beauty) measurement procedures are only available for kaons.(42,43) The
B-meson beauty can only be determined through a passive procedure, by
observing the meson decay modes. The series of decay products f =
D∗(2010)−l+νl , D−π+, . . . , which are forbidden for a B̄0, necessarily
come from a B0, while the opposite is true for the respective charge
conjugated modes f̄ = D∗(2010)+l−ν̄l , D+π−, . . . (l = e, µ). Passive
B-meson measurements able to distinguish between BL’s and BH’s are
almost impossible to perform nowadays, especially if operated in an
experiment aiming to test a Bell’s inequality, due to the small value of
|	�B|/�B. As we discuss in Sec. 3, these limitations play a decisive role
when testing LR versus QM with entangled B-mesons.

2.2. Entangled Meson Pairs

Let us now consider two-kaon entangled states, which are analogous
to the standard and widely used two-photon entangled states.(29,31,38,52)

From both φ-meson resonance decays(44) or S–wave proton–antiproton
annihilation,(46) one starts at time τ = 0 with the J PC = 1−− state:

|φ(0)〉 = 1√
2

[
|K0〉l |K̄0〉r − |K̄0〉l |K0〉r

]

= 1√
2

1 + |ε|2
1 − ε2

[|KL〉l |KS〉r − |KS〉l |KL〉r ] , (2.8)

where l and r denote the “left” and “right” directions of motion of
the two separating kaons and CP–violating effects enter the last equality.
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Note that this state is antisymmetric and maximally entangled in the two
observable bases.

After production, the left and right moving kaons evolve according to
Eq. (2.1) up to times τl and τr , respectively. This leads to the state:

|φ(τl, τr )〉 = 1√
2
e−(�L τl+�S τr )/2

× {|KL〉l |KS〉r − ei	m(τl−τr )e	�(τl−τr )/2|KS〉l |KL〉r
}

(2.9)

in the lifetime basis, or:

|φ(τl, τr )〉 = 1

2
√

2
e−(�L τl+�S τr )/2{(1 − ei	m(τl−τr )e	�(τl−τr )/2)[|K0〉l |K0〉r

−|K̄0〉l |K̄0〉r ] + (1 + ei	m(τl−τr )e	�(τl−τr )/2)[|K0〉l |K̄0〉r
−|K̄0〉l |K0〉r ]} (2.10)

in the strangeness basis, where small CP violation effects have been safely
neglected.

Note the analogy between state (2.9) and the polarization-entangled
two-photon [idler (i) plus signal (s)] state used in optical tests of Bell’s
inequalities:

|�〉 = 1√
2

{
|V 〉i |H 〉s − ei	φ |H 〉i |V 〉s

}
, (2.11)

where 	φ is an adjustable relative phase. For entangled kaons, the non-
vanishing value of 	m plays the same role as 	φ and induces KS and KL
interferences, as seen from Eq. (2.9), as well as strangeness oscillations in
time. These oscillations can be used to mimic the different orientations of
polarization analyzers in photonic Bell-tests.(29,31)

The same- and opposite-strangeness detection probabilities:

P(K0, τl; K0, τr ) = P(K̄0, τl; K̄0, τr )

= 1
8

(
e−(�L τl+�S τr ) + e−(�S τl+�L τr )

)

×
{

1 − cos [	m(τl − τr )]
cosh [	�(τl − τr )/2]

}
, (2.12)
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P(K0, τl; K̄0, τr ) = P(K̄0, τl; K0, τr )

= 1
8

(
e−(�L τl+�S τr ) + e−(�S τl+�L τr )

)

×
{

1 + cos [	m(τl − τr )]
cosh [	�(τl − τr )/2]

}
(2.13)

are obtained for both active and passive joint measurements.(49) Note
that for entangled B-meson pairs created in ϒ(4S) → B0B̄0 decays, the
same- and opposite-beauty detection probabilities simplify into:

P(B0, τl; B0, τr ) = P(B̄0, τl; B̄0, τr )

= 1
4
e−(τl+τr ) �B {1 − cos[	mB (τl − τr )]} , (2.14)

P(B0, τl; B̄0, τr ) = P(B̄0, τl; B0, τr )

= 1
4
e−(τl+τr ) �B {1 + cos[	mB (τl − τr )]} (2.15)

due to the smallness of the BL and BH lifetime difference (�L = �H =
�B). Note also that for τl = τr we have perfect EPR–correlations in
JPC = 1−− meson–antimeson pairs: the same-flavour probabilities (2.12)
and (2.14) vanish and the opposite-flavour probabilities (2.13) and (2.15)
take the maximal values.

Entanglement in the flavour quantum number has been tested exper-
imentally, over macroscopic distances, for kaons at CPLEAR,(46) using
active strangeness measurements, and for B-mesons at Belle,(41) using
passive measurements of beauty. The non–separability of the meson–
antimeson J PC = 1−− state could be also observed at the Da�ne φ-
factory,(44) using passive(53) and (with some modification of the set-up)
active strangeness measurements.

3. BELL’S INEQUALITY TESTS WITH MESON-ANTIMESON
PAIRS

3.1. Requirements to Establish Genuine Bell’s Inequality Tests

The requirements for deriving from LR a Bell’s inequality which
could contradict quantum–mechanical predictions can be summarized as
follows:
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(1) A non–factorizable or entangled state must be used;

(2) Alternative (mutually exclusive) measurements corresponding to
two non-commuting observables must be chosen at will both on
the left and right side;

(3) Dichotomic outcomes should correspond to each single measure-
ment (or trichotomic if the possibility of undetected events is con-
sidered as a third outcome);

(4) Measurement events must be space-like separated.

The first requirement poses no problem. As previously stated, entan-
glement has been confirmed experimentally for meson—antimeson pairs.
It is then important to explore the possibility to derive genuine Bell’s
inequalities for such systems.

Difficulties appear with requirement number (2). Indeed, among the
differences between the singlet-spin state of entangled photons and the
K0K̄0 entangled state previously considered, the most important one is
that while for photons one can measure the linear polarization along any
space direction chosen at will, measurements on neutral kaons are only of
two kinds: one can chose to measure either strangeness or lifetime. This
reduces considerably the possibilities of Bell-tests with neutral kaons. For
entangled B0B̄0 pairs the situation is even more unfortunate: indeed, the
lack of active measurement procedures for B-mesons makes impossible the
derivation of genuine Bell’s inequalities.(43)

Also, in order to establish the feasibility of a real test, one has to derive
the detection efficiencies necessary for a meaningful quantum–mechanical
violation of the considered Bell’s inequality. In addition, decay events are
known to further complicate the issue. With all this in mind and in the
light of the basic requirements (1)–(4), we proceed now to analyse various
proposals of Bell–tests with entangled meson–antimeson pairs.

3.2. Proposals with Passive Measurements

A recent paper(41) claims that a violation of a Bell’s inequality has been
observed for the first time in particle physics using the particle–antiparticle
correlations in semileptonic B-meson decays. Other authors(27) proposed an
analogous test with neutral kaons. In the following we show that, since B-
or K-decays serve to identify flavour passively, the inequalities considered
in Refs. 27 and 41 cannot be considered genuine Bell’s inequalities.

To exemplify, let us consider in some detail the recent test of Ref. 41,
where an entangled B-meson state analogous to that of Eqs. (2.9) and
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(2.10) was employed. The experiment measured the joint probabilities of
Eqs. (2.14) and (2.15). The flavour of each member of the pair was
identified by observing its semileptonic decay. The decay channel f =
D∗(2010)−l+νl , which is forbidden for a B̄0, unambiguously comes from
a B0, while the opposite is true for the respective charge conjugated mode
f̄ = D∗(2010)+l−ν̄l (l = e, µ). The corresponding partial decay widths
satisfy �B0→f = �B̄0→f̄ .(47) Experimentally, one counts the number of
joint B-meson decay events into the distinct decay modes fl,r and in the
appropriate time intervals [τl,r , τl,r + dτl,r ]; then the joint decay probabili-
ties P(fl, τl; fr, τr ) are obtained after dividing these numbers by the total
number of initial B0B̄0 pairs. Finally, the corresponding joint decay rates
�(fl, τl; fr, τr ) are derived as:

�(fl, τl; fr, τr ) ≡ d2P(fl, τl; fr, τr )

dτl dτr

= P(Bl, τl; Br, τr ) �Bl→fl
�Br→fr

(3.1)

from which the joint probabilities P(Bl, τl; Br, τr ) of Eqs. (2.14) and (2.15)
immediately follow. The data of Ref. 41 are found to be in good agreement
with the quantum–mechanical predictions in Eqs. (2.14) and (2.15). This is
a convincing proof of the entanglement between the two members of each
B-meson pair, but is it a meaningful test confronting LR versus QM?

In our view and because of the lack of active measurements, the
Clauser, Horne, Shimony and Holt (CHSH)(7) inequality tested in Ref. 41
is not a genuine Bell’s inequality. The conventional and most convincing
procedure to demonstrate this consists in constructing a local model of hid-
den variables which agrees with the quantum–mechanical predictions and
thus with the experimental data of Ref. 41. In the present case, this is easily
achieved(43) by simply adapting an original argument introduced by Kas-
day(54) in another context. Each B0B̄0 pair is assumed to be produced at
τ = 0 with a set of hidden variables {τl, fl, τr , fr} deterministically spec-
ifying ab initio the future decay times and decay modes of its two mem-
bers. Different B-meson pairs are then supposed to be produced with a
probability distribution coinciding precisely with the joint decay probability
P(fl, τl; fr, τr ) entering Eq. (3.1). Note that the conventional normaliza-
tion in the hidden variable space,

∫
dλ ρ(λ) = 1, is now similarly given by

�fl,fr

∫
dτl

∫
dτr �(fl, τl; fr, τr ) = 1, where the time integrals extend from

0 to ∞ and the sum to all B0 and B̄0 decay modes. Note also that our
proposed hidden variable distribution function P(fl, τl; fr, τr ) reproduces
the successful quantum—mechanical description of all the measurements in
Ref. 41. More importantly, our ad hoc local realistic model also violates the
inequality measured there. This proves that the inequality tested in Ref. 41 is
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not a genuine Bell-inequality, which, by definition, has to be satisfied in any
local realistic approach. A similar criticism applies to the inequality derived
in Ref. 27 for entangled K0K̄0 pairs. The failure of both discussions is due
to the lack of an active intervention of the experimenter.

3.3. Proposals with Active Measurements in Free Space

The analogy between strangeness and linear polarization measure-
ments has been exploited by several authors. In the analysis by Ghirardi
et al.(21) one considers the K0K̄0 state (2.10) and performs active joint
strangeness measurements at two different times on the left beam (τ1 and
τ2) and at other two different times on the right beam (τ3 and τ4). The
detection times should be chosen at will and in accordance with the local-
ity requirement. The proposed inequality is again in the CHSH form:(7)

|ELR(τ1, τ3) − ELR(τ1, τ4) + ELR(τ2, τ3) + ELR(τ2, τ4)| � 2, (3.2)

where E(τr , τr ) is a correlation function which takes the value +1 when
either two K̄0’s or no K̄0’s are found in the left (τl) and right (τr ) mea-
surements, and −1 otherwise:

E(τl, τr ) ≡ P(Y, τl; Y, τr) + P(N, τl; N, τr)

−P(Y, τl; N, τr) − P(N, τl; Y, τr). (3.3)

The probabilities entering this correlation function, where Y (Yes) and
N (No) answer to the question whether a K0 is detected at the con-
sidered time, can be obtained in QM from Eqs. (2.12) and (2.13), and
EQM(τl, τr ) = − exp {−(�L + �S)(τl + τr )/2} cos[	m (τl − τr )].

Because of strangeness oscillations in free space along both kaon
paths, choosing among four different times corresponds to four differ-
ent choices of measurement directions in the photon case. In this sense,
there is a total analogy and CHSH inequality (3.2) is a strict consequence
of LR. Unfortunately, this inequality is never violated by QM because
strangeness oscillations proceed too slowly and cannot compete with the
more rapid kaon weak decays. The conclusion is the same for the CHSH
inequalities derivable for the B0–B̄0 and D0–D̄0 meson systems.(36,42) On
the contrary, genuine CHSH inequalities violated by QM could be derived
for B0

s B̄0
s pairs if active flavour measurements were possible for these me-

sons. As discussed in Refs. 31 and 32, Bell’s inequalities exploiting strange-
ness measurements at four different times can be violated by QM only if
a normalization of the observables to undecayed kaon pairs is employed.
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Unfortunately, the Bell’s inequalities obtained with such a normalization
procedure are non-genuine.(42)

In Ref. 24, Uchiyama derived the following Wigner-like inequality:(5)

PLR(KS, K0) � PLR(KS, K1) + PLR(K1, K
0) (3.4)

for the entangled kaon state of Eq. (2.8). The joint probabilities are assumed
to be measured at a proper time τ = τl = τr very close to the instant of the
pair creation, τ → 0; therefore, the inequality would eventually test non-
contextuality rather than locality. Inserting the quantum–mechanical prob-
abilities into Eq. (3.4), one obtains Re ε � |ε|2, which is violated by the
presently accepted value of ε. Note that the proposed inequality involves
passive measurements along a new, third basis consisting of the two CP
eigenstates (K1 and K2). But the smallness of |ε| and Eq. (2.3) preclude
any realistic attempt of discriminating between lifetime (KS versus KL) and
CP (K1 versus K2) eigenstates. In this sense, the interest of inequality (3.4)
reduces to that of a clear and well-defined gedanken experiment.

3.4. Proposals with Active Measurements and Regenerators

The authors of Refs. 29 and 30, while insisting on the convenience of
performing only unambiguous strangeness measurements, have substituted
the use of different times (as in Ref. 21) by the possibility of choosing
among different kaon regenerators to be inserted along the kaon path(s).
The well-known regeneration effect can be interpreted as producing adjust-
able “rotations” in the kaon “quasi-spin” space analogous to the strange-
ness oscillations (i.e., quasi-spin oscillations in vacuum) in Ref. 21, without
requiring additional time intervals. One can thus derive Bell’s inequalities,
violated by QM, for simultaneous left–right strangeness measurements.
The drawback of these analyses is that, up to now, they only refer to thin
regenerators and the predicted violations of Bell’s inequalities (below a few
per cent) are hardly observable.

Eberhard(22) considered the alternative option, based on KS versus
KL identification, for establishing a Bell’s inequality. He combined such
measurements in four experimental set-ups. In a first set-up, the state (2.9)
is allowed to propagate in free space; its normalization is lost because of
weak decays, but its perfect antisymmetry is maintained. In the other three
set-ups, thick regenerators are asymmetrically located along one beam,
or along the other or along both. An interesting inequality relating the
number of KL’s detected downstream from the production vertex and in
each experimental set-up is then derived from LR. It turns out to be
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significantly violated by quantum–mechanical predictions. Unfortunately,
these successful predictions have some practical limitations, as already dis-
cussed by the author.(22) In particular, they are valid for asymmetric φ-
factories (where the two neutral kaon beams form a small angle), whose
construction is not foreseen.

New forms of Bell’s inequalities for neutral kaons not affected by the
drawbacks we have just mentioned have been derived in Ref. 34. Here, two
kinds of active measurements, K0 versus K̄0 and KS versus KL, have been
considered in various alternative experimental set-ups with a thin regener-
ator fixed on the right beam as close as possible to the kaon-pair crea-
tion point. The proper time 	τr required by the neutral kaon to cross the
regenerator is assumed to be short enough (	τr 
 τS) to neglect weak
decays. Then free space propagation is allowed up to a proper time T ,
with τS 
 T 
 τL. The normalization to surviving pairs leads then to
the non-maximally entangled state:

|�〉 = 1√
2 + |R|2

[|KS〉l |KL〉r − |KL〉l |KS〉r + R|KL〉l |KL〉r ] , (3.5)

where

R ≡ −re−i(	m− i
2 	�)T (3.6)

and

r ≡ i
πν

mK
(f − f̄ )	τr = i

πν

pK
(f − f̄ )d (3.7)

is the regeneration parameter. In Eq. (3.7), mK is the average neutral kaon
mass, pK the kaon momentum, f (f̄ ) the K0-nucleus (K̄0-nucleus) forward
scattering amplitude, ν the density of scattering centres of the homoge-
neous regenerator whose total thickness is d. The state (3.5) describes all
kaon pairs with both left and right partners surviving up to a common
proper time T .

At this point, alternative measurements of strangeness or lifetime will
be performed on each one of these kaon pairs (3.5) according to the
strategies for active measurement procedures illustrated in Sec. 2. Care has
to be taken to choose T large enough to guarantee the space-like sep-
aration between left and right measurements. Locality excludes then any
influence from the experimental set-up encountered by one member of the
kaon pair at time T on the behaviour of its other-side partner between T

and T +	τ . For kaon pairs from φ decays, moving at β � 0.22, and using
an interval time 	τ = 4.8 τS for the lifetime identification, this implies
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T > (β−1 − 1)	τ/2 = 8.7 τS, with a considerable reduction of the total
kaon sample; a reduction which is much more moderate for more relativ-
istic kaons as in pp̄ annihilations.

The requirements (1)–(4) of Sec. 3.1 for deriving genuine Bell’s
inequalities are thus fulfilled and one can write several inequalities. Among
these, we first discussed(34) a Clauser and Horne (CH) inequality(8) which
was substantially violated by QM. More recently, in Ref. 35 we have
improved the analysis of Ref. 34 by applying Hardy’s proof without
inequalities of Bell’s theorem(55) to the state (3.5).

Let us concentrate on the proof of Ref. 35. Neglecting for the
moment CP -violation and KL–KS misidentification effects, from state
(3.5) with R = −1 (called Hardy’s state) one obtains the following quan-
tum–mechanical predictions:

PQM(K0, K̄0) = η η̄

12
, (3.8)

PQM(K0, KL) = 0, (3.9)

PQM(KL, K̄0) = 0, (3.10)

PQM(KS, KS) = 0, (3.11)

where η (η̄) is the K0 (K̄0) overall detection efficiency. It is found that the
necessity to reproduce, under LR, equalities (3.8)–(3.10) requires:

PLR(KS, KS) � PLR(K0, K̄0) = η η̄

12
, (3.12)

which contradicts Eq. (3.11). In principle, this allows for an “all-or-nothing”
Hardy-like test of LR versus QM. In Ref. 35 it was concluded that, by
requiring a perfect discrimination between KS and KL states, an experiment
measuring the joint probabilities of Eqs. (3.8)–(3.11) closes the efficiency
loophole even for infinitesimal values of the strangeness detection efficien-
cies η and η̄. However, since KL–KS misidentifications (due to the finite
value of �S/�L � 579) do not permit an ideal lifetime measurement even
when the detection efficiency ητ for the kaon decay products is 100%,(37)

the original proposal must be reanalysed paying particular attention to the
inefficiencies involved in the real test.

Retaining the effects due to the KS–KL misidentification, from Eq. (3.5)
with R = −1 one obtains (see the Appendix for details):
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PQM(K0, K̄0) = ηη̄

12
, (3.13)

PQM(K0, KL) = 6.77 × 10−4η ητ , (3.14)

PQM(KL, K̄0) = 6.77 × 10−4η̄ ητ , (3.15)

PQM(KS, KS) = 1.19 × 10−5η2
τ , (3.16)

which replace the results of Eqs. (3.8)–(3.11) and where ητ is the effi-
ciency for the detection of the kaon decay products. In the standard
Hardy-like proof of non-locality,(55) the probabilities corresponding to our
(3.14)–(3.16) are perfectly vanishing. In our realistic case, they are very
small but not zero. Nevertheless, this does not prevent us from deriving a
contradiction between LR and QM. Indeed, as proved in Ref. 56, the well-
known criterion of physical reality of EPR(1) can be generalized to include
predictions made with almost certainty, as it is required in our case due to
the non-vanishing values of probabilities (3.14)–(3.16).

According to this generalization, the following Eberhard’s inequal-
ity(19) must be used to demonstrate the incompatibility between LR
and QM:

HLR≡ PLR(K0, K̄0)

PLR(K0, KL)+PLR(KS, KS)+PLR(KL, K̄0)+P(K0, ULif )+P(ULif , K̄0)
�1.

(3.17)

Note that this inequality involves the probabilities of Eqs. (3.13)–(3.16)
together with two probabilities containing lifetime undetection, whose
expressions in QM are:

PQM(K0, ULif ) = 1
6
η (1 − ητ ) , (3.18)

PQM(ULif , K̄
0) = 1

6
η̄ (1 − ητ ) . (3.19)

Note also that the use of an inequality(57) allows for small deviations
(existing in real experiments) around the value R = −1 required to pre-
pare our Hardy’s state. Essentially, inequality (3.17) is a different writing
of the following inhomogeneous CH inequality:(8)

QLR ≡ PLR(KS, K̄0) − PLR(KS, KS) + PLR(K0, K̄0) + PLR(K0, KS)

PLR(K0, ∗) + PLR(∗, K̄0)
� 1,

(3.20)
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where

PLR(K0, ∗) = PLR(K0, KS) + PLR(K0, KL) + PLR(K0, ULif ),

PLR(∗, K̄0) = PLR(KL, K̄0) + PLR(KS, K̄0) + PLR(ULif , K̄
0)

(3.21)

and inhomogeneous refers to the appearance of both coincidence and
single probabilities in the various terms of the inequality, as discussed
by Santos.(20) Both Eberhard’s and CH inequalities are actually derivable
from LR for any value of R. However, Hardy’s proof leads to inequality
(3.17) only for Hardy’s state (R = −1). It is important to stress that the
previous Eberhard’s and CH inequalities have been obtained without invok-
ing supplementary assumptions on undetected events. They are both genu-
ine Bell’s inequalities and provide the same restrictions on the efficiencies
η, η̄ and ητ required for a detection loophole free experiment.

In order to discuss the feasibility of such an experiment, let us start
considering a few ideal cases. Assume first that perfect discrimination
between KS and KL were always possible (ητ = 1 and pL = pS = 1, see
Appendix); one could then make a conclusive test of LR for any nonvan-
ishing values of η and η̄: H

ητ =pL=pS=1
QM → ∞, ∀ η, η̄ �= 0. In a second ideal

case with no undetected events, i.e. with η = η̄ = ητ = 1, the inequali-
ties are strongly violated by QM: H

η=η̄=ητ =1
QM � 60.0, Q

η=η̄=ητ =1
QM � 1.25,

even if one allows for unavoidable KS and KL misidentifications. Finally,
assuming that only the detection efficiency of kaon decay products is ideal
(ητ = 1), for η = η̄ (η = η̄/2), Eberhard’s and CH inequalities are con-
tradicted by QM whenever η > 0.023 (η > 0.017).

Let us now consider more realistic situations with small and achiev-
able values of η and η̄. This implies that we have to consider large, but
still realistic, decay-product detection efficiencies such as ητ = 0.97, 0.98,
0.99 and, ideally, 1. For each ητ , the values of η and η̄ that permit a detec-
tion loophole free test (HQM, QQM > 1) lie above the corresponding curve
plotted in Fig. 1. As expected, when ητ decreases, the region of η and η̄

values which permits a conclusive test diminishes and larger values of η

and η̄ are required. Note, however, that the strangeness detection efficien-
cies required for a conclusive test of LR versus QM with neutral kaons are
considerably smaller than the limit (η0 = 0.67) deduced by Eberhard(19) for
non-maximally entangled photon states. The values for η and η̄ required
by the test we have proposed seem to be not far from the present experi-
mental capabilities.

4. CONCLUSIONS

A series of recent proposals aiming to perform Bell’s inequality tests
with entangled pairs of pseudoscalar mesons have been discussed. This
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Fig. 1. The four curves (corresponding to ητ = 1, 0.99, 0.98 and
0.97) provide the values of η and η̄ for which HQM = QQM = 1 using
Hardy’s state. The QM violates inequalities (3.17) and (3.20) for val-
ues of η and η̄ situated above the corresponding curve.

includes, in particular, pairs of neutral kaons or B-mesons. The relativis-
tic velocities of these mesons and their strong interactions seem to offer
the possibility of simultaneously closing the so-called locality and detec-
tion loopholes. The real situation, however, is not a simple one.

In several proposals, the measurements required to perform a Bell-
test consist in identifying the flavour of each meson via its observed decay
mode. The inequalities so derived are not a consequence of LR and, in
this sense, cannot provide Bell-tests of LR versus QM. The reason is that
the observed meson decays correspond to passive flavour measurements—
with no choice for the experimenter—in such a way that a local real-
istic model can always be constructed reproducing all the probabilities
predicted by QM.

Other proposals suffer from the difficulties coming from the fact that
the number of different complementary measurements on pseudoscalar
mesons is very small. For neutral kaons, for instance, they essentially
reduce to strangeness and lifetime measurements. A situation which can
be improved if the well known effects of kaon regeneration are taken into
account.

Indeed, a series of papers have proposed Bell-tests with neutral kaons
using kaon regeneration. On the one hand, this amounts to an effective
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increase of the number of mutually exclusive measurements one can
perform. On the other, by changing or removing the regenerators the
active presence of the experimenter is guaranteed. A final difficulty could
still remain: the low efficiency of some of these neutral kaon measure-
ments. A detailed analysis suggests that a Bell-test with neutral kaons free
from the detection loophole would require a few percentage of strange-
ness detection efficiencies and very high efficiencies for the detection of the
kaon decay products. Both requirements seem achievable with present day
technology.
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APPENDIX

In Ref. 35, KS’s states at time T are identified through decay events
taking place between times T and T +	τ ; similarly, KL’s states are identi-
fied as kaons decaying after time T +	τ . For 	τ = 4.8 τS, the probabilities
for correct KS and KL identifications are:

pS ≡ 1 − exp (−4.8) = pL ≡ exp (−4.8/579) = 0.9918. (4.1)

and misidentifications are thus at the level of some eight per thousand.
One can further reduce these misidentifications by considering not

only the kaon decay time but also the decay channel. Neglecting KS and
KL branching ratios smaller than 10−5, decays into πππ identify KL’s and
only semileptonic and ππ channels are accessible to both KS and KL:(47)

BR(KL → πeνe or πµνµ) = 0.6600, BR(KL → ππ) = 0.0030, BR(KS →
πeνe or πµνµ) = 0.0011 and BR(KS → ππ) = 0.9989. However, semilep-
tonic decays have to be assigned to KL’s decays for any decay time (this
implies that a fraction equal to BR(KS → πeνe or πµνµ) = 1.1 × 10−3 of
the KS’s is going to be misidentified). Indeed, the probability that a KL
decays semileptonically in a time interval 	τ after T is larger than the
probability corresponding to a KS, for any value of 	τ . A decay into ππ

occurring between T and T +5.82 τS (after T +5.82 τS) has to be assigned
to a KS (KL). In fact, the probability that a KS [KL], which is alive at time
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T , decays into ππ after T + 	τ is PS(	τ) = exp(−	τ/τS)BR(KS → ππ)

[PL(	τ) = exp(−	τ/τL)BR(KL → ππ)] and PL(	τ) is larger (smaller)
than PS(	τ) for 	τ > 5.82 τS (	τ < 5.82 τS). The probabilities that KS’s
and KL’s are actually identified as KS’s and KL’s are thus:

pS = 1 − BR(KS → πeνe or πµνµ) − BR(KS → ππ) exp(−5.82)

= BR(KS → ππ)[1 − exp(−5.82)] = 0.99594,

pL = 1 − BR(KL → ππ)[1 − exp(−5.82/579)] = 0.99997
(4.2)

thus improving the lifetime identification with respect to the method of
Eq. (4.1).

Retaining the effects due to the KS–KL misidentification (CP-violation
and the non-orthogonality of |KL〉 and |KS〉 can indeed be neglected),
from Eq. (3.5) with R = −1 we obtain:

PQM(K0, K̄0) = ηη̄

12
, (4.3)

PQM(K0, KL) = |〈K0KS|�〉|2η ητ (1 − pS) = 1
6η ητ (1 − pS), (4.4)

PQM(KL, K̄0) = |〈KSK̄0|�〉|2η̄ ητ (1 − pS) = 1
6 η̄ ητ (1 − pS), (4.5)

PQM(KS, KS) = 2
3
η2

τ

{
pS(1 − pL) − BR(KS → ππ) BR(KL → ππ)

× �S�L

�2 + 	m2
×

[
1 − 2e

−5.82 �
�S cos

(
5.82

	m

�S

)

+ e
−2×5.82 �

�S

]}
(4.6)

from which the numerical values of Eqs. (3.14)–(3.16) follow via Eq. (4.2)
and Ref. 47.

In Eq. (4.4) [(4.5)] semileptonic KS decay events on the right (left)
and KS states surviving up to T + 5.82 τS are wrongly assumed as com-
ing from KL’s. The derivation of Eq. (4.6) deserves some comment. Since
KS’s are identified through their ππ decays occurring between times T and
T +5.82 τS, experimentally one has to measure the following double differ-
ential rate:

�(ππ, τl; ππ, τr) =
∫

d�l

∫
d�r |A(ππ, τl; ππ, τr)|2 , (4.7)

where the integrations are over the phase space for the decay product
states and 0 � τl, τr � 5.82 τS. The corresponding amplitude is obtained
from Eq. (3.5) with R = −1 as:
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A(ππ, τl; ππ, τr) = 1√
3
〈ππ |T |KS〉〈ππ |T |KL〉

×[
e−iλSτl−iλLτr − e−iλLτl−iλSτr

]
, (4.8)

where we have neglected the small contribution coming from the |KL〉l |KL〉r
part of the state and λL,S = mL,S − i �L,S/2. The joint probability (4.6) is
then computed with the following relation:

PQM(KS, KS) =
∫ 5.82 τS

0
dτl

∫ 5.82 τS

0
dτr �(ππ, τl; ππ, τr). (4.9)
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