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The Principle of Supplementarity: A Contextual
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the Interference of Probabilities and Incompatibility
of Variables in Quantum Mechanics
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We presented a contextual statistical model of the probabilistic description of
physical reality. Here contexts (complexes of physical conditions) are consid-
ered as basic elements of reality. There is discussed the relation with QM.
We propose a realistic analogue of Bohr’s principle of complementarity. In the
opposite to the Bohr’s principle, our principle has no direct relation with mutual
exclusivity for observables. To distinguish our principle from the Bohr’s principle
and to give better characterization, we change the terminology and speak about
supplementarity, instead of complementarity. Supplementarity is based on the
interference of probabilities. It has quantitative expression trough a coefficient
which can be easily calculated from experimental statistical data. We need not
appeal to the Hilbert space formalism and noncommutativity of operators repre-
senting observables. Moreover, in our model there exists pairs of supplementary
observables which cannot be represented in the complex Hilbert space. There
are discussed applications of the principle of supplementarity outside quantum
physics.

KEY WORDS: contextual statistical realistic model; interference of probabil-
ities; complementarity; supplementarity.

1. INTRODUCTION

Since the creation of statistical mechanics, the probabilistic approach
has always played a fundamental role in physics. A crucial step in the
development of the statistical approach to physics was made in the pro-
cess of creation of quantum mechanics. It was however soon realized by
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the founders of this new theory that quantum formalism could not provide
a description of physical processes for individual systems. The understand-
ing of this surprising fact induced numerous debates on the possibilities
of individual and probabilistic descriptions, and on the relation between
them. The debates that followed were characterized by a wide diversity of
opinions on the origin of quantum randomness and on its relation to clas-
sical randomness, see, e.g., Ref. 1–38 for details and bibliography. Now-
adays a rather common opinion is that the classical probabilistic model
is incompatible with the quantum one. This opinion is based on a num-
ber of “no-go” theorems (von Neumann, Kochen-Specker, Bell, . . . ). The
problem cannot however be considered totally clarified since the problem
of correspondence between quantum and classical probabilistic models is not
a purely mathematical problem, but a physical problem. There are various
possibilities to mathematically formalize such a correspondence. Each for-
malization induces its own model, which in turn usually leads to a new
proof of a “no-go” theorem. It should however be stressed that these new
“no-go” theorems suffer from the same flaw as any other “no-go” the-
orem, in the sense that they cannot totally eliminate the possibility of
a new formalization of the quantum-classical probabilistic correspondence.2

Of course, the question of the physical adequacy should be treated sepa-
rately.

In Refs. 29, 30 a new way to establish a correspondence between clas-
sical and quantum probabilistic models was proposed. The crucial point
of this approach is that physical observables are described by a contextual
probabilistic model. The main quantum structures are present in this model
in a latent form. A quantum representation of the contextual probabilistic
model can be constructed on the basis of two specially chosen observ-
ables, a and b. We call them “reference observables” (e.g., the position
and momentum); only these observables are considered as representing
objective properties of physical systems (cf. the views of L. De Broglie,
D. Bohm, especially in Ref. 12).

This problem can be considered in a different way, as. Mackey(10) did,
by trying to develop a general probabilistic model M which would con-
tain classical and quantum probabilistic models as special cases (see also

2 At my talk at Beckman Institute, University of Urbana-Champain, I was curious: Why
did A. Einstein not pay any attention to the von Neumann “no-go” theorem? Leggett
paid my attention to the fact that in the original German addition(5) of von Neumann’s
book(6) there was formulated not a theorem, but ansatz. So it seems that A. Einstein
considered this chain of mathematical calculations as just some arguments against hidden
variables. Moreover, it might be that it was even the position of von Neumann. It might
be that both Einstein and von Neumann understood well that it is impossible to prove
nonexistence of prequantum deterministic model in the form of a mathematical theorem.
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Gudder,(13) L. Ballentine(14)). The origin of the main mathematical struc-
tures of quantum mechanics (e.g., the complex Hilbert state space) in such
a general probabilistic model should however be clarified.

Before having a closer look at our model, it is perhaps necessary to
discuss the meaning of the term contextuality, as it can obviously be inter-
preted in many different ways, see Ref. 31. The most common meaning
(especially in the literature on quantum logic(33)) is that the outcome for
a measurement of an observable u under a contextual model is calculated
using a different (albeit hidden) measure space, depending on whether or
not compatible observables v,w, . . . were also made in the same experi-
ment.(33) We remark that well known “no-go” theorems cannot be applied
to such contextual models, see Refs. 33, 37 for details.

This approach to contextuality can be considered as a mathemati-
cal formalization, see Ref. 33, of Bohr’s measurement contextuality. Bohr’s
interpretation of quantum mechanics is in fact considered as contextual.
For N. Bohr the word “context” had the meaning of a “context of a mea-
surement”, see De Muynck, De Baere, Marten,(38) De Muynck(17) and
Plotnitsky.(25−27) For instance, in his answer to the EPR challenge N. Bohr
pointed out that position can be determined only in the context of a posi-
tion measurement. The still unsolved and persistent difficulty of any con-
textual model is that the physical content of such theories appears in the
current understanding to be unanchored to what is obtained in any exper-
iment. It seems indeed difficult to explain in any satisfactory way that a
measurement on a particle s1 should or could have both a different mean-
ing and a different associated measure space, depending on whether or not
another measurement on a second particle s2 was performed.

In our approach to the problem of correspondence between classi-
cal and quantum probabilistic models, the term contextuality is used in a
totally different meaning. Roughly speaking our approach is noncontextual
from the conventional viewpoint.(33) Values associated to the reference
observables (e.g., position and momentum) are considered as objective
properties of physical systems. These observables are therefore not contex-
tual in the sense of Bohr’s measurement contextuality.

The basic notion of our approach is the context—that is, a complex
of physical conditions. Physical systems interact with a context C and
in this process a statistical ensemble SC is formed (cf. Ref. 14, 34). The
notion of context is close to the notion of preparation procedure, see e.g.
Ref. 14, 33–36. However, for any preparation procedure E, it is assumed
that this procedure could be (at least in principle) realized experimentally.
We do not assume this for an arbitrary context C. Contexts are elements
of physical reality which exist independently of observers. By using the ter-
minology of Atmanspacher and Primas(32) we can say that context belong
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to the ontic level of description of physical reality and preparation proce-
dure to the epistemic level.

Conditional (or better to say contextual) probabilities for refer-
ence observables, P(a= y/C),P(b= x/C), are used to represent the con-
text C by a complex probability amplitude ψC . This amplitude is in fact
encoded in a generalization of the formula of total probability describing the
interference of probabilities. Note that interferences of probabilities can
thus be obtained in a classical probabilistic framework (i.e., without the
need of the Hilbert space formalism), an observation which was actually
the starting point of our considerations. As a result, we found that the
quantum probabilistic model can be considered as a Hilbert space pro-
jection of the classical contextual probabilistic model. This projection is
based on two fixed “reference observables” a and b which play a funda-
mental role and determine the correspondence between classical prequan-
tum model and quantum model.

Our approach is thus based on two cornerstones:

(a) contextuality of probabilities;

(b) the use of two fixed (incompatible) physical observables in order to
represent the classical contextual probabilistic model in the complex
Hilbert space.

We would like to note that the conventional quantum representation
is the image of a very special class of contexts Ctr, that is of contexts
producing the usual trigonometric interference, while other contexts pro-
ducing so-called hyperbolic interference(29,30) are also possible. These con-
texts cannot be represented in a complex Hilbert space but in a so-called
hyperbolic Hilbert space(29,30) instead — a module over a two-dimensional
Clifford algebra. We will consider however in this paper only contexts hav-
ing the conventional quantum representation in a complex Hilbert space.

Our contextual statistical approach is realistic. Therefore one may
wonder how the principle of complementarity should be interpreted or per-
haps modified in such an approach. It is precisely the purpose of this
paper to study this question.

In a realistic approach one cannot just borrow Bohr’s notion of com-
plementarity. The main problem is that of “mutual exclusivity” which was
considered by N. Bohr as the main feature of complementarity. We recall
the following formulation which was presented in Ref. 1 (vol. 2, p. 40) and
was probably Bohr’s most refined formulation of what he meant by com-
plementary measurement situations:

Evidence obtained under different experimental conditions [e.g. those of the posi-
tion vs. the momentum measurement] cannot be comprehended within a single
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picture, but must be regarded as [mutually exclusive and] complementary in the
sense that only the totality of the [observable] phenomena exhausts the possible
information about the [quantum] objects [themselves].

An extended analysis of Bohr’s views to complementarity can be
found in works of A. Plotnitsky.(25−27)

Let us consider a realistic model; let a and b be two observables. Then,
for any physical system ω, the values a(ω) and b(ω) are simultaneously well
defined (they “coexist”). In such a situation it is rather unappropriate to
talk about the mutual exclusivity of the a-property and the b-property for
a system ω. Bohr’s principle of complementarity should therefore be modi-
fied to retain its part related to completion (in the sense of addition of new
information) and to exclude its part related to mutual exclusivity. Hence, in
order to distinguish our contextual statistical realistic complementarity from
Bohr’s complementarity, we propose to change the terminology and use the
term supplementarity, instead of complementarity.3

In our approach the principle of complementarity–supplementarity
is formulated in mathematical terms. There exist pairs of observables a
and b such that b/a-conditioning or a/b-conditioning produces supple-
mentary information. For such observables probabilities interfere produc-
ing nontrivial disturbances of the classical formula of total probability. We
consider this feature of the contextual statistical realistic model as the prin-
ciple of supplementarity, or to put it in other words, as the probabilistic
principle of complementarity.

We recall that in the case of two dichotomous random variables a =
α1, α2 and b = β1, β2 the classical formula of total probability, see e.g.
Ref. 39, pp. 25, 77, has the form:

3 We understand that the change of terminology, especially for such a fundamental princi-
ple of nature, is a very risky choice. It might be better to use a less radical terminology,
such as Växjö principle of complementarity for instance. However, since for most physicists
complementarity is rigidly associated with mutual exclusivity, we believe we have no other
possibility than to introduce a new terminology.

Bohr’s principle of complementarity was not formulated in mathematical terms, but
as a general philosophic principle. There are various ways to understand (or perhaps mis-
understand) this principle. The crucial point is the interpretation of “mutual exlusivity”.
Here the difference between mathematical variables and physical properties, as well as their
relationship with observables, should be taken into account, see Section 7. We emphasize
that the direct comparation of the Bohr’s principle of complementarity and our principle
of supplementarity is really impossible. For N. Bohr mutual exclusivity was related not to
objective properties of quantum systems, but to measurement contexts.
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P(b = βi) = P(a = α1)P(b = βi/a = α1)+ P(a = α2)P(b = βi/a = α2).

(1)

As was already emphasized, in the opposition to Bohr’s complemen-
tarity, supplementarity has no direct relation with mutual exclusivity
(however, see Section 7 for more details). Moreover, supplementary ob-
servables a and b need not present a complete set of data in a con-
text C. In our approach, representations of reality (e.g., physical reality)
based on pairs of supplementary observables a and b are in general
not complete. Pairs of supplementary observables produce very rough
(statistical) images of the underlying reality (cf. with fuzzy-viewpoint to
Quantum Mechanics, see, e.g., Busch et al., Grabowski and Lahti,(34)

Gudder, Pulmanova(28)). In particular, in our approach the quantum com-
plex Hilbert space is just a projection of contextual prequantum space —
prespace.(29,30)

Another difference between our supplementarity and Bohr’s comple-
mentarity is that we characterize supplementarity by studying interferences
of probabilities themselves. This gives the possibility to introduce a simple
quantitative measure of supplementarity as a coefficient of interference λ,
which we call the coefficient of supplementarity. The presence of this quan-
titative measure shifts discussion from the purely philosophic framework
to a physical and mathematical frameworks.4

Our model is fundamentally contextual, and supplementarity is con-
sequently also contextual. The coefficient λ depends on a context C under
which observables are measured: λ = λC . It is therefore meaningless to dis-
cuss supplementarity of observables a and b without relation to the con-
crete complex of physical conditions C under which these observables are
measured. Observables can indeed be supplementarity under one context
and nonsupplementarity under another one.

Since the Växjö model of reality is a statistical model, it depends
on the choice of a probability model. In this paper we use the frequency

4 It is noteworthy that our statistical measure of supplementarity λ is not based on the
Hilbert space formalism, see Sections 3 and 4. Hence, one need not appeal from the very
beginning to the abstract characterization based on noncommutativity of operators repre-
senting physical observables. It is only under special conditions that supplementary ob-
servables can be represented by noncommutative operators in the complex Hilbert space,
see Refs. 29, 30 for details. Note also that the coefficient of supplementarity λ can be
calculated directly on the basis of experimental statistical data. Since we start directly
with statistical data, and since the conventional Hilbert space formalism is considered as
a secondary mathematical description, there is no necessity to relate our formalism with
waves features or superposition of individual states. This gives the possibility to apply our
formalism (and in particular the notion of supplementarity) outside the quantum domain,
see, e.g., Refs. 40–42.
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probabilistic model (see von Mises,(43) and also Ref. 44 on this model
and its applications in quantum physics). This model is essentially more
general than the conventional Kolmogorov model.(45) Note that other
probabilistic models can be used, e.g., the Cox model with conditional
probabilities,(46) see Ballentine(14) on application of this model to Quan-
tum Mechanics.

We remark that our principle of supplementarity is based on rather
extended probabilistic considerations developed in Sections 3–5. A reader
not too keen on mathematical details is invited to go through those prob-
abilistic sections quickly and pay more attention to Sections 6–8.

There are three appendixes, Section 9 (Bell’s inequality) and Sections
10 and 11 on mathematical features of the contextual statistical model
(relations between Kolmogorovness, compatibility and complementarity).
The latter two sections are essentially mathematical. They may be interest-
ing for people working on mathematical problems of quantum probability
and incompatibility.

2. CONTEXTUAL STATISTICAL REALISTIC MODEL

From the very beginning it should be emphasized that the purpose of
this section is not to provide a new interpretation of Quantum Mechan-
ics. A general statistical model for observables based on the contextual
viewpoint to probability will merely be presented. It will be shown that
classical as well as quantum probabilistic models can be obtained as a
particular cases of our general contextual model, the Växjö model. This
model is not reduced to the conventional, classical and quantum models.
In particular, it contains a new statistical model: a model with hyperbolic
cosh-interference (that induces “hyperbolic quantum mechanics”).5

Realism is one of the main distinguishing features of the Växjö model
since it is always possible manipulate objective properties, despite the
presence of such essentially quantum effects as, e.g., the interference of
probabilities.

As George W. Mackey pointed out in Ref. 10, probabilities cannot
be considered as abstract quantities defined outside any reference to a
concrete complex of physical conditions C. All probabilities are condi-
tional or better to say contextual.6 We remark that the same point of view

5 It should however be noted that hyperbolic model remains a purely mathematical model,
in contrast to those of classical physics and quantum mechanics, as it does not relate to
any known physics.

6 The notion of conditional probability is typically used for events: P(A/B) is the proba-
bility that the event A occurs under the condition that the event B has occurred.
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can be found in the works of Kolmogorov(45) and von Mises.(43) How-
ever, it seems that Mackey’s book was the first thorough presentation of
a program of conditional probabilistic description of measurements, both
in classical and quantum physics. G. Mackey did a lot to unify classical
and quantum probabilistic description and, in particular, demystify quan-
tum probability. One crucial step is however missing in Mackey’s work. In
his book,(10) Mackey introduced the quantum probabilistic model (based
on the complex Hilbert space) by means of a special axiom (Axiom 7, p.
71, in Ref. 10) that looked rather artificial in his general conditional prob-
abilistic framework. The impossibility to derive the quantum probabilistic
model from “natural axioms” (which are not based on such a quantum
structure as the complex Hilbert space) is clearly the main disadvantage
of Mackey’s approach.

In our contextual probabilistic approach, structures specifically belong-
ing to the realm of quantum mechanics (e.g., the interference of
probabilities, the complex probabilistic amplitudes, Bohr’s rule, or the rep-
resentation of some observables by noncommutative operators) are derived
on the basis of two natural axioms (which are, natural from the point of
view of classical probabilistic axiomatics).

Mackey’s model is based on a system of eight axioms, when our own
model requires only two axioms. Let us briefly mention the content of
Mackey first axioms. The first four axioms concern conditional structure
of probabilities, that is, they can be considered as axioms of a classical
probabilistic model. The fifth and sixth axioms are of a logical nature
(about questions). We reproduce below Mackey’s “quantum axiom”, and
Mackey’s own comments on this axiom (see Ref. 10, pp. 71–72):

Axiom 7. (G. Mackey) The partially ordered set of all questions in quan-
tum mechanics is isomorphic to the partially ordered set of all closed subsets
of a separable, infinite dimensional Hilbert space.

“This axiom has rather a different character from Axioms 1 through
4. These all had some degree of physical naturalness and plausibility.
Axiom 7 seems entirely ad. hoc. Why do we make it? Can we justify mak-
ing it? What else might we assume? We shall discuss these questions in
turn. The first is the easiest to answer. We make it because it “works”, that
is, it leads to a theory which explains physical phenomena and successfully
predicts the results of experiments. It is conceivable that a quite different
assumption would do likewise but this is a possibility that no one seems
to have explored [But see recent work of Jauch, Stueckelberg, and oth-
ers at the University of Genève on real and quaternionic Hilbert spaces].
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Ideally one would like to have a list of physically plausible assumptions
from which one could deduce Axiom 7.”

Our activity can be considered as an attempt to find a list of physi-
cally plausible assumptions from which the Hilbert space structure can be
deduced. We show that this list can consist in two axioms (see our Axi-
oms 1 and 2) and that these axioms can be formulated in the same clas-
sical probabilistic manner as Mackey’s Axioms 1–4.

Another important difference between the Växjö model and Mackey’s
model is that our model is not rigidly coupled to the measure theo-
retic approach to probability. Many probabilistic models can be used to
mathematically define contextual probabilities. In this paper we use the
von Mises’ frequency approach to probability.(43) This approach is essen-
tially more general than the Kolmogorov measure-theoretic one. In general
probabilistic data generated by a few collectives, x, y, z, . . . , u, cannot be
described by a single Kolmogorov space. There are admittedly some math-
ematical difficulties in von Mises’ approach, like the impossibility to rigor-
ously define randomness on a mathematical level. Nevertheless, in order to
define probabilities one need not necessarily to apply von Mises’ principle
of randomness (which is based on a rather confusing notion of place
selection). The frequency probability can be defined by the principle of
statistical stabilization of relative frequencies. It means that relative fre-
quencies νN = n

N
stabilize when N →∞, i.e., |νN − νM | → 0, N,M →∞.

Hence, the limit of νN exists and is called the frequency probability. The
frequency theory of probability, which is based only on the principle of
statistical stabilization is free of contradictions.(44)

Quantum formalism gives good predictions of frequency probabili-
ties, as was verified in an impressive number of experiments, but it does
not contain a description of randomness. In the light of the approach
described above, the theory of quantum measurements appears to be more
about statistical stabilization of relative frequencies than about random-
ness of data. It seems that in order to create a general frequency proba-
bility theory, which would contain classical and quantum probabilities as
special cases, one could use the frequency probabilistic model based only
on the principle of statistical stabilization.

2.1. Contextual Statistical Model of Observations

A physical context C is a complex of physical conditions. Contexts are
fundamental elements of any contextual statistical model. Thus construc-
tion of any model M should be started with fixing the collection of con-
texts of this model; denote the collection of contexts by the symbol C (so
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C is determined by M). In mathematical formalism C is an abstract set (of
“labels” of contexts). Another fundamental element of any contextual sta-
tistical model M is a set of observables O : any observable a ∈ O can be
measured under a complex of physical conditions C ∈ C.7 For an a ∈ O,
we denote the set of its possible values (“spectrum”) by the symbol Xa .

We do not assume that all these observables can be measured simul-
taneously; so they need not be compatible. To simplify considerations, we
shall consider only discrete observables and, moreover, all concrete inves-
tigations will be performed for dichotomous observables.

Axiom 1. For any observable a ∈ O, there are defined contexts Cα
corresponding to α-filtrations: if we perform a measurement of a under the
complex of physical conditions Cα, then we obtain the value a = α with
probability 1. It is supposed that the set of contexts C contains filtration-
contexts Cα for all observables a ∈ O.

Axiom 2. There are defined contextual probabilities P(a = α/C) for any
context C ∈ C and any observable a ∈ O .

Probabilities P(b = β/C) are interpreted as contextual probabilities.
Especially important role will be played by probabilities:

pb/a(β/α) ≡ P(b = β/Cα), a, b ∈ O, α ∈ Xa, β ∈ Xb, (2)

where Cα is the [a = α]-filtration context.8

7 We shall denote observables by Latin letters, a, b, . . . , and their values by Greek letters,
α, β, . . .

8 We prefer to call probabilities with respect to a context C ∈ C contextual probabilities.
Of course, it would be also possible to call them conditional, but the latter term was
already used in other approaches (e.g., Bayes–Kolmogorov). In the opposition of the Ba-
yes-Kolmogorov model, the contextual probability is not probability that an event, say B,
occurs under the condition that another event, say C, has been occurred. The contextual
probability P(b = β/C) is probability to get the result b = β under the complex of phys-
ical conditions C. We can say that this is the probability that the event Bβ = {b = β}
occurs under the complex of physical conditions C. Thus in our approach not event,
but context should be considered as a condition; see also Accardi,(15) Ballentine(14) and
De Muynck.(17) In particular, the contextual probability pb/a(β/α) ≡ P(b = β/Cα), is
not probability that the event Bβ = {b = β} occurs under the condition that the event
Aα = {a = α} has been occurred. To find probability pb/a(β/α), it is not sufficient to
observe the event Bβ following the event Aα . It should be first verified that there is really
the complex of physical conditions Cα . Then there are performed measurements of the
observable b under this context, see also Ballentine(14) and De Muynck.(17)
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At the moment we do not fix a definition of probability. Depending
on a choice of probability theory we can obtain different models. For any
C ∈ C, there is defined the set of probabilities:

E(O, C) = {P(a = α/C) : a ∈ O}. (3)

We complete this data by Cα-contextual probabilities: D(O, C) = {P(a =
α/C),P(b = β/C), . . . ,P(a = α/Cβ),P(b = β/Cα), . . . : a, b, . . . ∈ O}.

We remark that D(O, C) does not contain the simultaneous probabil-
ity distribution of observables O. Data D(O, C) gives a probabilistic image
of the context C through the system of observables O. We denote by the
symbol D(O, C) the collection of probabilistic data D(O, C) for all con-
texts C ∈ C. There is defined the map:

π : C → D(O, C), π(C) = D(O, C). (4)

In general this map is not one-to-one. Thus the π -image of contextual
reality is very rough: not all contexts can be distinguished with the aid of
probabilistic data produced by the class of observables O.

Definition 2.1. A contextual statistical model of reality is a triple

M = (C,O,D(O, C)), (5)

where C is a set of contexts and O is a set of observables which satisfy to
axioms 1,2, and D(O, C) is probabilistic data about contexts C obtained
with the aid of observables O.

We call observables belonging the set O ≡ O(M) reference of observ-
ables. Inside of a model M observables belonging O give the only possible
references about a context C ∈ C. Our general model can (but, in principle,
need not) be completed by some interpretation of reference observables
a ∈O. By the Växjö interpretation reference observables are interpreted as
properties of contexts.

Realistic interpretation of observables: “If an observation of a under
a complex of physical conditions C ∈ C gives the result a=α, then this
value is interpreted as the objective property of the context C (at the
moment of the observation).”

Remark 2.1 (Number of reference observables). In both most important
physical models – in classical and quantum models—the set O of refer-
ence observables consists of two observables: position and momentum (or
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energy). I think that this number “two” of reference observables plays the
crucial role (at least in the quantum model).

2.2. Frequency Description

By taking into account Remark 2.2, we consider a set of reference ob-
servables O = {a, b} consisting of two observables a and b. We denotes the
sets of values (“spectra”) of the reference observables by symbols Xa and
Xb, respectively.

Let C be some context. In a series of observations of b (which can be
infinite in a mathematical model) we obtain a sequence of values of b:

x ≡ x(b/C) = (x1, x2, . . . , xN , . . . ), xj ∈ Xb. (6)

In a series of observations of a we obtain a sequence of values of a:

y ≡ y(a/C) = (y1, y2, ..., yN , ...), yj ∈ Xa. (7)

We suppose that the principle of the statistical stabilization for relative fre-
quencies(43,44) holds true. This means that the frequency probabilities are
well defined:

pb(β) ≡ Px(b = β) = lim
N→∞

νN(β; x), β ∈ Xb; (8)

pa(α) ≡ Py(a = α) = lim
N→∞

νN(α; y), α ∈ Xa. (9)

Here νN(β; x) and νN(α; y) are frequencies of observations of values
b = β and a = α, respectively (under the complex of conditions C).

As was remarked, R. von Mises considered in his theory two prin-
ciples: (a) the principle of the statistical stabilization for relative frequen-
cies; (b) the principle of randomness. A sequence of observations for which
both principle hold was called a collective. An analog of von Mises’ the-
ory for sequences of observations which satisfy the principle of statis-
tical stabilization (so relative frequencies converge to limit-probabilities,
but these limits need not be invariant with respect to von Mises place
selections) was developed in Ref. 44; we call such sequences S-sequences.
Everywhere in this paper it will be assumed that sequences of observations
are S-sequences, cf. Ref. 44.
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Let Cα, α ∈ Xa, be contexts corresponding to α-filtrations, see
Axiom 1. By observation of b under the context Cα we obtain a sequence:

xα ≡ x(b/Cα) = (x1, x2, ..., xN , ...), xj ∈ Xb. (10)

It is also assumed that for sequences of observations xα, α ∈ Xa, the prin-
ciple of statistical stabilization for relative frequencies holds true and the
frequency probabilities are well defined:

pb/a(β/α) ≡ Pxα (b = β) = lim
N→∞

νN(β; xα), β ∈ Xb. (11)

Here νN(β; xα), α ∈ Xa, are frequencies of observations of value b = β

under the complex of conditions Cα. We obtain probability distributions:

Px(β), Py(α), Pxα (β), α ∈ Xa, β ∈ Xb. (12)

We can repeat all previous considerations by changing b/a-conditioning
to a/b-conditioning. We consider contexts Cβ, β ∈ Xb, corresponding to
selections with respect to values of the observable b and the correspond-
ing collectives yβ ≡ y(a/Cβ) induced by observations of a in contexts Cβ .
There can be defined probabilities pa/b(α/β) ≡ Pyβ (α). Combining these
data with data (12) we obtain

D(O, C) = {pa(α), pb(β), pb/a(β/α), pa/b(α/β) : α ∈ Xa, β ∈ Xb}. (13)

2.3. Systems and Ensemble Representation of Contexts

We now complete the contextual statistical model by considering sys-
tems ω (e.g., physical or cognitive, or social,..), (Cf. Ballentine.(14)) In our
approach systems as well as contexts are considered as elements of realty.
In our model a context C ∈ C is represented by an ensemble SC of systems
which have been interacted with C. For such systems we shall use nota-
tion: ω ←↩ C The set of all (e.g., physical or cognitive, or social) systems
which are used to represent all contexts C ∈ C is denoted by the symbol
	 ≡ 	(C). Thus we have a map:

C → SC = {ω ∈ 	 : ω←↩ C}. (14)

This is the ensemble representation of contexts. We set

S ≡ S(C) = {S : S = SC,C ∈ C}. (15)



1668 Khrennikov

This is the collection of all ensembles representing contexts belonging to
C. The ensemble representation of contexts is given by the map (14)

I : C → S. (16)

Reference observables O are now interpreted as observables on systems
ω ∈ 	. In our approach it is not forbidden to interpret the values of
the reference observables as objective properties of systems. These objec-
tive properties coexist in nature and they can be related to individual sys-
tems ω ∈ 	. However, the probabilistic description is possible only with
respect to a fixed context C. Noncontextual probabilities have no meaning.
So values a(ω) and b(ω) coexist for a single system ω ∈ 	, but noncontex-
tual (“absolute”) probabilities P(ω ∈ 	 : a(ω) = y), . . . are not defined.9

Definition 2.2. The ensemble representation of a contextual statistical
model M = (C,O,D(O, C)) is a triple

S(M) = (S,O,D(O, C)), (17)

where S is a set of ensembles representing contexts C,O is a set of observ-
ables, and D(O, C) is probabilistic data about ensembles S obtained with
the aid of observables O.

3. FORMULA OF TOTAL PROBABILITY AND MEASURES
OF SUPPLEMENTARITY

Let M = (C,O,D(O, C)) be a model in which O = {a, b} and a, b

are dichotomous observables. Let C ∈ C. In general there are no rea-
sons to assume that all probability distributions in D(a, b, C) should be
described by a single Kolmogorov probability space (absolute Kolmogorov
space) P = (	,F ,P). Thus the classical (Kolmogorovian) formula of total
probability:

P(b = β) =
∑

α

P(a = α)P(b = β/a = α). (18)

9 Thus, instead of mutual exclusivity of observables (cf. Bohr’s principle of complemen-
tarity), we consider contextuality of probabilities and “supplementarity” of the reference
observables (in the sense that they give supplementary statistical information about con-
texts). Oppositely to the very common opinion, such models (with realistic observables)
can have nontrivial quantum-like representations (in complex and hyperbolic Hilbert
spaces) which are based on the formula of total probability with interference terms.
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can be violated. We do not have such a formula in the contextual fre-
quency approach, where the conditional probabilities P(b = β/a = α) are
defined as contextual probabilities P(b = β/Cα).10 In this approach every-
thing is absolutely clear from the very beginning: there are six different
S-sequences (or collectives), see Section 2.2:

x = x(b/C), y = y(a/C), xα = x(b/Cα), yβ = y(a/Cβ), (19)

where α = α1, α2, β = β1, β2. In the opposition to the Kolmogorov
approach, in the contextual frequency approach we have no chance to
speculate about a single probability. In the contextual frequency approach
in general we have

δ(β/a, C) = Px(β)−
∑

α

Py(α)Pxα (β) �= 0. (20)

On the other hand, as was mentioned, in the Kolmogorov model we have:

δ(β/a, C) = 0. (21)

Hence, in the Kolmogorov model by using the Bayesian sum of
the conditional probabilities P(b=β/a=α) we find nothing new, but the
unconditional probability for b = β:

P(b = β) =
∑

α

P(a = α)P(b = β/a = α). (22)

Therefore in these models by obtaining the value b=β in a series of
observations under the condition a=α we do not obtain new probabilistic
information. However, in the contextual approach we obtain new informa-
tion via conditional observations, see (20). Hence conditional observations
give us supplementary information which is not contained in statistical data
for unconditional observations.

Definition 3.1. The quantity δ(β/a, C) is said to be a probabilistic mea-
sure of b/a-supplementarity in the context C.

10 We recall that this is the premeasurement conditioning. The complex of physical condi-
tions Cα, corresponding to [a = α]-selection, is fixed before the b-measurement.
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We can rewrite the equality (20) in the form which is similar to the
classical formula of total probability:

Px(β) =
∑

α

Py(α)Pxα (β)+ δ(β/a, C), (23)

or by using shorter notations:

pb(β) =
∑

α

pa(α)pb/a(β/α)+ δ(β/a, C). (24)

This formula has the same structure as the quantum formula of total
probability:

[classical part] + additional term.

To write the additional term in the same form as in the quantum rep-
resentation of statistical data, we perform the normalization of the prob-
abilistic measure of supplementarity by the square root of the product of
all probabilities:

λ(β/a, C) = δ(β/a, C)

2
√∏

α p
a(α)pb/a(β/α)

. (25)

The coefficient λ(β/a, C) also will be called the probabilistic measure
of supplementarity.

Of course, it would be better to call λ the coefficient of complemen-
tarity, but the latter terminology was already reserved by N. Bohr. By
using this coefficient we rewrite (24) in the quantum-like form:

pb(β) =
∑

α

pa(α)pb/a(β/α)+ 2λ(β/a, C)

√∏

α

pa(α)pb/a(β/α). (26)

The coefficient λ(β/a, C) is well defined only in the case when all proba-
bilities pa(α), pb/a(β/α) are strictly positive. We consider the matrix

Pb/a = (pb/a(β/α)). (27)

Traditionally this matrix is called the matrix of transition probabilities.
In our approach pb/a(β/α)≡Pxα (b=β) is the probability to obtain the
value b=β for the S-sequence (collective) xα. Thus in general we need
not speak about states of physical systems and interpret pb/a(β/α) as the
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probability of the transition from the state α to the state β. We remark
that the matrix Pb/a is always stochastic:

∑

β

pb/a(β/α) = 1 (28)

for any α ∈ Xa, because for any S-sequence (or collective) xα:

∑

β

Pxα (b = β) = 1. (29)

We defined a nondegenerate S-sequence (or collective) y as such that

pa(α) ≡ Py(α) �= 0 for all α. (30)

A context C is said to be a-nondegenerate (b-nondegenerate) if the corre-
sponding S-sequence (or collective) y≡ y(a/C) (x≡ x(b/C)) is nondegen-
erate. We remark that the contexts Cα (S-sequences or collectives) xα) are
b-nondegenerate iff

pb/a(β/α) �= 0. (31)

The representation (26) is the basis of transition to a (complex or
hyperbolic) Hilbert space representation of probabilistic data D(a, b, C).

The representation (26) can be used only for nondegenerate contexts C
and Cα.

We can repeat all previous considerations by changing b/a-condi-
tioning to a/b-conditioning. We consider contexts Cβ corresponding to
selections with respect to values of the observable b and the correspond-
ing S-sequences (or collectives) yβ ≡ y(a/Cβ). There can be defined prob-
abilistic measures of supplementarity δ(α/b, C) and λ(α/b, C), α ∈ Xa. We
remark that the contexts Cβ (S-sequences or collectives yβ) are a-nonde-
generate iff

pa/b(α/β) �= 0. (32)

For nondegenerate contexts C and Cβ we have

pa(α) =
∑

β

pb(β)pa/b(α/β)+ 2λ(α/b, C)
√∏

β

pb(β)pa/b(α/β). (33)
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Definition 3.2. Observables a and b are called (statistically) nondegener-
ate if (31) and (32) hold.

Theorem 3.1. Let reference observables a and b be nondegenerate and
let a context C ∈ C be both a and b-nondegenerate. Then quantum-like
formulas of total probability (26) and (33) hold true.

In Ref. 1, 22 Theorem 3.1 was proved by using a long series of calcu-
lations with relative frequencies; the proof presented in this paper is really
straightforward: supplementarity implies the violation of the classical for-
mula of total probability and the perturbation term can be represented
in the quantum-like form. As was shown in Refs. 1–3, if |λ|� 1, then
we get cos-interference (see section 6); if |λ|> 1, then we get cosh-
interference.

4. SUPPLEMENTARY PHYSICAL OBSERVABLES

Definition 4.1. Reference observables a and b are called b/a-supplemen-
tary in a context C if

δ(β/a, C) �= 0 for some β ∈ Xb. (34)

Lemma 4.1. For any context C ∈ C, we have:

∑

β∈Xb
δ(β/a, C) = 0. (35)

Proof. We have

1 =
∑

β∈Xb
pb(β) =

∑

β∈Xb

∑

α∈Xa
pa(α)pb/a(β/α)+

∑

β∈Xb
δ(β/a, C). (36)

Since Pb/a is always a stochastic matrix, we have for any α ∈ Xa :

∑

β∈Xb
pb/a(β/α) = 1. (37)

By using that
∑
α∈Xa p

a(α) = 1 we obtain (35).
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We pay attention to the fact that by Lemma 5.1 the coefficient
δ(β1/a, C) = 0 iff δ(β2/a, C) = 0. Thus b/a-supplementarity is equivalent
to the condition δ(β/a, C) �= 0 both for β1 and β2.

Reference observables a and b are called supplementary in a context
C if they are b/a or a/b supplementary:

δ(β/a, C) �= 0 or δ(α/b, C) �= 0 for some β ∈ Xb, α ∈ Xa. (38)

By Lemma 4.1 observables are supplementary iff the coefficients
δ(β/a, C) �= 0 or δ(α/b, C) �= 0 for all β ∈ Xb, α ∈ Xa.

Let us consider a contextual model M with the set of contexts C. Ob-
servables a and b are said to be supplementary in the model M if there
exists C ∈ C such that they are supplementary in the context C.

Reference observables a and b are said to be nonsupplementary in the
context C if they are neither b/a nor a/b-supplementary:

δ(β/a, C) = 0 and δ(α/b, C) = 0 for all β ∈ Xb, α ∈ Xa. (39)

Thus in the case of b/a-supplementarity we have (for β ∈ Xb):

pb(β) �=
∑

α

pa(α)pb/a(β/α), (40)

in the case of a/b-supplementarity we have (for α ∈ Xa):

pa(α) �=
∑

β

pb(β)pa/b(α/β) (41)

in the case of supplementarity we have (40) or (41). In the case of non-
supplementarity we have both representations:

pb(β) =
∑

α

pa(α)pb/a(β/α), β ∈ Xb, (42)

pa(α) =
∑

β

pb(β)pa/b(α/β), α ∈ Xa. (43)
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5. THE PRINCIPLE OF SUPPLEMENTARITY

Our principle can be formulated in the following way: There exist
physical observables, say a and b, such that for some context C they
produce supplementary statistical information; in the sense that the con-
textual probability distribution of, e.g., the observable, b could not be
reconstructed on the basis of the probability distribution of a. The clas-
sical formula of total probability is violated; supplementarity of the ob-
servables a and b under the context C induces interference of probabilities
pbC(x) and paC(y).

6. THE HILBERT SPACE REPRESENTATION OF CONTEXTS
BASED ON CONJUGATE OBSERVABLES

Definition 6.1. Observables a and b are said to be symmetrically condi-
tioned if

pa/b(α/β) = pb/a(β/α). (44)

Definition 6.2. Observables a and b are called (statistically) conjugate if
they are symmetrically conditioned and nondegenerate:

pa/b(α/β) = pb/a(β/α) > 0 (45)

for all α, β.

We shall see that statistically conjugate observables a and b can
be represented by noncommutative operators â and b̂ in the Hilbert
space. Everywhere below a and b will be (statistically) conjugate observ-
ables. Suppose that, for every β ∈Xb, the coefficient of supplementarity
|λ(b=β/a, C)|� 1. In this case we can introduce new statistical param-
eters θ(b=β/a, C)∈ [0, 2π ] and represent the coefficients of statistical
disturbance in the trigonometric form: λ(b=β/a, C)= cos θ(b=β/a, C).
Parameters θ(b = β/a, C) are called probabilistic phases. We remark that
in general there is no geometry behind these phases. By using the trigono-
metric representation of the coefficients λ we obtain the well known for-
mula of interference of probabilities which is typically derived by using the
Hilbert space formalism.
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If both coefficients λ are larger than one, we can represent them as
λ(b = β/a, C) = ± cosh θ(b = β/a, C) and obtain the formula of hyper-
bolic interference of probabilities; there can also be found models with the
mixed hyper-trigonometric behavior, see Refs. 29, 30.

We consider only the complex Hilbert space representation of trigo-
nometric contexts:

C tr = {C : |λ(β/a, C)| � 1, β ∈ Xb}. (46)

Of course, the system C tr depends on the choice of a pair of reference
observables, C tr≡C tr

b/a. We set paC(α)=P(a=α/C), pbC(β)=P(b=β/C),
p(β/α)=P(b=β/a=α), β ∈ Xb, α ∈ Xa. (In previous sections we con-
sidered probabilities with respect to a fixed context C; therefore this index
was omitted). Let context C ∈ C tr. The interference formula of total prob-
ability (26) can be written in the following form:

pbc (β) =
∑

α∈Xa
paC(α)p(β/α)+ 2 cos θC(β)

√
�α∈XapaC(α)p(β/α), (47)

where θC(β)= θ(b=β/a, C)=±arccos λ(b=β/a, C), β ∈ Xb. By using the
elementary formula: D=A+B+2

√
AB cos θ = |√A+eiθ√B|2, for A,B >

0, θ ∈ [0, 2π ], we can represent the probability pbC(β) as the square of the
complex amplitude (Born’s rule):

pbC(β) = |ψC(β)|2, (48)

where a complex probability amplitude is defined by

ψ(β) ≡ ψC(β) =
√
paC(α1)p(β/α1)+ eiθC(β)

√
paC(α2)p(β/α2) . (49)

We denote the space of functions: ψ: Xb→C by the symbol =(Xb,C),
where C is the field of complex numbers. Since Xb = {β1, β2}, the  is
the two dimensional complex linear space. By using the representation (49)
we construct the map J b/a : C tr→(Xb,C) which maps contexts (com-
plexes of, e.g., physical conditions) into complex amplitudes. The represen-
tation (48) of probability is nothing other than the famous Born rule. The
complex amplitude ψC(β) can be called a wave function of the complex of
physical conditions (context) C or a (pure) state. We set ebβ(·) = δ(β − ·).
The Born’s rule for complex amplitudes (48) can be rewritten in the fol-
lowing form:

pbC(β) = |(ψC, ebβ)|2, (50)
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where the scalar product in the space (Xb,C) of complex amplitudes is
defined by the standard formula:

(ψ1, ψ2) =
∑

β∈Xb
ψ1(β)ψ̄2(β). (51)

The system of functions {ebβ}β∈Xb is an orthonormal basis in the Hilbert
space H = (, (·, ·)) Let Xb ⊂ R, where R is the field of real numbers.
By using the Hilbert space representation of the Born’s rule we obtain the
Hilbert space representation of the classical conditional expectation of the
observable b:

E(b/C) =
∑

β∈Xb
β pbC(β) =

∑

β∈Xb
β |ψC(β)|2

=
∑

β∈Xb
β (ψC, e

b
β)(ψC, e

b
β) = (b̂ψC,ψC), (52)

where the (self-adjoint) operator b̂ : H → H is determined by its eigenvec-
tors: b̂ebβ = βebβ, β ∈ Xb. This is the multiplication operator in the space
of complex functions (Xb,C) : b̂ψ(β)=βψ(β). It is natural to repre-
sent this observable (in the Hilbert space model) by the operator b̂. We
would like to have Born’s rule not only for the b-observable, but also for the
a-observable:

paC(α) = |(ψ, eaα)|2, α ∈ Xa. (53)

How can we define the basis {eaα} corresponding to the a-observable? Such
a basis can be found starting with interference of probabilities. We set
uaj =

√
paC(αj ), pij = p(βj/αi), uij =

√
pij , θj = θC(βj ). We have

ψ = ua1ea1 + ua2ea2 , (54)

where

ea1 = (u11, u12), ea2 = (eiθ1u21, e
iθ2u22). (55)

We consider the matrix of transition probabilities Pb/a = (pij ). It is always
a stochastic matrix: pi1+pi2= 1, i= 1, 2. We remind that a matrix is called
double stochastic if it is stochastic and, moreover, p1j + p2j = 1, j = 1, 2.
The system {eai } is an orthonormal basis iff the matrix Pb/a is double
stochastic and probabilistic phases satisfy the constraint: θ2 − θ1 = π mod
2π, see Refs. 29, 30.
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Thus if the matrix Pb/a is double stochastic, then the a-observable is
represented by the operator â which is diagonal (with eigenvalues α) in the
basis {eaα}. The classical conditional average of the observable a coincides
with the quantum Hilbert space average:

E(a/C) =
∑

α∈α
αpaC(α) = (âψC,ψC), C ∈ C tr. (56)

7. COMPLEMENTARITY, SUPPLEMENTARITY AND MUTUAL
EXCLUSIVITY

I start this section with an extended citation from the report of one of
the referees. The problems discussed by those referee are of great impor-
tance for clarifying the role of the mutual exclusivity in Bohr’s principle of
complementarity:

“I would like now to comment on the author’s “supplementarity prin-
ciple”. The author juxtaposes this principle to Bohr’s complementarity
principle, specifically on the account of the mutual exclusivity of whatever
elements are involved in a given complementary situation. (I shall explain
the term “elements” and my emphasis presently.) According to Bohr’s
interpretation, quantum mechanics is characterized by complementary
physical situations, say, those of the position and momentum measure-
ments for a given quantum object. Bohr’s terminology refers to situations
that are mutually exclusive and hence not applicable at the same time, and
yet both defined as possible in order to achieve a comprehensive (com-
plete) physical description. This mutual exclusivity is no longer required
by the author’s supplementarity principle, and it is replaced by the rule for
conditioned probabilities for the corresponding observables, such as posi-
tion and momentum.

It appears to me that there is some misunderstanding or confusion
here as concerns Bohr’s complementarity principle, which is not uncom-
mon in treatments of Bohr. Indeed, in the present case it may be a mat-
ter of further clarification or, again, a greater lucidity of exposition than
misunderstanding. I should add that one’s understanding of Bohr’s com-
plementarity principle may depend on which Bohr one reads; in particu-
lar there are differences between his earlier and his later (e.g., post-EPR)
views concerning complementarity. To some degree, the nature of the
“elements” involved in complementary situations change in Bohr’s later
view of the quantum-mechanical situation (hence my emphasis above). In
Bohr’s later view, to which the author refers, the situation may be seen as
follows.
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Such variables as position and momentum not only cannot be mea-
sured but also cannot be assigned or indeed defined simultaneously, as the
author suggests. It is important, however, that this argumentation applies
strictly to a given physical situation of measurement, whereby such vari-
ables as position or momentum (understood in terms of classical physics)
and the corresponding measurable physical properties now refer only to
measuring instruments impacted by quantum objects.

The author seems to me to be insufficiently attentive to these nuances,
especially those concerning the differences between mathematical variables
and physical properties, and between each of these and observables. Part
of the problem is the ambiguity of the term “observable” in quantum
mechanics. It can refer to both an observable property and a correspond-
ing variable, say, as an operator in a Hilbert space. The relationships
between both, essentially different, types of “observables”, Hilbert-space
operators and measurable quantities, and specifically the assignment of
probabilities to the outcomes of measurements that result, may be seen as
defining the essence of quantum mechanics.

In Bohr, an assignment and the definition of certain physical proper-
ties (which, again, pertain to the measuring instruments involved and are
seen as classical physical variables) would always be mutually exclusive,
and the assignment of probabilities would be affected accordingly. The
definition of mathematical variables as Hilbert-space operators is, however,
a more complex matter. Both variables potentially involved in one or the
other complementary situation of measurement possible at any given point
may be viewed as being, at that point, definable simultaneously (rather
than being mutually exclusive) as formal mathematical entities. The reason
for that is that we consider formally the same Hilbert space in any given
situation of measurement, where we would, for example, consider the com-
mutators corresponding to the uncertainty relations for such variables.”

I agree with the referee that in this paper there is investigated “mathe-
matical mutual exclusivity” and the physical consequences of our principle
of supplementarity should be investigated in more detail. We shall do this
in section 8 by replying to the questions of another referee of the paper.

Now we discuss mainly mathematical framework. I agree with the
referee that one should distinguish between mathematical variables, phys-
ical properties and observables. The essence of quantum mechanics (as
physical theory) is in understanding relationships between these mathe-
matical and physical quantities. Denote mathematical variables u and v,
physical properties U and V and (physical) observables U and V . Bohr’s
mutual exclusivity is mutual exclusivity of U and V . Thus by mutual
exclusivity N. Bohr understood exclusivity of measurement contexts DU
and DV , cf., with the remark in introduction on the difference between
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Bohr’s “measurement contextuality” and our “preparation contextuality”.
Physical observables U and V are represented in quantum formalism by
self-adjoint operators û and v̂. As was rightly pointed out by the referee,
û and v̂ are definable simultaneously as formal mathematical quantities.
The situation with physical properties U and V is essentially more compli-
cated. Logically mutual exclusivity of observables U and V does not auto-
matically imply that physical properties U and V could not coexist. The
views of N. Bohr on this problem are not so clear. One could not say
that Bohr rejected the existence of physical properties. The result of a mea-
surement was considered by him as a property of the object, see Ref. 38
for the extended discussion. However, this result can be defined only in
the context of its measurement. Therefore for mutually exclusive measure-
ment contexts DU and DV it is forbidden to consider the properties U
and V as simultaneously coexisting. It should be pointed out the simulta-
neous definability of mathematical variables û and v̂ (self-adjoint operators
in the complex Hilbert space) does not contradict to mutual exclusivity of
the corresponding physical observables. The quantum formalism does not
describe results of individual measurements. Therefore operators û and v̂

could not be assigned to a single physical system ω.

Moreover, it seems that various “no-go” theorems, e.g., theorems of
von Neumann, Kochen-Specker, Bell, confirm Bohr’s views to comple-
mentarity. These theorems imply that it is even in principle impossible
to go deeper than quantum formalism. It is impossible to construct a
prequantum (‘classical”) probabilistic model containing mathematical vari-
ables u, v which could be assigned to individual systems.11

The Växjö model induces a totally different viewpoint to relationships
between mathematical variables, physical properties and observables. In the
opposite to the common “quantum opinion” in this model it is possible
to define mathematical variables u= a and v= b which are simultaneously
defined for a single physical system ω : a(ω) and b(ω) coexist. These func-
tions represent physical observables U and V which were denoted by the
same symbols a and b. Here objective properties U and V can coexist and
they are represented by a(ω) b(ω).

As was pointed out, the conventional quantum formalism is a special
representation of the Växjö model in which one ignores the knowledge
about a(ω) and b(ω). Such an ignorance is convenient in the situation in

11 I do not know any Bohr’s comment on the possibility to justify his principle of com-
plementarity via “no-go” theorems, in particular, von Neumann theorem. It seems that
N. Bohr would not be so interested in such results. For him already Heisenberg’s uncer-
tainty relations and the impossibility to combine the position measurement with the
interference in the two slit experiment were sufficiently strong arguments in favor of
complementarity (in the sense of mutual exclusivity).
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that the simultaneous measurement of U = a and V = b is impossible. Here
impossibility need not be of fundamental nature, it could be of purely
technological nature, cf. Section 8.

Quantum model cannot describe a single-particle context Cω, but the
prequantum contextual model can contain such contexts.

As a consequence of this difference of models Bohr’s principle of
complementarity does not look so natural for the Växjö model and should
be changed to a new principle. We propose to consider supplementarity
with coexistence instead complementarity (with mutual exclusivity).

8. EXPERIMENTAL CONSEQUENCES
OF THE SUPPLEMENTARITY PRINCIPLE

One of the referees of this paper asked about possible experimen-
tal consequences of the supplementarity principle. He pointed out that:
“According to Bohr, observables a(ω), b(ω), when measured on a system
ω, may be considered as relevant information about ω only when they are
compatible, while in Khrennikov’s realistic contextual model the contrary
is claimed to be the case. In order to distinguish both approaches, the
author introduces the new notions of supplementarity, and supplementary
observables. Khrennikov’s claim may be criticized, as Bohr’s complemen-
tarity standpoint and the associated incompatibility of some specific ob-
servables fits perfectly actual laboratory practice. However, nobody knows
how physics and present day technical possibilities will evolve in the
future and, therefore, the possible theoretical alternative considered by
Khrennikov may not be excluded a priori.” Then the referee added that
the physical relevance and interest of the principle of supplementarity
should be explained somewhat more explicitly. “Relevant questions are e.g.
how the principle of supplementarity related to experiment, how may one
profit from additional information? Or is it at present only a theoretical
possibility, which may become interesting in the future?”

At the moment the principle of supplementarity has purely theoret-
ical value. It says that quantum probabilistic behavior need not imply
the impossibility to construct a realistic underlying model. Therefore one
cannot exclude the possibility to find (or create) a context C such that
Heisenberg’s uncertainty relations would be violated in this context for
some pair of conjugate variables a and b. Here Heisenberg’s uncertainty
relations are considered as an inequality for dispersions of a and b

for a statistical ensemble SC corresponding to the context C, see e.g.
Ballentine.(14) Thus there might be found a context C such that disper-
sions of both a and b would be arbitrary small. Of course, such a context
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C would be impossible to represent by a complex probability amplitude
ψC. Moreover, there could exist dispersion free contexts. There is no con-
tradiction with Neumann’s conclusion on nonexistence of dispersion free
contexts (because in our model such contexts are not represented in the
complex Hilbert space). In general the set of trigonometric contexts Ctr

(here |λ| � 1, see Sec. 2.9) which can be represented in the complex Hil-
bert space is a proper subset of the family of all possible contexts C of a
contextual statistical model M = (C,O,D(O, C)). We recall that there also
exist hyperbolic contexts, Chyp (here |λ|� 1) which can be represented in
so called hyperbolic Hilbert space. It is possible to show that dispersion
free contexts belong to the class C \ (Ctr ∪ Chyp).12

Another consequence of the principle of supplementarity which can
stimulate experimental research is that quantum-like probabilistic effects
might be observed for systems and contexts (e.g. physical or biological) for
which existence of an underlying realistic model looks very natural. Here
an observation of interference of probabilities would not be considered as
a contradiction with the realistic model. As was mentioned in Ref. 1, such
effects might be observed for ensembles of macroscopic physical systems
(related to specially designed contexts) or for ensembles of cognitive sys-
tems, see the previous section.13

The referee also proposed to discuss in more detail relation between
the present contextual statistical realist model and models with hidden

12 It is easy to present mathematical models(1) in that C \ (Ctr ∪ Chyp) �= ∅ and there exist
dispersion free contexts. But the referee is completely right that until now such contexts
have not been found. There are two possibilities: either they do not exists in nature
(as it follows from the conventional viewpoint to QM) or there were never performed
extended experimental investigations in this direction. I hope that the development of
quantum cryptography (which is fundamentally based on Bohr’s complementarity prin-
ciple) could clarify this problem.

13 We remark that in cognitive science it is commonly believed that there can be created a
realistic neurophysiological model of brain functioning, see e.g. Ref. 47. It is natural to
suppose that such a realistic model would be of huge complexity. However, it is not so
easy to derive some conclusions about individual behavior of a system (brain) depending
on billions of (neuronal) parameters. Therefore in such a situation a probabilistic model
plays the important role. If we apply Bohr’s the complementarity principle, then it seems
that the quantum probabilistic model cannot be applied in this case (in the presence
of underlying realistic neurophysiological model). However, if we apply the contextual
model, then it is very natural to apply quantum-like model to describe the probabilistic
behavior of brain (as the whole), see Refs. 40–42. For example, Penrose(48) who evi-
dently uses Bohr’s principle of complementarity remarked: “It is hard to see how one
could usefully consider a quantum superposition of one neuron firing and not firing.”
Therefore he was not able to apply quantum formalism on the neurophysiological mac-
roscale and, as a consequence, he should go to the deepest level of matter described by
quantum gravity.
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variables (HV). Surprisingly our model does not have close relation with
HV-models. Despite the realism of reference observables (a(ω), b(ω) are
well defined for any physical system ω), we do not assume the existence
of the simultaneous (frequency) probability distribution (as people do in
all HV-models), but the most important is that even for each single vari-
able probability distributions are contextual – determined by complexes of
experimental physical conditions. We did not create a HV-model for QM.
The only thing that was demonstrated is that the interference of probabil-
ities is compatible with the realistic viewpoint to (reference) observables.
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APPENDIX A: BELL’S INEQUALITY

Typically Bell’s inequality is considered as a constraint for local realistic
models. The question of relation of Bell’s inequality with interpretations of
QM was discussed in details by Ballentine,(14) De Muynck, De Baere and
Marten,(38) De Muynck.(17) Our contextual statistical realistic interpreta-
tion does not contradict to the experimental fact of the violation of Bell’s
inequality. In our model only two reference observables are realistic and
Bell’s theorem is about realism of three observables. But it may be that is not
the point! Bell’s realism is a very special statistical realism, namely, the Kol-
mogorovian realism. J. Bell claimed from the very beginning that there exist
the Kolmogorov probability measure ρ(dλ) on the space of hidden variables
� (see, e.g., Accardi,(15) see also Ref. 49, 50). But in general there are no
reasons for the existence of such a unique probability measure on �. For
example, let us assume that � is the infinite dimensional topological linear
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space (e.g., Hilbert or Banach). This assumption is not so unnatural—it is
clear that the space of hidden variables should be of the greatest complex-
ity.(49) Moreover, De Muynck, De Baere and Marten(38) and De Muynck(17)

proposed to consider quantum observables as averages with respect to tra-
jectories, see also Ref. 49 (where that model was investigated). Such spaces
are, of course, infinite dimensional. It is well know that many natural distri-
butions on infinite dimensional spaces are not countably additive (for exam-
ple, some Gaussian measures, see Ref. 49 for analysis). Such distributions
are not probability measures; for them Bell’s calculations inducing the Bell
inequality cannot be performed. Recently it was shown that if, instead of the
Bell–Kolmogorov realism, one uses the frequency probabilistic realism (von
Mises realism), then in general there is no Bell’s inequality(49) (neither GHZ-
paradox) and, moreover, it is possible to obtain the EPR-Bohm correlations.
These correlations in the general contextual probabilistic framework were
obtained in Ref. 25. In fact, the using of von Mises realism is closely related
with objections to Bell’s arguments presented by De Baere(51) (the hypothe-
sis of nonreproducibility) and Hess and Philipp(52) (taking into account the
time-structure of the experiment).

APPENDIX B: SUPPLEMENTARITY AND KOLMOGOROVNESS

Definition B.1. Probabilistic data D(a, b, C) is said to be Kolmogoro-
vian if there exists a Kolmogorov probability space P = (	,F,P) and
random variables ξa and ξb on P such that

pa(α) = P(ξa = α), pb(β) = P(ξb = β), (B.1)

pb/a(β/α) = P(ξb = β/ξa = α), pa/b(α/β) = P(ξa = α/ξb = β).
(B.2)

If data D(a, b, C) is Kolmogorovian then the observables a and b can
represented by Kolmogorovian random variables ξa and ξb.

Lemma B.1. Data D(a, b, C) is Kolmogorovian if and only if

pa(α)pb/a(β/α) = pb(β)pa/b(α/β). (B.3)
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Proof. (a) If data D(a, b, C) is Kolmogorovian then (B.3) is reduced
to the equality P(O1 ∩O2) = P(O2 ∩O1) for O1,O2 ∈ F .

(b) Let (B.3) holds true. We set 	 = Xa × Xb,Xa = {α1, α2}, Xb =
{β1, β2}. We define the probability distribution on 	 by

P(α, β) = pb(β)pa/b(α/β) = pa(α)pb/a(β/α), (B.4)

and define the random variables ξa(ω) = α, ξb(ω) = β for a system ω

on which the outcomes α, β are found when observables a, b are mea-
sured. We have P(ξa(ω) = α) = ∑

β P(α, β) = ∑
β p

a(α)pb/a(β/α) =
pa(α)

∑
β p

b/a(β/α) = pa(α).
And in the same way P(b = β) = pb(β). Thus

P(a=α/b = β)=P(a=α, b = β)
P(b = β) =p

b(β)pa/b(α/β)

pb(β)
=pa/b(α/β). (B.5)

And in the same way we prove that pb/a(β/α) = P(b = β/a = α).
We now investigate the relation between Kolmogorovness and non-

supplementarity. If D(a, b, C) is Kolmogorovian then the formula of total
probability holds true and we have (39). Thus observables a and b are
nonsupplementary (in the context C). Thus:

Kolmogorovness implies nonsupplementarity
or as we also can say:
Supplementarity implies non-Kolmogorovness.

However, in the general case nonsupplementarity does not imply that
probabilistic data D(a, b, C) is Kolmogorovian. Let us investigate in more
detail the case when both matrices Pa/b and Pb/a are double stochastic. We
recall that a matrix Pb/a = (pb/a(β/α)) is double stochastic if it is stochas-
tic (so (28) holds true) and, moreover,

∑

α

pb/a(β/α) = 1, β = β1, β2. (B.6)

Remark B.1. (Double stochasticity as the law of statistical balance). As was
mentioned, the equality (28) holds true automatically. This is a consequence of
additivity and normalization by 1 of the probability distribution of any collec-
tive xα. But the equality (B.6) is an additional condition on the observables a
and b.Thus by considering double stochastic matrices we choose a very special
pair of reference observables. In Ref. 29 I tried to find the physical meaning of
the equality (28). Sincepb/a(β/α2) = 1−pb/a(β/α1), theCα1 andCα2 contexts
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compensate each other in “preparation of the property” b = β.Thus the equa-
tion (B.6) could be interpreted the law of statistical balance for the property
b = β. If both matrices Pb/a and Pa/b are double stochastic then we have laws
of statistical balance for both properties: a = α and b = β.

Definition B.2. Observables a and b are said to be statistically balanced
if both matrices Pb/a and Pa/b are double stochastic.

It is useful to recall the following well known result about double sto-
chasticity for Kolmogorovian random variables:

Lemma B.2. Let ξa and ξb be random variables on a Kolmogorov space
P = (	,F,P). Then the following conditions are equivalent

(1) The matrices Pa/b = (P(ξa = α/ξb = β)), Pb/a = (P(ξb = β/ξa =
α)) are double stochastic.

(2) Random variables are uniformly distributed:

P(ξa = α) = P(ξb = β) = 1
2
. (B.7)

(3) Random variables are symmetrically conditioned:

P(ξa = α/ξb = β) = P(ξb = β/ξa = α). (B.8)

This result is not true in the contextual frequency approach and this fact
is used in the following proposition:

Proposition B.1. A Kolmogorov model for data D(a, b, C) need not
exist even in the case of nonsupplementary statistically balanced observ-
ables having the uniform probability distribution.

Proof. Let us consider probabilistic data D(a, b, C) such that pa(α) =
pb(β) = 1/2 and both matrices Pa/b and Pb/a are double stochastic. But
let pa/b(α/β) �= pb/a(β/α). Then by Lemma 10.1 data D(a, b, C) is non-
Kolmogorovian, but

δ(α/β,C) = 1−
∑

β

pa/b(α/β) = 0, δ(β/α,C) = 1−
∑

α

pb/a(β/α) = 0.

(B.9)

It seems to be that symmetrical conditioning plays the crucial role in
these considerations.
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Lemma B.3. If observables a and b are symmetrically conditioned, then
they are statistically balanced (so the matrices Pa/b and Pb/a are double
stochastic).

Proof. We have

∑

β

pa/b(α/β) =
∑

β

pb/a(β/α) =
∑

β

Pxα (b = β) = 1, (B.10)

∑

α

pb/a(β/α) =
∑

α

Pyβ (a = α) = 1. (B.11)

As we have seen in Proposition B.1, statistically balanced observables need
not be symmetrically conditioned.

Proposition B.2. Let observables a and b be symmetrically conditioned.
Probabilistic data D(a, b, C) is Kolmogorovian iff the observables a and b
are nonsupplementary in the context C.

Proof. Suppose that a and b are nonsupplementary. We set

pb/a(1/1) = pb/a(2/2) = p and pb/a(1/2) = pb/a(2/1) = 1− p (B.12)

(we recall that by Lemma B.3 the matrix Pb/a is double stochastic). By
(42), (43) we have

pa(αi) =
∑

β

pb(β)pa/b(αi/β) =
∑

β

∑

α

pa(α)pb/a(β/α)pa/b(αi/β)

=
∑

α

pa(α)
∑

β

pb/a(β/α)pb/a(β/αi). (B.13)

Let us consider the case i = 1 : pa(α1) = pa(α1)(p
2 + (1 − p)2) +

2pa(α2)p(1− p) = pa(α1)(1− 4p + 4p2)+ 2p(1− p).
Thus pa(α1) = 1/2. Hence pa(α2) = 1/2. In the same way we get that

pb(β1) = pb(β2) = 1/2. Thus the condition (B.3) holds true and there exist
a Kolmogorov model P = (	,F,P) for probabilistic data D(a, b, C).

Conclusion. In the case of symmetrical conditioning Kolmogorovness
is equivalent to nonsupplementarity.
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APPENDIX C: INCOMPATIBILITY, SUPPLEMENTARITY AND
EXISTENCE OF THE JOINT PROBABILITY DISTRIBUTION

The notions of incompatible and complementary variables are
considered as synonymous in the Copenhagen quantum mechanics. More-
over, compatibility (and consequently noncomplementarity) is considered
as equivalent to existence of the simultaneous probability distribution
P(α, β)=P(a=α, b=β). We now consider similar questions for our Växjö
model.

C.1. Existence of the Simultaneous Probability Distribution

By analogy with Definition 5.1 we may propose the following defini-
tion:

Definition C.1. Probabilistic data W(a, b, C) = {pa(α), pb(β)}, where C
is a context, is said to be Kolmogorovian if there exists a Kolmogorov
probability space P=(	,F,P) and random variables ξa and ξb on P such
that

pa(α) = P(ξa = α), pb(β) = P(ξb = β). (C.1)

However, it is evident that data W(a, b, C) is always Kolmogorovian.
For example, we can always define the Kolmogorov measure P(α, β)=
pa(α)pb(β). It is evident that the marginal distributions of this probabil-
ity coincide with pa(α) and pb(β). Of course, such a probability is not
uniquely defined and in general this is a purely mathematical construction
which has no physical meaning. In particular, the probability (C.4) always
corresponds to independent random variables ξa and ξb. However, in gen-
eral observables a and b are not independent. Therefore the problem of
Kolmogorovness of data W(a, b, C) can be investigated in physical frame-
work only by using the frequency probability theory.

We emphasize that mathematical Kolmogorovness of data W(a, b, C)
does not imply Kolmogorovness of data D(a, b, C). If data W(a, b, C)

is Kolmogorovian, then there are well defined Bayes–Kolmogorov condi-
tional probabilities:

P(Aα/Bβ) = P(Aα ∩ Bβ)
P(Bβ)

, (C.2)
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where Aα ={ω∈	 : a(ω)=α}, Bβ ={ω∈	 : b(ω)=β}. However, in general
these measure-theoretical conditional probabilities do not coincide with
experimental conditional probabilities determined in the frequency frame-
work:14 pa/b(α/β) = Pyβ (α). In particular, Kolmogorovness of data
W(a, b, C) does not imply that probabilistic measures of supplementarity
δ(α/β,C) and δ(β/α,C) are equal to zero.

Conclusion. Kolmogorovness of data W(a, b, C) does not imply non-
supplementarity of observables a and b in the context C.

C.2. Incompatible and supplementary Observables

As usual, observables a and b are called compatible in a context C
if it is possible to perform a simultaneous observation of them under
C. For any instant of time t, there can be observed a pair of values
z(t)=(a(t), b(t)). There is well defined a sequence of results of observa-
tions:

z(a, b/C) = (z1, z2, ..., zN , ...), zj = (yj , xj ), (C.3)

where yj = α1 or α2 and xj = β1 or β2. Observables a and b are incom-
patible in a context C if it is impossible to perform a simultaneous obser-
vation of them under C.

Observables a and b are said to be statistically compatible in a contextC if
they are compatible in C and the z(a, b/C) is an S-sequence (or collective).15

Thus there exists the frequency simultaneous probability distribution:

P(α, β) ≡ Pz(α, β) = lim
N→∞

nN(α, β; z)
N

. (C.4)

We remark that in general existence of this frequency probability dis-
tribution (77) has nothing to do with existence of a formal Kolmogo-
rov probability distribution—Kolmogorovness of data W(a, b, C). As was
mentioned, data W(a, b, C) is always Kolmogorovian, but sequences of
results of observations y and x are not always combinable.

If a and b are statistically compatible in a context C then data
D(a, b, C) is Kolmogorovian, because pa/b(α/β) = Pz(a = α/b = β) and
pb/a(β/α) = Pz(b = β/a = α).

14 But even in the Kolmogorov framework we cannot define conditional probabilities in the
unique way, because a Kolmogorov measure for data W(a, b, C) is not uniquely defined.

15 In the opposite case observables are statistically incompatible.
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Thus we have

Statistical compatibility implies Kolmogorovness of data D(a, b, C)

or
Non-Kolmogorovness of data D(a, b, C) implies statistical incompatibility
Thus
Statistical compatibility implies nonsupplementarity
or
Supplementarity implies statistical incompatibility

However, since in general nonsupplementarity does not imply Kol-
mogorovness of data D(a, b, C), see Proposition 5.1, we have:

Nonsupplementarity does not imply statistical compatibility

Thus there can exist a context C such that observables a and b do not produce
supplementary information,16 but they do not have the frequency joint probabil-
ity distribution. The notions of statistical compatibility and nonsupplementarity
are not equivalent. Hence, the notions of supplementarity and incompatibility are
neither equivalent:

Statistical incompatibility does not imply supplementarity

Thus there can exist a context C such that observables a and b do
not have the frequency joint probability distribution, but at the same time
they do not produce supplementary information.

Let us consider a contextual statistical model M = (C,O,D(O, C). If
physical observables a and b are (statistically) compatible for any C ∈ C
then they are called (statistically) compatible in the model M. They are
called (statistically) incompatible in the model M if there exists C ∈ C such
that they are (statistically) incompatible for C.

C.3. Compatibility does not Imply Statistical Compatibility

In quantum physics compatibility of observables—the possibility to
perform a simultaneous observation—is typically identified with statistical
compatibility—existence of the frequency simultaneous probability dis-
tribution (77). This is a natural consequence of the Kolmogorovian
psychology. In the frequency probability theory we should distinguish
compatibility and statistical compatibility. We present an example in
which observables are compatible, but the limit (77) does not exist, so
observables are not statistically compatible. Of course, this means that
y= y(a/C) and x= x(b/C) are not combinable. We need some well known

16 Hence all coefficients δ(α/b, C), δ(β/a, C) are equal to zero.
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results about the generalized probability given by the density of natural
numbers, see Ref. 44 (we recall that A. N. Kolmogorov considered the den-
sity of natural numbers as an example of probability, but it was before he
proposed the conventional axiomatics). For a subset A⊂N the quantity
P(A)= limN→∞ |A∩{1,...,N}|N

, is called the density of A if the limit exists.
Here the symbol |V | is used to denote the number of elements in a finite
set V.

Let G denote the collection of all subsets of N which admit density.
It is evident that each finite A ⊂ N belongs to G and P(A) = 0. It is also
evident that each subset B = N\A, where A is finite, belongs to G and
P(B)= 1 (in particular, P(N) = 1). The reader can easily find examples
of sets A ∈ G such that 0 < P(A) < 1. The “generalized probability” P
has the following additivity-property (cf. Gudder(11)). Let A1, A2 ∈ G and
A1 ∩ A2 = ∅. Then A1 ∪ A2 ∈ G and P(A1 ∪ A2) = P(A1)+ P(A2).

It is possible to find sets A,B ∈ G such that, for example, A∩B �∈ G.
Let A be the set of even numbers. Take any subset C ⊂ A which has no
density. In fact, you can find C such that 1

N
|C ∩ {1, 2, · · · , N}| is oscillat-

ing. There happen two cases: C∩{2n} = {2n} or = ∅. Set B = C∪{2n−1 :
C∩{2n} = ∅} Then, both A and B have densities one half. But A∩B = C
has no density. Thus G is not a set algebra.

We now consider a context C which produces natural numbers. We
introduce two dichotomous observables: a(n)= IA(n), b(n)= IB(n), where
IO(x) is the characteristic function of a set O. We assume that these ob-
servables are compatible: we can, e.g., look at a number n and find both
values a(n) and b(n).17 We obtain two S-sequences:

y = y(a/C) = (y1, . . . , yN , . . . ),

x = x(b/C) = (x1, . . . , xN , . . . ), yj , xj = 0, 1. (C.5)

The frequency probability distributions are well defined: pa(α) ≡ Py(α)=
1/2, pb(β)≡Px(β)= 1/2. However, the S-sequences y and x are not com-
binable. Thus observables a and b are not statistically compatible; for
example, the frequency probability P(1, 1) does not exist.18

17 If reader like he can consider natural numbers as systems and interpret a(n) and b(n)

as values of observables a and b on the system n.
18 But, of course, there exist various Kolmogorov probability measures PKol(α, β) which

have marginal distributions pa(α), pb(β).
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Vol. 10 (Växjö Univ. Press, Växjö, 2004), pp. 679–702; http://xxx.lanl.gov/abs/quant-
ph/0307201; A. A. Grib, A. Yu. Khrennikov, and K. Starkov, “Probability Amplitude
in Quantum-like Games”, in Quantum Theory: Reconsideration of Foundations-2, A.
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