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There are aspects of privacy theory that are analogous to quantum theory. In
particular one can define distillable key and key cost in parallel to distillable
entanglement and entanglement cost. We present here classical privacy theory
as a particular case of information theory with adversaries, where similar gen-
eral laws hold as in entanglement theory. We place the result of Renner and
Wolf—that intrinsic information is lower bound for key cost—into this general
formalism. Then we show that the question of whether intrinsic information is
equal to key cost is equivalent to the question of whether Alice and Bob can
create a distribution product with Eve using IM bits of secret key. We also
propose a natural analogue of relative entropy of entanglement in privacy the-
ory and show that it is equal to the intrinsic information. We also provide a
formula analogous to the entanglement of formation for classical distributions.

KEY WORDS: Classical privacy; quantum entanglement; intrinsic informa-
tion; key cost; relative entropy distance.

1. INTRODUCTION

There is a deep connection between quantum entanglement and classical
privacy (see e.g. Refs. 1, 2). In entanglement theory, one of the basic ques-
tions is how many singlets Alice and Bob can draw from quantum state
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Gdańsk, Poland.
4 Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, Cam-

bridge, UK.

2027

0015-9018/05/1200-2027/0 © 2005 Springer Science+Business Media, Inc.



2028 Horodecki, Horodecki, Horodecki, and Oppenheim

�AB by use of local operations and classical communication, while in pri-
vacy theory one asks how many shared random secret bits (private key)
can Alice and Bob obtain from probability distribution pABE shared with
an adversary Eve, by use of local operations and public communication. The
protocols of distilling key were used to build protocols of distillation of
singlets.(3) The teleportation(4) via singlets can be thought as analogue of
performing one-time pad by using secret key.(2) Recently more and more
connections between entanglement and privacy have been obtained (see
e.g. Refs. 5,6–9). In particular, the ideas from entanglement have been
transferred into privacy theory.(6,9) The notion of key cost,(10) i.e. num-
ber of bits of private key, needed to create a probability distribution pABE
was introduced.(1) Renner and Wolf(6) showed that there is irreversibility
between distillable key and key cost, similar to that in entanglement the-
ory. In particular they proved that a function called the intrinsic informa-
tion Iintr is a lower bound for key cost.

In this paper we develop connections between entanglement and clas-
sical privacy theory. The basic question is whether we can have a result
equivalent to Ref. 11. There, the following was shown. Consider the entan-
glement of formation of a quantum state with density matrix ρAB held
between two parties (Alice and Bob) and defined by

EF = inf
∑

i

piS(T rA|ψi〉〈ψi |), (1)

where the infimum is taken over all decompositions of

ρAB =
∑

i

pi |ψi〉〈ψi |, (2)

and S is the Von Neumann entropy and T rA is partial trace over Alice’s
system. Now consider the regularization of this function, i.e.

Ec = lim
n→∞

EF (ρ
⊗n
AB)

n
. (3)

Then, it was shown that this regularized entanglement of formation is
equal to the entanglement cost of creating the state out of singlets. The
result in entanglement theory was based on two ingredients: (1) regular-
ized EF [12] is lower bound for the entanglement cost, (2) pure states
can be transformed reversibly into each other. Result (1) comes essentially
from a general relation between so called monotones and transitions rates.
Ingredient (2) was obtained [13] by constructing protocols that transform
reversibly pure states into singlets (then trivially, going through singlet, any
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pure state can be reversibly transformed into any other one). It implies
that EF is also an upper bound of entanglement cost.

In privacy theory, the question translates to: is the intrinsic infor-
mation Iintr of the probability distribution pABE equal to the cost of
producing such distribution by Alice and Bob out of ideal private key?
(regularization is not needed because Iintr is additive). That Iintr is a lower
bound for key cost was proven in Ref. 6.

In this paper we show that the following analogue of result (2) will
give the converse (i.e. that Iintr is upper bound for key cost). Namely, one
should show that Alice and Bob can transform reversibly any distribution
product with Eve into any other distribution product with Eve. We point
out that one ingredient of the proof of this result is already known: one
knows that out of distribution product with Eve, Alice and Bob can pro-
duce an amount of private key equal to the mutual information of the key.
We then conclude that to prove or disprove the equality between Iintr and
key cost, one should show that to prepare a distribution product with Eve,
it is enough to share an amount of key equal to the mutual information
of the distribution (or prove that this is impossible).

Note added: Very recently, a forgotten paper of Wyner(14) has been
discovered through the archeological work of Andreas Winter. There, a
single letter formula for the common information was given which can
be strictly larger than the mutual information. Shortly after it’s discov-
ery, it was abandoned, the thinking presumably being that distillable com-
mon randomness was a more natural definition of common information.
Wyner’s function between two distributions X and Y is

C(X : Y ) ≡ inf
W
I (X, Y : W), (4)

where the infimum is taken over W in the Markov chain X → W → Y .
This can thus be interpreted as the key cost of creating a distribution
product with Eve. This result allows us to complete many of the unan-
swered questions originally posed here. Throughout our paper, one can
replace our function J (X, Y ) with that of Wyner. This implies an explicit
formula for the key cost of distributions X, Y,Z with the variable Z

belonging to the adversary (Proposition 1, with a lower bound following
straight-forwardly from monotonicity of the function). This function can
be strictly greater than the intrinsic information.

We also discuss the result of Renner and Wolf giving a lower bound
for key cost and put it into a general formalism which is a natural modifi-
cation of the one in entanglement theory. Namely, we show that similarly
as in the case of entanglement cost, one can use here a general relation
between monotones and transition rates. The suitable modification of the
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scheme from entanglement theory was provided in Ref. 15. However, the
authors didn’t consider conditions that are essential in asymptotic rate
transitions: regularization and asymptotic continuity. Here we fill this gap.
Moreover we generalize the scheme so that it become independent of pri-
vacy theory. What we obtain is information theory with adversaries. We
restrict ourselves to the case of two adversaries. Each of them have their
own class of operations. What is resource for one of them is not for other
one and vice versa.

Finally, seeking for other potential advantages from the analogy
between privacy and entanglement, we define the counterpart of relative
entropy of entanglement.(16) We then show that unlike in entanglement
theory, it is equal to the intrinsic information.

2. INFORMATION THEORIES: THE ROLE OF MONOTONES

To begin with, let us note that what we are dealing with are vari-
ous information theories. Essentially, a specific information theory is deter-
mined by a class of operations. The most important notion is transition
rate between states optimized over the class of operations. Other impor-
tant notions are monotones: functions that cannot increase under the class
of operations. An example is entanglement theory, where monotones are
entanglement measures, transition rates are, in particular, entanglement
of formation and entanglement of distillation (number of singlets that
one can obtain from a given state). Of course, another example is also
the ”mother theory” i.e. Shannon’s one, where the central theorem tells
us about the optimal simulation of a noiseless channel by a noisy one.
The role of states is played by channels; the transition—by simulating
one channel with another one; the operations are local ones (coding and
decoding). In cryptography there are two classes of operations: one is the
class of operations of trusted parties Alice and Bob, and the second by
their adversary Eve. Still one can design a similar formalism, following
Ref. 15. Such theories we will call information theories with adversary.

Monotones in information processing. In Ref. 17 following(18,19) a gen-
eral paradigm was formulated concerning asymptotic rates of transferring
states into other states by means of restricted classes of manipulations.
The main notion is asymptotic rate of transition. Given a class of oper-
ations, one can ask, at what rate it is possible to transform state ρ into
σ , given large n independent copies of ρ,

ρ⊗n → σ⊗m. (5)
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The above means that acting on ρ⊗n by allowed operations, we get some
state σm that is close to the desired state σ⊗m for large n. The optimal rate
R(ρ → σ) is defined as infimum of m/n, where we take the limit of large
n.

Such rates are limited by the amount of resources contained in the
source and target states. By resource one means any quantity that can-
not be increased by the allowed operations. Clearly, one cannot have such
a rate that would increase a resource, because in definition of rate, only
allowed operations can be used, which by definition of resource cannot
increase it. Mathematically, a resource is described by a monotone, i.e. a
function of state that cannot increase upon acting by allowed operations

M(�(ρ)) � M(ρ) (6)

for any allowed operation � and state ρ. The statement, that transition
rates are limited by amount of resources present in the states, was made
more precise for asymptotic transition rates in Ref. 17 (see also Ref. 20).
We have

Theorem 1. (Central inequality of information theories).
For any function M, which satisfies (1) asymptotic continuity (2)

monotonicity, one obtains

R(ρ → σ) � M∞(ρ)
M∞(σ )

(7)

for M∞(σ ) �= 0, where M∞(ρ) = lim sup 1
n
M(ρ⊗n). Asymptotic continuity

means here that if ||γn − γ̃n|| → 0 then |M(γn)−M(γ̃n)|/ log dim Hn → 0,
where states γn, γ̃n act on Hilbert space Hn.

The above statement says no more, but that resource M cannot be
increased by transitions. The initial amount of the resource per input copy
is M∞(ρ) and the final amount is just R(ρ → σ)M∞(σ ).

The above formalism originates from entanglement theory, where the
class is local operations and classical communication. As argued in Ref.
17 the above result does not rely on any feature of entanglement. It can
be applied to any situation. In particular it worked in situation, where the
resource was local information,(21) or just information.(22)
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3. INFORMATION THEORIES WITH ADVERSARIES

The paradigm also applies to classical theories, by taking the class of
operations that can be performed classically, and restricting input states to
those diagonal in a fixed basis. An example is the classical theory of pri-
vacy manipulations.

There is however a slight difference between classical privacy theory
and the general scheme mentioned in the previous section. Namely, in
the latter there is no malicious adversary. The needed modification was
done by Ref. 15. We will now shortly recall that paradigm, modifying it
to be suitable in the asymptotic case (i.e. we put regularization and asymp-
totic continuity into the game). Also, we extract an abstract feature of the
scheme, to make it completely general, rather than referring only to pri-
vacy. Simply, we consider any situation where there are adversaries, so that
their operations are assumed to be directed against each other.

As noted, in standard theory, there is one allowable class of opera-
tions, and one wants to do ones best by using it. The state cannot change,
if we will not apply an operation. In classical privacy theory, we have at
least two actors that play against each other. We will provide a description
from the point of view of one of them—call him X . His adversary is tra-
ditionally called Eve. The latter has her own allowed class of operations,
and can change state even though X does not apply any operation. Thus,
in particular we have to redefine the notion of state transition. But first let
us ask, what is resource for X in such situation? Of course, we again have
that

(i) Resource cannot increase under X operations
However it is not the end. Second postulate is needed:

(ii) Resource cannot decrease under operation of adversary Eve

It is easy to see that the last postulate is reasonable: it assumes
that an adversary is as malicious as can be, and always acts optimally.
So, if she has any possibility to decrease X ’s abilities, she will do this.
Thus something, that can be destroyed by her, cannot be treated as a
resource by trusted parties. Consequently in the scenario with an adver-
sary, we have a double postulate of monotonicity. The monotones will now
be called any functions of state, that satisfy (i) and (ii).

Having modified monotonicity, let us now consider the definition of
rate.(6,15) In the scenario with adversaries, a definition of rate transition as
layed out in the introduction does not make sense: X cannot obtain any
state he wishes, because there is an adversary, who can change the state.
Thus the very notion of transition does not make sense as it is. Therefore
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X should not aim to obtain some fixed target state, but rather, to obtain
state that is in a sense no worse than the required state. We can say that
state ρ is no worse than ρ′, if there exists operation � of adversary Eve,
such that �(ρ′) = ρ. The state ρ is now indeed no worse than ρ′, as the
adversary can only increase the resources.

We can now define asymptotic rate of transition R(ρ → σ) as follows:
Take n copies of ρ. X acts on them, and gets some state σ ′

m, which is no
worse than σ ′′

m, which in turn is asymptotically close to σ⊗m. The rate is
again given by supremum of m/n over such protocols in the limit of large
n.

Having defined both rates and monotones, we can now prove the fol-
lowing

Theorem 2. (Central inequality of information theories with adversaries).
The formula (7) holds for information theories with adversary.

Proof. Let us start with n copies of ρ and check what happens to a
chosen monotone M during any protocol that realizes transition between
ρ and σ . First due to monotonicity (i) we have

M(ρ⊗n) � M(σ ′
m). (8)

Now, because the obtained state σ ′
m is “not worse” than σ ′′

m, i.e. σ ′′
m =

�E(σ
′
m) for some Eve operation �E , we can use monotonicity (ii) we get

M(σ ′
m) � M(σ ′′

m). (9)

From these we get

1
n
M(ρ⊗n) � M(σ ′′

m)

m

m

n
. (10)

Due to asymptotic continuity we have

M(σ ′′
m)

m
≈ M(σ⊗m)

m
. (11)

Since in optimal protocol m/n tends to rate we get

M∞(ρ) � R(ρ → σ)M∞(σ ). (12)

This ends the proof.
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Remark. In classical theory, the regularization will usually not matter:
the quantities are most often additive. Two examples are: maximal mutual
information over a channel, and intrinsic information.

Corollary 1. For additive monotones, satisfying M(σ) = 1 we have
R(ρ → σ) � M(ρ) and for those satisfying M(ρ) = 1 we have R(ρ →
σ) � M(σ).

It should be noted here, that in this abstract approach, roles of Eve
and X are symmetric. So far we considered transition rates and mono-
tones from the point of view of X. We could reverse the reasoning, and
obtain the same theorem for Eve, i.e. her optimal transition rates are
bounded by her monotones.

4. CLASSICAL PRIVACY THEORY

An example of theory with adversaries is classical privacy theory.
There the role of X is played by Alice and Bob and the role of Eve is
just played by the eavesdropper Eve. (Let us recall here, that since the
theory with adversaries is completely symmetric between adversaries, so
we could reverse the problem, and analyze resources of Eve. We do not
consider this problem here). The operations of Alice and Bob are local
operations and public communication. Local operations transform the dis-
tribution as usual. The communication acts on the distribution in such a
way that apart from obvious consequence which is modification of Alice
and Bob distribution, any bit of communication is copied and the copy is
added to Eve ’s system. Though one might think that this is Eve’s oper-
ations, we treat it as an element of Alice and Bob operations, because it
is automatically associated with any of Alice and Bob’s public communi-
cation.

Transitions between distributions product with Eve. In entanglement
theory, it is proven that there is asymptotic reversibility for pure states.(13)

Any pure state can be reversibly transformed into the two qubit singlet-
like state,

|ψ+〉 = 1√
2
(|00〉 + |11〉) (13)

with rate SA (entropy of either of the subsystems). The potential ana-
logue of pure states in privacy theory are probability distributions product
against the AB : E cut. We call them private distributions. We do not know
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whether transitions between private distributions can be made reversible.
What is at present known is that for any private distribution of random
variables X, Y shared by Alice and Bob, they can transform it reversibly
into I (X : Y ) bits of perfect key. Here I (X, Y ) is Shannon mutual infor-
mation

I (X, Y ) = H(X)+H(Y)−H(X, Y ) ≡ H(X)−H(Y |X), (14)

where H(X) is Shannon entropy of probability distribution of random
variable X, and H(X, Y ) is entropy of joint probability distribution;
H(Y |X) = H(Y)−H(X, Y ) is called conditional entropy.

To get key, Alice performs part of the so called Slepian–Wolf com-
pression,(23) sending the information about X (while holding a copy of it
X′) to Bob by use of H(X|Y ) bits, so that Bob has now X on his side.
The mutual information between Alice and Bob is now H(X) (X and X′
are perfectly correlated), while the mutual information between Alice and
Eve is no more than H(X|Y ). Thus by Refs. 24, 25 the can distill I (X, Y )
bits of key.

The converse would be possible, if for example we had a scheme of
visible compression of information carried by probability distributions that
achieve the lower bound given by the Holevo quantity obtained in Ref. 26.
However until now it is not known whether such a scheme exists.

To see how it would work, suppose that we have the following result
on compression of information from sources with mixed signal states.
Consider a source at Alice’s site emitting with probability p(x) a distri-
bution qx(y). The task is to reproduce asymptotically faithfully qx(y) at
Bob’s site, using a minimal amount of bits. One can imagine the follow-
ing

Conjecture 1. The minimal number of bits is equal to Icompr = I (X, Y )

where X and Y are distributed according to p(x, y) = p(x)qx(y).

More precisely, the conjecture states that in the asymptotic regime of
long sequences, when R = Icompr + ε bits are used with Icompr = I (X, Y ),
the obtained distributions q̃x(y) would satisfy high fidelity criterion

∑

x

p(x)
∑

y

√
qx(y)

√
q̃x(y) → 1. (15)

This problem was developed in Ref. 27. There are good reasons to believe
that this conjecture is false, and we hope to address this in a future work.
However, basing on the conjecture one can easily provide the protocol
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for formation of (X, Y ) with arbitrary distribution p(x, y). Namely, Alice
picks at random x with probability p(x) and by use of I (X, Y ) bits repro-
duces at Bob’s side qx(y) which she chooses to be p(y|x). From (15) it
then follows that

∑

xy

√
p(x, y)

√
p̃(x, y) =

∑

x

p(x)
∑

y

√
q(y|x)

√
q̃(y|x → 1. (16)

We should mentioned here that one can achieve the bound of conjecture
if additional resource is allowed: shared random bits.(28) However from
our point of view this is useless, because the additional shared randomness
would be correlated with Eve, and the produced final distribution would
not be product with Eve.

4.1. Intrinsic Information as Analogue of Entanglement of Formation

Entanglement of formation EF of a state �AB can be defined as fol-
lows. Consider purification ψABC of the state �AB . Let Charlie perform
such measurement on his system, that for any outcome i, Alice and Bob
share some pure state ψABi . When he tells them honestly the outcome of
his measurement, they will share on average

∑
i piE(ψi) of pure entan-

glement. Entanglement of formation is the minimal average entanglement
over all Charlie measurements. Thus entanglement of formation is pure
entanglement available for Alice and Bob, when Charlie is adversary, who
nevertheless honestly applies some rules.(29) When Alice and Bob cannot
trust Charlie, the available pure entanglement is distillable entanglement,
which is then obviously not greater than EF .

In privacy theory, consider distribution (X, Y, Z). Similarly, Eve per-
forms any operation on her variable Z → Z′ and then reveals the value to
Alice and Bob. Given revealed value z′, Alice and Bob share distribution
p(x, y|z′) product with Eve, so that on average they share I (X, Y |Z′) ≡∑′
z p(z

′)I (X, Y |Z′ = z′) bits of key, assuming Eve revealed the values hon-
estly. Intrinsic information Iintr is defined as infimum of I (X, Y |Z′) over
Eve’s operations. It is obviously greater, than distillable key (as it is key
drawn with some help of Eve, while distillable key is drawn without any
help of Eve).

We will now reproduce the proof of Ref. 6 that intrinsic informa-
tion of distribution (X, Y, Z) is a lower bound for amount of key which
is needed to create such distribution.

To this end let us recall how it was proven that E∞
F is entanglement

cost Ec.(11) That E∞
F is lower bound for Ec follows from inequality (7).
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I.e. it follows from the fact EF is an asymptotically continuous mono-
tone,(3,30) that for singlet has value log d. The converse was shown by con-
struction of a protocol of creation of state. The protocol is suggested by
the original definition of EF : Alice and Bob pick at random i, produce
state ψi from optimal decomposition, and forget i.

Let us now consider intrinsic information. We will argue that the
result of Ref. 6 on the lower bound follows from Corrolary 2. Let us check
that Iintr satisfies needed properties: (1) monotonicity of Iintr over local
actions (Alice, Bob and Eve) follows from the very definition of Iintr (cf.
Ref. 15); monotonicity under public communication was proven in Ref. 6;
2) asymptotic continuity of Iintr is established by the following inequality

|Iintr(p)− Iintr(q)| � 2H(ε, 1 − ε)+ εmin(log X , log Y) (17)

essentially proven in Ref. 6; here X ,Y are ranges of X, Y and ||p−q|| = ε

(a proof can be also obtained by use of Refs. 31, 32) (3) additivity was
applied without proof in Ref. 6 (the proof can be easily obtained from the
proof of additivity of “squashed entanglement” Ref. 32); (4) for 1 bit of
key, Iintr = 1, as for private distribution product with Eve, Iintr is equal to
mutual information. Thus by Corrolary 1 we get that intrinsic information
is lower bound for key cost.

The protocol of formation, is also similar to the quantum one. Con-
sider the optimal channel of Eve. Roughly speaking, Alice picks at ran-
dom z̃, announce it to Bob (so that Eve also get to know it). Then the
task is to produce p(x, y|z̃) which is a private (product) distribution. If
now the cost of producing it requires I (X : Y |Z̃) secret bits, then on aver-
age they Alice and Bob need just Iintr of private bits. Since however we do
not know at present, how many bits of key is needed to produce a private
distribution, we can only get an upper bound in terms of this unknown
function which we denote by J (X, Y ).

Proposition 1. Cost of producing a distribution (X, Y, Z) out of perfect
key is bounded from above by J (X, Y ↓ Z), given by

J (X, Y ↓ Z) = inf�J (X, Y |�(Z)), (18)

where J (X, Y |Z) = ∑
z p(z)J (X, Y |Z = z) with J (X, Y ) being cost of pro-

ducing private distribution (X, Y ); infimum is taken over channels �.

To prove the proposition, let us take the optimal channel �, and
call the produced random variable Z̃. Alice will pick a sequence of z̃’s
of length n. The set of all sequences can be divided into strongly typical
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sequences,(23) that have f (z̃) occurrences of each z̃ (where npz̃(1 − δ) �
f (z̃) � npz̃(1 + δ)) and all other sequences are negligible, since they occur
with ε probability. (δ and ε can be made arbitrarily small by choosing
large n). If the selected sequence is not strongly typical, Alice and Bob
abort. If it is strongly typical, Alice and Bob will prepare npz̃(1 − δ) cop-
ies of distribution p(x, y|z̃) for each z̃. Thus the total distribution will
be n copies of p(x, y, z) and the amount of key that has to be used is
npz̃J (X, Y |Z̃), which gives J (X, Y |Z̃) per copy. Note, that we implicitly
assumed that z̃ has fixed range (independent of n). However it also works
if it is not the case. This ends the proof of the proposition.

Finally, let us mention, that from the above reasoning it clearly fol-
lows that intrinsic information has the interpretation of cost of producing
given distribution from private distributions. Because we do not know if
there is reversibility among private distributions themselves, the question
of whether Iintr is cost key remains open.

5. RELATIVE ENTROPY DISTANCE IS EQUAL TO INTRINSIC
INFORMATION

Here we will consider the direct analogue of quantum relative entropy
of entanglement.16,33 This quantity will be T of Ref. 15 optimized over
Eve’s channels. We will show it is equal to intrinsic information.

The counterpart of separable states are distributions that have zero
intrinsic information. They are such distributions q where there exist chan-
nel 	E such that

	E(q̃) = q, (19)

where

q(x, y, z) = q(x|z)q(y|z)q(z). (20)

That is after Eve applies channel 	E , given outcome z on her side, Alice
and Bob share product distribution q(x|z)q(y|z). We define the relative
entropy of privacy by

KR(p) = inf
�E,q̃

S(�E(p)|q̃), (21)

where the infimum is taken over all Eve’s channels and distributions q̃ sat-
isfying (19); S(ρ|σ) = Trρ log ρ − Trρ log σ .
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We will now simplify the definition a bit. Due to monotonicity of relative
entropy, we have

KR(p) � inf
�E,q̃,	E

S(	E�E(p)|	E(q̃)) (22)

for such 	 that 	(q̃) is of the form (20). Then we have

inf
�E,q̃,	E

S(	E�E(p)|	E(q̃)) � inf
�E,q,	E

S(	E�E(p)|q), (23)

where 	E is now not restricted and q is of the form (20). Thus we get
KR(p) � inf�E,q S(�E(p)|q). Also the converse inequality holds: the infi-
mum in definition (21) of KR is taken over greater set. Thus

KR(p) = inf
�E,q

S(�E(p)|q), (24)

where the infimum is taken only over probability distributions of the form
(20).

Let us now evaluate infq S(p|q) where p is any fixed distribution,
while q is of the form (20). It turns out that the optimal q is such that

q(z) = p(z); q(x|z) = p(x|z); q(y|z) = p(y|z), (25)

where p(z) is Eve’s marginal distribution of p and p(x|z) is the condi-
tional distribution calculated from marginal distribution pAE of p, simi-
larly for p(y|z). Then direct calculation gives

inf
q
S(p|q) = I (X : Y |Z). (26)

Thus relative entropy distance from q satisfying (20) is equal to condi-
tional mutual information. Then KR is equal to intrinsic information.
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