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Quantum Mechanics is About Quantum Information
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I argue that quantum mechanics is fundamentally a theory about the repre-
sentation and manipulation of information, not a theory about the mechanics
of nonclassical waves or particles. The notion of quantum information is to
be understood as a new physical primitive—just as, following Einstein’s special
theory of relativity, a field is no longer regarded as the physical manifestation
of vibrations in a mechanical medium, but recognized as a new physical entity
in its own right.
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1. INTRODUCTION

In several places,(1–3) Cushing speculates about the possibility of an
alternative history, in which Bohm’s theory(4,5) is developed as the stan-
dard version of quantum mechanics, and suggests that in that case the
Copenhagen interpretation, if it had been proposed as an alternative to
a fully developed Bohmian theory, would have been summarily rejected. I
quote from (Ref. 2, pp. 352–353):

. . . we can fashion a highly reconstructed but entirely plausible bit of
partially ‘counterfactual’ history as follows (all around 1925–1927). Heisen-
berg’s matrix mechanics and Schrödinger’s wave mechanics are formulated and
shown to be mathematically equivalent. Study of a classical particle subject to
Brownian motion . . . leads to a classical understanding of the already discovered
Schrödinger equation. A stochastic mechanics underpins this interpretation with a
visualizable model of microphenomena and, so, a realistic ontology remains via-
ble. Since stochastic mechanics is quite difficult to handle mathematically, study
naturally turns to the mathematically equivalent linear Schrödinger equation.
Hence, the Dirac transformation theory and an operator formalism are available
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as a convenience for further development of the mathematics to provide algo-
rithms for calculation.
. . .

A Bell-type theorem is proven and taken as convincing evidence that non-
locality is present in quantum phenomena. A no-signalling theorem for quantum
mechanical correlations is established and this puts to rest Einstein’s objections to
the nonseparability of quantum mechanics. . . . This could reasonably have been
enough to overcome his objections to the nonlocal nature of a de Broglie–Bohm
interpretation of the formalism of quantum mechanics. Because the stochastic
theory is both nonlocal and indeterministic, whereas the de Broglie–Bohm model
is nonlocal only and still susceptible to a realist interpretation, Einstein might
have made the transition to the latter type of theory.

That is, these developments, that could, conceptually and logically, have taken
place around 1927, could have overcome the resistance of Einstein and of
Schrödinger to supporting a de Broglie–Bohm program. . . . Bohm’s interpreta-
tion would certainly have been possible in 1927. These models and theories could
be generalized to include relativity and spin. The program is off and running.
Finally, this causal interpretation can be extended to quantum fields.

So, if, say, in 1927, the fate of the causal interpretation had taken a very
different turn and been accepted over the Copenhagen one, it would have had
the resources to cope with the generalizations essential for a broad-based empiri-
cal adequacy. We could today have arrived at a very different world view of mi-
crophenomena. If someone were then to present the merely empirically equally as
adequate Copenhagen version, with all of its own additional counterintuitive and
mind-boggling aspects, who would listen? . . . However, Copenhagen got to the
top of the hill first and, to most practicing scientists, there seems to be no point
in dislodging it.

Cushing’s thesis was that the successful theories that philosophers of
science analyze as case-studies are themselves contingent on historical fac-
tors—in particular, the success of the Copenhagen interpretation of quan-
tum mechanics is a matter of historical contingency. I want to point to
an analogy between Cushing’s counterfactual history of the development of
quantum mechanics and the actual history of the transition from Newtonian
physics to Einstein’s special theory of relativity, to argue for a very different
conclusion: the interpretation of quantum mechanics as a theory about the
representation and manipulation of information in our world, not a theory
about the mechanics of nonclassical waves or particles.

The following discussion is divided into three sections. In “Principle
vs. Constructive Theories,” I discuss Einstein’s distinction between these
two classes of theories, and the significance of his characterization of spe-
cial relativity as a principle theory. I conclude the section by drawing
out the analogy as the claim that, just as the rejection of Lorentz’s the-
ory in favour of special relativity (formulated in terms of Einstein’s two
principles) involved taking the notion of a field as a new physical primi-
tive, so the rejection of Bohm’s theory in favour of quantum mechanics—
characterized via the Clifton–Bub–Halvorson (CBH) theorem in terms of
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three information-theoretic principles—involves taking the notion of quan-
tum information as a new physical primitive. (By “information” here, I
mean information in the physical sense, measured classically by the Shan-
non entropy and, in a quantum world, by the von Neumann entropy).
In “The CBH Characterization Theorem,” I outline the content of the
CBH theorem. Finally, in “Quantum Information,” I argue that, just as
Einstein’s analysis (based on the assumption that we live in a world in
which natural processes are subject to certain constraints specified by the
principles of special relativity) shows that we do not need the mechani-
cal structures in Lorentz’s constructive theory (the aether, and the behav-
iour of electrons in the aether) to explain electromagnetic phenomena, so
the CBH analysis (based on the assumption that we live in a world in
which there are certain constraints on the acquisition, representation, and
communication of information) shows that we do not need the mechanical
structures in Bohm’s constructive theory (the guiding field, the behaviour
of particles in the guiding field) to explain quantum phenomena. You can,
if you like, tell a story along Bohmian, or similar, lines (as in other “no
collapse” interpretations) but, given the information-theoretic constraints,
such a story can, in principle, have no excess empirical content over quan-
tum mechanics (just as Lorentz’s theory, insofar as it is constrained by the
requirement to reproduce the empirical content of the principles of special
relativity, can, in principle, have no excess empirical content over Einstein’s
theory).

2. PRINCIPLE VS CONSTRUCTIVE THEORIES

Einstein introduced the distinction between principle and constructive
theories in an article on the significance of the special and general theo-
ries of relativity that he wrote for the London Times, which appeared in
the issue of 28 November 1919:(6)

We can distinguish various kinds of theories in physics. Most of them are con-
structive. They attempt to build up a picture of the more complex phenomena
out of the material of a relatively simple formal scheme from which they start
out. Thus the kinetic theory of gases seeks to reduce mechanical, thermal, and
diffusional processes to movements of molecules—i.e., to build them up out of the
hypothesis of molecular motion. When we say that we have succeeded in under-
standing a group of natural processes, we invariably mean that a constructive
theory has been found which covers the processes in question. Along with this
most important class of theories there exists a second, which I will call ‘princi-
ple theories.’ These employ the analytic, not the synthetic, method. The elements
which form their basis and starting-point are not hypothetically constructed but
empirically discovered ones, general characteristics of natural processes, principles
that give rise to mathematically formulated criteria which the separate processes
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or the theoretical representations of them have to satisfy. Thus the science of
thermodynamics seeks by analytical means to deduce necessary conditions, which
separate events have to satisfy, from the universally experienced fact that perpet-
ual motion is impossible.

Einstein’s point was that relativity theory is to be understood as a princi-
ple theory. He returns to this theme in his “Autobiographical Notes” (Ref. 7,
pp. 51–52), where he remarks that he first tried to find a constructive theory
that would account for the known properties of mater and radiation, but even-
tually became convinced that the solution to the problem was to be found in a
principle theory that reconciled the constancy of the velocity of light in vacuo
for all inertial frames of reference, and the equivalence of inertial frames for all
physical laws (mechanical as well as electromagnetic):

Reflections of this type made it clear to me as long ago as shortly after 1900, i.e.,
shortly after Planck’s trailblazing work, that neither mechanics nor electrodynam-
ics could (except in limiting cases) claim exact validity. By and by I despaired
of the possibility of discovering the true laws by means of constructive efforts
based on known facts. The longer and the more despairingly I tried, the more
I came to the conviction that only the discovery of a universal formal principle
could lead us to assured results. The example I saw before me was thermody-
namics. The general principle was there given in the theorem: the laws of nature
are such that it is impossible to construct a perpetuum mobile (of the first and
second kind). How, then, could such a universal principle be found?

A little later (Ref. 7, p. 57) he adds:

The universal principle of the special theory of relativity is contained in the
postulate: The laws of physics are invariant with respect to the Lorentz trans-
formations (for the transition from one inertial system to any other arbitrarily
chosen system of inertia). This is a restricting principle for natural laws, com-
parable to the restricting principle for the non-existence of the perpetuum mobile
which underlies thermodyamics.

According to Einstein, two very different sorts of theories should be
distinguished in physics. One sort involves the reduction of a domain of
relatively complex phenomena to the properties of simpler elements, as in
the kinetic theory, which reduces the mechanical and thermal behaviour of
gases to the motion of molecules, the elementary building blocks of the
constructive theory. The other sort of theory is formulated in terms of “no
go” principles that impose constraints on physical processes or events, as
in thermodynamics (“no perpetual motion machines”). For an illuminat-
ing account of the role played by this distinction in Einstein’s work, see
the discussion by Martin Klein in.(8)

The special theory of relativity is a principle theory, formulated in
terms of two principles: the equivalence of inertial frames for all physical
laws (the laws of electromagnetic phenomena as well as the laws of
mechanics), and the constancy of the velocity of light in vacuo for all
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inertial frames. These principles are irreconcilable in the geometry of
Newtonian space-time, where inertial frames are related by Galilean trans-
formations. The required revision yields Minkowski geometry, where iner-
tial frames are related by Lorentz transformations. Einstein characterizes
the special principle of relativity, that the laws of physics are invariant with
respect to Lorentz transformations from one inertial system to another, as
“a restricting principle for natural laws, comparable to the restricting prin-
ciple for the non-existence of the perpetuum mobile which underlies ther-
modynamics.” (In the case of the general theory of relativity, the group of
allowable transformations includes all differentiable transformations of the
space-time manifold onto itself.) By contrast, the Lorentz theory,(9) which
derives the Lorentz transformation from the electromagnetic properties of
the aether, and assumptions about the transmission of molecular forces
through the aether, is a constructive theory.

Consider the transition:
Lorentz’s constructive mechanical theory of the electrodynamics of

moving bodies

−→ Einstein’s principle theory of special relativity

−→ Minkowski’s formulation of Einstein’s theory as a non-Euclidean
space-time geometry

Einstein showed that you could obtain a unified treatment of
mechanical and electromagnetic phenomena—particles, electrons, light—by
extending the idea of Galilean relativity (in a suitably modified form, involv-
ing the Lorentz transformation between inertial frames) to both mechan-
ical and electromagnetic phenomena. In Minkowski’s formulation of the
theory, the relativistic principles are instantiated in a specific non-Newtonian
geometry of space-time. In this new framework, rigid bodies are excluded
by the symmetry group (i.e., they would transmit signals faster than light)
and, strictly speaking, particles (insofar as they are small rigid bodies) are
excluded. Instead, the field becomes the basic physical entity, as a new phys-
ical primitive, representing our intuitive notion of ‘physical stuff.’ In partic-
ular, since an electromagnetic wave is not reduced to the vibratory motion
of a certain sort of physical stuff (as a sound wave is reducible to the notion
of air molecules), the aether is no longer required as the medium for the
physical instantiation of an electromagnetic field.

The analogy I want to develop is between the transition:
Lorentz’s constructive theory

−→ Einstein’s principle theory

−→ Minkowski space-time
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and the transition in Cushing’s counterfactual history:
Bohm’s constructive theory

−→ X

−→ Hilbert space quantum mechanics

What is missing in the case of the transition from Bohm’s con-
structive theory to Hilbert space quantum mechanics is something like
an Einsteinian formulation of quantum mechanics as a principle theory
(the “X”). Without this step, the Copenhagen argument for the com-
pleteness of Hilbert space quantum mechanics (and the associated rejec-
tion of Bohm’s theory) in the counterfactual world seems implausible, as
Cushing suggests. Similarly, to consider another counterfactual history, we
might suppose that (after Lorentz’s theory) the special theory of relativ-
ity was first formulated geometrically by Minkowski rather than Einstein,
as an algorithm for relativistic kinematics and the Lorentz transforma-
tion, which is incompatible with the kinematics of Newtonian space-time.
Without Einstein’s analysis of the theory as a principle theory along the
lines sketched above, it seems implausible to suppose that Lorentz’s theory
would have been dislodged by what would surely have seemed to be merely
a convenient (but “counterintuitive and mind-boggling”) algorithm.

In the following section, I argue that the missing “X” is supplied by
the CBH characterization theorem for quantum theory in terms of three
information-theoretic constraints, and that given this theorem, the relation
between quantum mechanics and constructive theories like Bohm’s theory
should be seen as analogous to the relation between special relativity and
Lorentz’s theory. Just as special relativity involves a theory of the structure
of space-time in which a field is a new physical primitive not reducible to
the motion of a mechanical medium (ultimately, to the motion of parti-
cles), so quantum mechanics involves a theory of the algebraic structure
of states and observables in which information is a new physical primitive
not reducible to the behaviour of mechanical systems (the motion of par-
ticles and/or fields).

It should go without saying that I am not comparing the CBH theorem
with Einstein’s achievement in developing the special theory of relativity. To
avoid any such suggestion, which would be ludicrous, let me say what would
perhaps be a comparable achievement. Suppose, in a modified version of Cush-
ing’s counterfactual history, that in 1927 Bohm’s theory was the dominant
research paradigm in quantum physics. Suppose (in 1927) that CBH showed
that one could dispense with the whole idea of a source-less field in configu-
ration space guiding the motion of particles by deriving the current Hilbert
space theory from three information-theoretic constraints, and in terms of this
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(then new) Hilbert space theory also showed in detail how one could treat var-
ious quantum systems, currently treated in terms of Bohm’s theory, in a much
simpler way, and in particular brought out the implications of entanglement
as a new physical resource that could be exploited to develop novel forms of
computation and cryptographic procedures that were impossible classically
(cf. E = mc2). In our actual history, since Hilbert space quantum mechanics
and quantum information theory are already on the table, the CBH theorem
is hardly more than a footnote to current theory. The purpose in pointing to
the analogy is to argue that the relevance of the CBH theorem to the inter-
pretative debate about Hilbert space quantum mechanics and the significance
of constructive mechanical theories like Bohm’s theory, is to be understood as
similar to the relevance of Einstein’s analysis of special relativity as a princi-
ple theory to Minkowski’s geometric formulation of the theory and Lorentz’s
constructive mechanical aether theory.

3. THE CBH CHARACTERIZATION THEOREM

The CBH characterization theorem is formulated in the general
framework of C∗-algebras, which allows a mathematically abstract charac-
terization of a physical theory that includes, as special cases, all classical
mechanical theories of both wave and particle varieties, and all variations
on quantum theory, including quantum field theories (plus any hybrids of
these theories, such as theories with superselection rules). So the analysis
is not restricted to the standard quantum mechanics of a system repre-
sented on a single Hilbert space with a unitary dynamics, but is gen-
eral enough to cover cases of systems with an infinite number of degrees
of freedom that arise in quantum field theory and the thermodynamic
limit of quantum statistical mechanics (in which the number of micro-
systems and the volume they occupy goes to infinity, while the density
defined by their ratio remains constant), including the quantum theoretical
description of exotic phenomena such as Hawking radiation, black hole
evaporation, Hawking information loss, etc. The Stone-von Neumann the-
orem, which guarantees the existence of a unique representation (up to
unitary equivalence) of the canonical commutation relations for systems
with a finite number of degrees of freedom, breaks down for such cases,
and there will be many unitarily inequivalent representations of the canon-
ical commutation relations. One could, of course, consider weaker math-
ematical structures, but it seems that the C∗-algebraic machinery suffices
for all physical theories that have been found to be empirically successful
to date, including phase space theories and Hilbert space theories,(10) and
theories based on a manifold.(11)
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A C∗-algebra is essentially an abstract generalization of the structure
of the algebra of operators on a Hilbert space. Technically, a (unital) C∗-
algebra is a Banach ∗-algebra over the complex numbers containing the
identity, where the involution operation ∗ and the norm are related by
‖A∗A‖ = ‖A‖2. So the algebra B(H) of all bounded operators on a
Hilbert space H is a C∗-algebra, with ∗ the adjoint operation and ‖ ·‖ the
standard operator norm.

In standard quantum theory, a state on B(H) is defined by a den-
sity operator D on H in terms of an expectation-valued functional
ρ(A) = Tr(AD) for all observables represented by self-adjoint operators
A in B(H). This definition of ρ(A) in terms of D yields a positive
normalized linear functional. So a state on a C∗-algebra C is defined, quite
generally, as any positive normalized linear functional ρ: C → C on the
algebra. Pure states are defined by the condition that if ρ = λρ1 +(1−λ)ρ2
with λ ∈ (0, 1), then ρ = ρ1 = ρ2; other states are mixed.

The most general dynamical evolution of a system represented by a
C∗-algebra of observables is given by a completely positive linear map T

on the algebra of observables, where 0 � T (I) � I . The map or operation
T is called selective if T (I) < I and nonselective if T (I) = I . A yes-no
measurement of some idempotent observable represented by a projection
operator P is an example of a selective operation. Here, T (A) = PAP

for all A in the C∗-algebra C, and ρT , the transformed (‘collapsed’) state,
is the final state obtained after measuring P in the state ρ and ignoring
all elements of the ensemble that do not yield the eigenvalue 1 of P (so
ρT (A) = ρ(T (A))/ρ(T (I )) when ρ(T (I )) �= 0, and ρT = 0 otherwise). The
time evolution in the Heisenberg picture induced by a unitary operator
U ∈ C is an example of a nonselective operation. Here, T (A) = UAU−1.
Similarly, the measurement of an observable O with spectral measure {Pi},
without selecting a particular outcome, is an example of a nonselective
operation, with T (A) = ∑n

i=1 PiAPi . Note that any completely positive
linear map can be regarded as the restriction to a local system of a unitary
map on a larger system.

A representation of a C∗-algebra C is any mapping π : C → B(H)

that preserves the linear, product, and ∗ structure of C. The representation
is faithful if π is one-to-one, in which case π(C) is an isomorphic copy of
C. The Gelfand-Naimark theorem says that every abstract C∗-algebra has
a concrete faithful representation as a norm-closed ∗-subalgebra of B(H),
for some appropriate Hilbert space H. In the case of systems with an infi-
nite number of degrees of freedom (as in quantum field theory), there are
inequivalent representations of the C∗-algebra of observables defined by
the commutation relations.
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The relation between classical theories and C∗-algebras is this: every
commutative C∗-algebra C is isomorphic to the set C(X) of all continu-
ous complex-valued functions on a locally compact Hausdorff space X.
If C has a multiplicative identity, X is compact. So behind every abstract
abelian C∗-algebra there is a classical phase space theory defined by this
“function representation” on the phase space X. Conversely, every clas-
sical phase space theory defines a C∗-algebra. For example, the observ-
ables of a classical system of n particles—real-valued functions on the
phase space R

6n—can be represented as the self-adjoint elements of the
C∗-algebra B(R6n) of all continuous complex-valued functions f on R

6n.
The phase space R

6n is locally compact and can be made compact by
adding just one point “at infinity,” or we can simply consider a bounded
(and thus compact) subset of R

6n. The statistical states of the system
are given by probability measures µ on R

6n, and pure states, correspond-
ing to maximally complete information about the particles, are given by
the individual points of R

6n. The system’s state ρ in the C∗-algebraic
sense is the expectation functional corresponding to µ, defined by ρ(f ) =∫

R6n f dµ.
So classical theories are characterized by commutative C∗-algebras.

CBH identify quantum theories with a certain subclass of noncommu-
tative C∗-algebras; specifically, theories where (i) the observables of the
theory are represented by the self-adjoint operators in a noncommutative
C∗-algebra (but the algebras of observables of distinct systems commute),
(ii) the states of the theory are represented by C∗-algebraic states (positive
normalized linear functionals on the C∗-algebra), and spacelike separated
systems can be prepared in entangled states that allow what Schrödinger
(Ref. 12, p. 556) calls “remote steering,” and (iii) dynamical changes are
represented by completely positive linear maps. For example, the standard
quantum mechanics of a system with a finite number of degrees of free-
dom represented on a single Hilbert space with a unitary dynamics defined
by a given Hamiltonian is a quantum theory, and theories with different
Hamiltonians can be considered to be empirically inequivalent quantum
theories. Quantum field theories for systems with an infinite number of
degrees of freedom, where there are many unitarily inequivalent Hilbert
space representations of the canonical commutation relations, are quan-
tum theories. (For a detailed discussion and motivation for this identifica-
tion, see (Refs. 13–16).

What CBH showed was that one can derive the basic kinematic fea-
tures of a quantum-theoretic description of physical systems in the above
sense from three fundamental information-theoretic constraints: (i) the
impossibility of superluminal information transfer between two physical
systems by performing measurements on one of them, (ii) the impossibility
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of perfectly broadcasting the information contained in an unknown phys-
ical state (for pure states, this amounts to “no cloning”), and (iii) the
impossibility of communicating information so as to implement a certain
primitive cryptographic protocol, called “bit commitment,” with uncon-
ditional security. They also partly demonstrated the converse derivation,
leaving open a question concerning nonlocality and bit commitment. This
remaining issue has been resolved by Hans Halvorson,(17) so we have
a characterization theorem for quantum theory in terms of the three
information-theoretic constraints.

To clarify the significance of the information-theoretic constraints,
consider a composite quantum system A+B, consisting of two subsys-
tems, A and B. For simplicity, assume the systems are identical, so their
C∗-algebras A and B are isomorphic. The observables of the component
systems A and B are represented by the self-adjoint elements of A and
B, respectively. Let A ∨ B denote the C∗-algebra generated by A and
B. The physical states of A, B, and A+B, are given by positive normal-
ized linear functionals on their respective algebras that encode the expec-
tation values of all observables (cf. standard quantum theory, where a
state on B(H) is defined by a density operator D on H in terms of an
expectation-valued functional ρ(A) = Tr(AD) for all observables repre-
sented by self-adjoint operators A in B(H)). To capture the idea that A
and B are physically distinct systems, CBH make the assumption that any
state of A is compatible with any state of B, i.e., for any state ρA of A
and ρB of B, there is a state ρ of A ∨ B such that ρ|A = ρA and
ρ|B = ρB .

The sense of the “no superluminal information transfer via measure-
ment” constraint is that when Alice and Bob, say, perform local measure-
ments, Alice’s measurements can have no influence on the statistics for the
outcomes of Bob’s measurements, and conversely. That is, merely perform-
ing a local measurement cannot, in and of itself, convey any information
to a physically distinct system, so that everything “looks the same” to that
system after the measurement operation as before, in terms of the expecta-
tion values for the outcomes of measurements. CBH show that it follows
from this constraint that A and B are kinematically independent systems
if they are physically distinct in the above sense, i.e., every element of A
commutes pairwise with every element of B.

The “no broadcasting” condition now ensures that the individual
algebras A and B are noncommutative. Broadcasting is a process closely
related to cloning. In fact, for pure states, broadcasting reduces to clon-
ing. In cloning, a ready state σ of a system B and the state to be cloned
ρ of system A are transformed into two copies of ρ. In broadcasting, a
ready state σ of B and the state to be broadcast ρ of A are transformed
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to a new state ω of A+B, where the marginal states of ω with respect to
both A and B are ρ. In elementary quantum mechanics, neither cloning
nor broadcasting is possible in general. A pair of pure states can be cloned
if and only if they are orthogonal and, more generally, a pair of mixed
states can be broadcast if and only if they are represented by mutually
commuting density operators. CBH show that broadcasting and cloning
are always possible for classical systems, i.e., in the commutative case there
is a universal broadcasting map that clones any pair of input pure states
and broadcasts any pair of input mixed states. Conversely, they show that
if any two states can be (perfectly) broadcast, then any two pure states
can be cloned; and if two pure states of a C∗-algebra can be cloned, then
they must be orthogonal. So, if any two states can be broadcast, then
all pure states are orthogonal, from which it follows that the algebra is
commutative.

The quantum mechanical phenomenon of interference is the phys-
ical manifestation of the noncommutativity of quantum observables or,
equivalently, the superposition of quantum states. So the impossibility of
perfectly broadcasting the information contained in an unknown physical
state, or of cloning or copying the information in an unknown pure state,
is the information-theoretic counterpart of interference.

Now, if A and B are noncommutative and mutually commuting, it can
be shown that there are nonlocal entangled states on the C∗-algebra A ∨ B
they generate (see Refs. 18–20, and—more relevantly here, in terms of a speci-
fication of the range of entangled states that can be guaranteed to exist—Ref.
17). So it seems that entanglement—what Schrödinger (Ref. 12, p. 555) called
“the characteristic trait of quantum mechanics, the one that enforces its entire
departure from classical lines of thought”— follows automatically in any the-
ory with a noncommutative algebra of observables. That is, it seems that once
we assume “no superluminal information transfer via measurement,” and “no
broadcasting”, the class of allowable physical theories is restricted to those
theories in which physical systems manifest both interference and nonlocal
entanglement. But this conclusion is surely too quick, since the derivation of
entangled states depends on formal properties of the C∗-algebraic machin-
ery. In an information-theoretic characterization of quantum theory, the fact
that entangled states can be prepared, and that entanglement is maintained
nonlocally as systems separate, should be shown to follow from some informa-
tion-theoretic principle. The role of the “no bit commitment” constraint is to
guarantee that nothing prevents a certain range of nonlocal entangled states
from being instantiated in our world—and that physical systems can continue
to occupy such states as they move apart.

Bit commitment is a cryptographic protocol in which one party, Alice,
supplies an encoded bit to a second party, Bob, as a warrant for her
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commitment to 0 or 1. The information available in the encoding should
be insufficient for Bob to ascertain the value of the bit at the initial
commitment stage, but sufficient, together with further information sup-
plied by Alice at a later stage when she is supposed to “open” the com-
mitment by revealing the value of the bit, for Bob to be convinced that
the protocol does not allow Alice to cheat by encoding the bit in a way
that leaves her free to reveal either 0 or 1 at will.

In 1984, Bennett and Brassard(21) proposed a quantum bit commit-
ment protocol now referred to as BB84. The basic idea was to encode the
0 and 1 commitments as two quantum mechanical mixtures represented by
the same density operator, ω. As they showed, Alice can cheat by adopting
an EPR attack or cheating strategy. Instead of following the protocol and
sending a particular mixture to Bob, she prepares pairs of particles A+B
in the entangled state ρ, where ρ|B = ω. She keeps one of each pair (the
ancilla A) and sends the second particle B to Bob, so that Bob’s particles
are in the mixed state ω. In this way she can reveal either bit at will at the
opening stage, by effectively steering Bob’s particles into the desired mix-
ture via appropriate measurements on her ancillas. Bob cannot detect this
cheating strategy.

Mayers,(22,23) and Lo and Chau,(24) showed that the insight of
Bennett and Brassard can be extended to a proof that a generalized ver-
sion of the EPR cheating strategy can always be applied, if the Hil-
bert space is enlarged in a suitable way by introducing additional ancilla
particles. The proof of this “no go” quantum bit commitment theorem
exploits biorthogonal decomposition via a result by Hughston et al.(25)

Informally, this says that for a quantum mechanical system consisting of
two (separated) subsystems represented by the C∗-algebra B(H1)⊗B(H2),
any mixture of states on B(H2) can be generated from a distance by
performing an appropriate POV-measurement on the system represented
by B(H1), for an appropriate entangled state of the composite system
B(H1)⊗B(H2). Schrödinger (Ref. 12, p. 556) called this “remote steering”
and found the possibility so physically counterintuitive that he speculated
(Ref. 26, p. 451) (wrongly, as it turned out) that experimental evidence
would eventually show that this was simply an artifact of the theory, not
instantiated in our world. Remote steering is what makes it possible for
Alice to cheat in her bit commitment protocol with Bob. It is easy enough
to see this for the original BB84 protocol. Suprisingly, this is also the case
for any conceivable quantum bit commitment protocol. See Bub(27) for a
discussion.

Now, unconditionally secure bit commitment is also impossible
for classical systems, in which the algebras of observables are
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commutative.2 But the insecurity of any bit commitment protocol in
a noncommutative setting depends on considerations entirely different
from those in a classical commutative setting. Classically, unconditionally
secure bit commitment is impossible, essentially because Alice can send
(encrypted) information to Bob that guarantees the truth of an exclusive
classical disjunction (equivalent to her commitment to a 0 or a 1) only if
the information is biased towards one of the alternative disjuncts (because
a classical exclusive disjunction is true if and only if one of the disjuncts
is true and the other false). No principle of classical mechanics precludes
Bob from extracting this information. So the security of the protocol can-
not be unconditional and can only depend on issues of computational
complexity.

By contrast, if, as Schrödinger speculated, we lived in a world in
which the algebras of observables are noncommutative but composite
physical systems cannot exist in nonlocal entangled states, if Alice sends
Bob one of two mixtures associated with the same density operator to
establish her commitment, then she is, in effect, sending Bob evidence for
the truth of an exclusive disjunction that is not based on the selection of
a particular disjunct. (Bob’s reduced density operator is associated ambig-
uously with both mixtures, and hence with the truth of the exclusive dis-
junction: “0 or 1.”) Noncommutativity allows the possibility of different
mixtures associated with the same density operator. What thwarts the pos-
sibility of using the ambiguity of mixtures in this way to implement an
unconditionally secure bit commitment protocol is the existence of nonlo-
cal entangled states between Alice and Bob. This allows Alice to cheat by
preparing a suitable entangled state instead of one of the mixtures, where
the reduced density operator for Bob is the same as that of the mixture.

2Adrian Kent(28) has shown how to implement a secure classical bit commitment proto-
col by exploiting relativistic signalling constraints in a timed sequence of communications
between verifiably separated sites for both Alice and Bob. In a bit commitment protocol,
as usually construed, there is a time interval of arbitrary length, where no information
is exchanged, between the end of the commitment stage of the protocol and the open-
ing or unveiling stage, when Alice reveals the value of the bit. Kent’s ingenious scheme
effectively involves a third stage between the commitment state and the unveiling stage, in
which information is exchanged between Bob’s sites and Alice’s sites at regular intervals
until one of Alice’s sites chooses to unveil the originally committed bit. At this moment
of unveiling the protocol is not yet complete, because a further sequence of unveilings
is required between Alice’s sites and corresponding sites of Bob before Bob has all the
information required to verify the commitment at a single site. If a bit commitment pro-
tocol is understood to require an arbitrary amount of “free” time between the end of
the commitment stage and the opening stage (in which no step is to be executed in the
protocol), then unconditionally secure bit commitment is impossible for classical systems.
(I am indebted to Dominic Mayers for clarifying this point.)
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Alice is then able to steer Bob’s systems remotely into either of the two
mixtures associated with the alternative commitments at will.

So what would allow unconditionally secure bit commitment in a
noncommutative theory is the absence of physically occupied nonlocal
entangled states, or the spontaneous destruction of entanglement as sys-
tems separate. One can therefore take Schrödinger’s remarks as relevant
to the question of whether or not secure bit commitment is possible in
our world. In effect, Schrödinger raised the possibility that we live in a
quantum-like world in which secure bit commitment is possible! It follows
that the impossibility of unconditionally secure bit commitment entails
that, for any mixed state that Alice and Bob can prepare by following
some (bit commitment) protocol, there is a corresponding nonlocal entan-
gled state that can be physically occupied by Alice’s and Bob’s particles.

To sum up: the content of the CBH theorem is that a quantum
theory—a theory where (i) the observables of the theory are represented
by the self-adjoint operators in a noncommutative C∗-algebra (but the
algebras of observables of distinct systems commute), (ii) the states of the
theory are represented by C∗-algebraic states (positive normalized linear
functionals on the C∗-algebra), and spacelike separated systems can be
prepared in entangled states that allow remote steering, and (iii) dynam-
ical changes are represented by completely positive linear maps—can be
characterized by the three information-theoretic “no-go”s’: no superlumi-
nal communication of information via measurement, no (perfect) broad-
casting, and no (unconditionally secure) bit commitment.

4. QUANTUM INFORMATION

The significance of the CBH theorem is that we can now see quantum
mechanics as a principle theory, where the principles are information-theo-
retic constraints. A relativistic theory is a theory with certain symmetry or
invariance properties, defined in terms of a group of space-time transfor-
mations. Following Einstein’s formulation of special relativity as a principle
theory, we understand this invariance to be a consequence of the fact that we
live in a world in which natural processes are subject to certain constraints.
(Recall Einstein’s characterization of the special principle of relativity as “a
restricting principle for natural laws, comparable to the restricting principle
of the non existence of the perpetuum mobile which underlies thermodynam-
ics.”) A quantum theory is a theory in which the observables and states have
a certain characteristic algebraic structure. Unlike relativity theory, quantum
mechanics was born as a recipe or algorithm for caclulating the expecta-
tion values of observables measured by macroscopic measuring instruments.
The interpretative problems arise because this Hilbert space theory has no
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phase space representation. Without Einstein’s analysis, we could also see
Minkowski space-time simply as an algorithm for relativistic kinematics
and the Lorentz transformation, which is incompatible with the kinematics
of Newtonian space-time. What Einstein’s analysis provides is a rationale
for taking the structure of space-time as Minkowskian: we see that this is
required for the consistency of the two principles of special relativity. From
this perspective, it is also clear that, insofar as a constructive theory like
Lorentz’s theory is constrained by the requirement to reproduce the empiri-
cal content of the principles of special relativity (which means that the aether
as a rest frame for electromagnetic phenomena must, in principle, be unde-
tectable), such a theory can have no excess empirical content over special
relativity. Cushing (Ref. 2, p. 193) quotes Maxwell as asking whether “it is
not more philosophical to admit the existence of a medium which we cannot
at present perceive, than to assert that a body can act at a place where it
is not.” Yes, but not if we also have to admit that, in principle, as a matter
of physical law, if we live in a world in which events are constrained by the
two relativistic principles, the medium must remain undetectable.

Consider again the transition:
Lorentz’s constructive theory

−→ special relativity as a principle theory (via Einstein’s analysis)

−→ Minkowski space-time

and the transition in Cushing’s counterfactual history, which we can now
represent as:

Bohm’s constructive theory

−→ quantum mechanics as a principle theory (via CBH)

−→ Hilbert space representation of states and observables

What the CBH analysis provides is a rationale for taking the structure
of states and observables associated with quantum phenomena as a noncom-
mutative C∗-algebra, represented on a Hilbert space with no phase space
representation. From the CBH theorem, a theory satisfies the information-
theoretic constraints if and only if it is empirically equivalent to a quantum
theory (a theory where the observables, the states, and the dynamics are rep-
resented as outlined at the end of Section 3). So if the information-theoretic
constraints are satisfied, a constructive theory like Bohm’s theory can have
no excess empirical content over a quantum theory. Just as in the case of
Lorentz’s theory, Bohm’s theory will have to posit contingent assumptions
to hide the additional mechanical structures (the hidden variables will have
to remain hidden), so that in principle, as a matter of physical law, there
could not be any evidence favouring the theory over quantum theory.
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Consider how this is achieved in Bohm’s theory. The additional
mechanical structures in Bohm’s theory are the particle trajectories in con-
figuration space, and the wave funciton as a guiding field. The dynamical
evolution of a Bohmian particle is described by a deterministic equation
of motion in configuration space that is guaranteed to produce the quan-
tum statistics for all quantum measurements, if the initial distribution over
particle positions (hidden variables) is the Born distribution. The Born
distribution is treated as an equilibrium distribution, and non-equilib-
rium distributions can be shown to yield predictions that conflict with the
information-theoretic constraints. Valentini(29) shows how non-equilibrium
distributions can be associated with such phenomena as instantaneous sig-
nalling between spatially separated systems and the possibility of distin-
guishing nonorthogonal pure states (hence the possibility of cloning such
states). Key distribution protocols whose security depends on “no informa-
tion gain without disturbance” and “no cloning” would then be insecure
against attacks based on exploiting such non-equilibrium distributions.

On Bohm’s theory, the explanation for the fact that the information-
theoretic constraints hold in our universe is that the universe has in fact
reached the equilibrium state with respect to the distribution of hidden
variables. But now it is clear that there can be no empirical evidence for
the additional mechanical elements of Bohm’s theory that would represent
excess empirical content over a quantum theory, because such evidence
is in principle unobtainable in the equilibrium state. If the information-
theoretic constraints apply at the phenomenal level then, according to
Bohm’s theory, the universe must be in the equilibrium state, and in that
case there can be no evidence for Bohm’s theory that goes beyond the
empirical content of a quantum theory (i.e., the statistics of quantum
superpositions and entangled states). Since a similar analysis will apply
to any “no collapse” hidden variable theory, there can be no empirical
grounds for choosing among these theories, or between any one of these
theories and a quantum theory.

Of course, it could be the case that we are mistaken about the infor-
mation-theoretic constraints, and that some day we will find experimen-
tal evidence that conflicts with the predictions of a quantum theory. The
above claim about constructive theories like Bohm’s theory is a conditional
claim about what follows if the information-theoretic constraints do in fact
hold in our world. To put the point differently: an acceptable mechanical
theory of quantum phenomena that includes an account of our measuring
instruments as well as the phenomena they reveal must violate at least one
of the information-theoretic constraints.

What led to Lorentz’s theory was a problem about the electromag-
netic field, conceived as an aspect of the motion of a material medium.
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The rejection of Lorentz’s constructive theory in favour of Einstein’s prin-
ciple theory requires that we consider a field as a new sort of primi-
tive physical entity, not reducible to the motion of particles or a material
medium. What led to Bohm’s theory was a problem about the difficulty of
representing information from macroscopic classically described measur-
ing instruments in a phase space theory that could account for the behav-
iour of the measuring instruments as well as the phenomena revealed by
these instruments. If the C∗-algebra is commutative, there is a phase space
representation of the theory—not necessarily the phase space of classi-
cal mechanics, but a theory in which the observables of the C∗-algebra
are replaced by “beables” (Bell’s term, see Ref. 30) or dynamical quanti-
ties, and the C∗-algebraic states are replaced by states representing com-
plete catalogues of properties (idempotent quantities). In this case, it is
possible to extend the theory to include the measuring instruments that
are the source of the C∗-algebraic statistics, so that they are no longer
“black boxes” but constructed out of systems that are characterized by
properties and states of the phase space theory. That is, the C∗-algebraic
theory can be replaced by a “detached observer” theory of the physical
processes underlying the phenomena, to use Pauli’s term,(31) including the
processes involved in the functioning of measuring instruments. Note that
this depends on a representation theorem. In the noncommutative case,
we are guaranteed only the existence of a Hilbert space representation of
the C∗-algebra, and it is an open question whether a “detached observer”
description of the phenomena is possible.

The rejection of Bohm-type “no collapse” theories in favour of quan-
tum mechanics requires that our measuring instruments ultimately remain
black boxes at some level. That is, a quantum description will have to
introduce a “cut” between what we take to be the ultimate measuring
instrument in a given measurement process and the quantum phenomenon
revealed by the instrument, which means that the measuring instrument is
treated simply as a probabilistic source of a range of labelled events or
“outcomes,” i.e., effectively as a source of symbols, where each symbol is
produced with a certain probability. But this amounts to treating quantum
mechanics as a theory about the representation and manipulation of infor-
mation constrained by the possibilities and impossibilities of information-
transfer in our world (a fundamental change in the aim of physics), rather
than a theory about the ways in which nonclassical waves and particles
move.

Something like this view seems to be implicit in Bohr’s complemen-
tarity interpretation of quantum theory. For Bohr, quantum mechanics is
complete and there is no measurement problem, but measuring instru-
ments ultimately remain outside the quantum description: the placement
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of the “cut” between system and measuring instrument is arbitrary, but
the cut must be placed somewhere. Similarly, the argument here is that,
if the information-theoretic constraints hold in our world, the measure-
ment problem is a pseudo-problem, and the whole idea of an empirically
equivalent “interpretation” of quantum theory that “solves the measure-
ment problem” is to miss the point of the quantum revolution.

So a consequence of rejecting Bohm-type theories is that we recognize
information as a new sort of physical entity, not reducible to the motion
of particles or fields. An entangled state should be thought of as a new
sort of nonclassical communication channel that we have discovered to
exist in our universe, i.e., as a new sort of “wire.” We can use these com-
munication channels to do things that would be impossible otherwise, e.g.,
to teleport states, to compute in new ways, etc. Quantum theory is then
about the properties of these communication channels, and about the rep-
resentation and manipulation of states as sources of information in this
physical sense.

The question: “What is information in the physical sense (if it’s not
about the properties of physical ‘stuff’)?” should be seen as like the ques-
tion: “What is a field in the physical sense (if it is not the vibration of a
physical medium)?” The answer is something like this: Quantum mechan-
ics represents the discovery that there are new sorts of information sources
and communication channels in nature (represented by quantum states),
and the theory is about the properties of these information sources and
communication channels. You can, if you like, tell a mechanical story
about quantum phenomena (via Bohm’s theory, for example) but such a
story, if constrained by the information-theoretic principles, will have no
excess empirical content over quantum mechanics. So the mechanical story
for quantum phenomena is like an aether story for electromagnetic fields.
Just as the aether story attempts to make sense of the behaviour of fields
by proposing an aether that is a sort of sui generis mechanical system
different from all other mechanical systems, so a Bohmian story attempts
to make sense of quantum phenomena by introducing a field (the quan-
tum potential or guiding field) that is a sort of sui generis field different
from other physical fields.

Cushing (Ref. 2, p. 204) quotes Lorentz (from the conclusion of the
1916 edition of The Theory of Electrons) as complaining that “Einstein
simply postulates what we have deduced.”

I cannot speak here of the many highly interesting applications which Einstein
has made of this principle [of relativity]. His results concerning electromagnetic
and optical phenomena ... agree in the main with those which we have obtained
in the preceding pages, the chief difference being that Einstein simply postulates
what we have deduced, with some difficulty and not altogether satisfactorily, from
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the fundamental equations of the electromagnetic field. By doing so, he may cer-
tainly take credit for making us see in the negative result of experiments like
those of Michelson, Rayleigh and Brace, not a fortuitous compensation of oppos-
ing effects, but the manifestation of a general and fundamental principle.

Yet, I think, something may also be claimed in favour of the form in which I
have presented the theory. I cannot but regard the aether, which can be the seat
of an electromagnetic field with its energy and its vibrations, as endowed with
a certain degree of substantiality, however different it may be from all ordinary
matter. In this line of thought, it seems natural not to assume at starting that
it can never make any difference whether a body moves through the aether or
not, and to measure distances and lengths of time by means of rods and clocks
having a fixed position relative to the aether.

Similarly, one might complain that CBH simply postulate what is ulti-
mately explained by a Bohmian (or other “no collapse”) theory. Just as the
rejection of Lorentz’s complaint involves taking the field as a new physi-
cal primitive, so the rejection of the analogous complaint in the quantum
case involves taking information as a new physical primitive.
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