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It is well known that density matrices can be used in quantum mechanics to
represent the information available to an observer about either a system with a
random wave function (“statistical mixture”) or a system that is entangled with
another system (“reduced density matrix”). We point out another role, previ-
ously unnoticed in the literature, that a density matrix can play: it can be the
“conditional density matrix,” conditional on the configuration of the environ-
ment. A precise definition can be given in the context of Bohmian mechanics,
whereas orthodox quantum mechanics is too vague to allow a sharp definition,
except perhaps in special cases. In contrast to statistical and reduced density
matrices, forming the conditional density matrix involves no averaging. In Boh-
mian mechanics with spin, the conditional density matrix replaces the notion of
conditional wave function, as the object with the same dynamical significance
as the wave function of a Bohmian system.
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450 Dürr, Goldstein, Tumulka, and Zanghı̀

1. INTRODUCTION

In this paper, we shall be concerned with the following claim: Once we
deal with particles with spin in Bohmian mechanics, we are more or less
obliged to regard the quantum state of any system (except the universe)
as given by a density matrix, which then has precisely the same dynami-
cal significance as the wave function. The aim of this paper is to elabo-
rate on this statement, as it is far from obvious in what sense a density
matrix could represent the dynamical state of a Bohmian system. In fact,
our statement is in sharp contrast with that of Bell:(1)

So in the de Broglie–Bohm theory a fundamental significance is given to the wave
function, and it cannot be transferred to the density matrix.

Although this is correct for spin 0 particles, the situation changes as soon
as we consider spin or any other internal degree of freedom. To appreciate this
point, it is essential to distinguish between different roles that density matrices
can play in Bohmian mechanics (or, for that matter, in other versions of quan-
tum mechanics). In one of these roles, the density matrix is of a purely epistemic
character, i.e., it expresses ignorance, whereas in another role, a role that has
as yet not been discussed in the literature and of which Bell was obviously not
aware, a density matrix is of direct significance to the Bohmian particle motion,
as the “conditional density matrix”.

We distinguish in this paper five roles of density matrices: the statisti-
cal, reduced, combined (reduced statistical), conditional, and fundamental
density matrix. We explain the relations between them and their relevance
to the particle motion. We explain in particular the new notion of condi-
tional density matrix and its relevance to Bohmian mechanics.

A particular consequence of our discussion is that the same system
can, at one and the same time, have a conditional density matrix and, say,
a different reduced density matrix. Thus, when speaking about “the” den-
sity matrix of a system, it is necessary to specify whether one refers to the
reduced or the conditional density matrix. This is new: among the tradi-
tional types of density matrices, it is always clear (except for the ambiguity
in some cases as to whether one should consider collapsed or uncollapsed
wave functions) which type of density matrix is relevant to a given system,
and what this density matrix is—so that it is possible to speak of the den-
sity matrix of the system. The fact that a system can have two different
density matrices at the same time is why we have to focus on the role that
a density matrix plays for the theoretical treatment of a system, since that
is the only way to understand how more than one density matrix can be
relevant to the same system.
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2. BOHMIAN MECHANICS

We begin by briefly recalling Bohmian mechanics.(12,17,18,19) It is a
theory of point particles moving in physical space R

3. For the sake of con-
creteness, consider a universe of N non-relativistic particles whose posi-
tions we denote by Q1(t), . . . ,QN(t). They move according to Bohm’s
equation of motion,

dQj

dt
=

–h
mj

Im
ψ∗∇jψ
ψ∗ψ

(Q1, . . . ,QN) (1)

where mj is the mass of particle j , ψ : R
3N → C

k is the wave function,
and ψ∗ψ denotes the scalar product in C

k. In the case k = 1 (spin 0), Eq.
(1) simplifies to

dQj

dt
=

–h
mj

Im
∇jψ
ψ

(Q1, . . . ,QN) . (2)

ψ evolves according to the Schrödinger equation

i–h
∂ψ

∂t
= −

N∑

j=1

–h2

2mj
�jψ + Vψ =: Ĥψ (3)

where the potential V may take values in the k × k Hermitian matrices.
The configuration Q(t) = (Q1(t), . . . ,QN(t)) is random and |ψ(t)|2-dis-
tributed at every time t ,

Prob(Q(t) ∈ dq) = |ψ(q, t)|2dq . (4)

This is possible because of an equivariance property of Eqs. (1) and (3): if
Eq. (4) holds at t = 0 then it also holds at every other time. This follows
from the following continuity equation, a consequence of Eq. (3):

∂|ψ |2
∂t

= − div (|ψ |2v) (5)

where v is the velocity field, i.e., the (time-dependent) vector field on
R

3N whose j th component is the right hand side of Eq. (1). We remark
that the state at time t of a Bohmian universe is described by the pair
(Q(t), ψ(t)).

What we describe in this paper about conditional density matrices
applies not only to conventional non-relativistic Bohmian mechanics as
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just described, but also to Bohmian mechanics on curved manifolds,(2,3) to
Bohm’s trajectories for Dirac wave functions (see [Ref. 4, p. 272] and Ref.
5), to the photon trajectories of Ref. 6, to the jump processes of Ref. 7,
and, in a sense that we will explain more fully in Sec. 7.4, also to theories
with a variable number of particles.(7−10,20)

3. THREE DENSITY MATRICES

If H denotes the Hilbert space of a system S, a density matrix for S
is a positive, (bounded) self-adjoint operator Ŵ : H → H with tr Ŵ = 1. If,
as in Bohmian mechanics, H is a space of wave functions on a configura-
tion space Q, H = L2(Q,Ck), then a density matrix can also be viewed
as a function W : Q × Q → End(Ck) (where End(Ck) denotes the space
of linear mappings (endomorphisms) C

k → C
k). The translating relations

between the two views, operator on H and function on Q × Q, are

(
Ŵψ

)s
(q) =

∫

Q
dq ′ ∑

s′
Ws
s′(q, q

′) ψs
′
(q ′) and (6a)

Ws
s′(q, q

′) = 〈q, s|Ŵ |q ′, s′〉 (6b)

where s and s′ index the standard basis of C
k. The function W has the

properties

W(q ′, q) = W ∗(q, q ′) (7a)

0 ≤
∫

Q
dq

∫

Q
dq ′ ∑

s,s′
ψ∗
s (q)W

s
s′(q, q

′) ψs
′
(q ′) < ∞ ∀ψ ∈ H (7b)

∫

Q
dq trCk W(q, q) = 1, (7c)

where W ∗ denotes the adjoint endomorphism in C
k, whose matrix is the

conjugate transposed. Conversely, the properties (7) are sufficient for W to
define a density matrix Ŵ . A particular consequence of Eq. (7a) is that on
the diagonal of Q × Q, W(q, q) is a Hermitian endomorphism (and thus
trCk W(q, q) ∈ R), and a particular consequence of Eq. (7b) is that

trCk W(q, q) ≥ 0 ∀q ∈ Q. (8)

There are four ways in which density matrices can arise from Bohmi-
an or quantum mechanics. Three of them are well known; we briefly recall
them anyway.
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1. First, by statistical mixture. Suppose the wave function ψ of a
system is random with probability distribution µ(dψ) on the unit
sphere S (H) of the Hilbert space H. The associated statistical
density matrix is

Ŵstat =
∫

S (H)

µ(dψ) |ψ〉〈ψ | (9a)

respectively

Wstat
s
s′(q, q

′) =
∫

S (H)

µ(dψ)ψs(q)ψ∗
s′(q

′) . (9b)

This density matrix was first considered in Ref. 11. Note that
different distributions µ may lead to the same density matrix. (For
example, the density matrix 1

k
I on the finite-dimensional Hilbert

space C
k arises from the discrete uniform distribution over the

vectors of any orthonormal basis in C
k, as well as from the contin-

uous uniform distribution over the unit sphere S (Ck).) The signifi-
cance of Ŵstat lies in the fact that the distribution of the random
outcome Z of an experiment performed on the system depends on
µ only through Ŵstat; i.e., different µ’s leading to the same density
matrix also lead to the same statistics of outcomes. More precisely,
when the experiment “measures the observable” Â, the probability
of obtaining an outcome Z in the set B ⊆ R is

Prob(Z ∈ B) = tr
(
ŴstatP̂Â(B)

)
(10)

where P̂
Â

is the projection-valued measure (PVM) on the real line
given by the spectral decomposition of the self-adjoint operator
Â.6 This follows by averaging, according to µ, of the probabil-
ity that the result is in B given that the state vector of the sys-
tem is ψ , which is (in both standard quantum mechanics and
Bohmian mechanics) 〈ψ |P̂

Â
(B)|ψ〉. A particular consequence of

6We remind the reader that in Bohmian mechanics such an experiment need not measure
anything in the literal sense of the word.(12,13) We also note that Eq. (10) holds not
only for “measurements of observables,” but for arbitrary experiments E with results in
the value space V : with every E is associated a positive-operator-valued measure (POVM)
P̂E (13,14) such that the probability of obtaining from E an outcome in the set B ⊆ V is
tr

(
ŴstatP̂E (B)

)
.
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Eq. (10) is that the outcomes of position measurements are distrib-
uted according to the density

ρ(q) = trCkWstat(q, q) (11)

on configuration space Q.
From Schrödinger’s equation (3) for ψ , one obtains an evolution
law(15) for Ŵstat:

i–h
∂Ŵstat

∂t
= [Ĥ , Ŵstat] (12a)

respectively

i–h
∂Wstat(q, q

′)
∂t

= ĤqWstat(q, q
′)− Ĥq ′Wstat(q, q

′) (12b)

where Ĥq means that the Hamiltonian Ĥ acts on the variable q,
and [ , ] denotes the commutator. We remark that Ŵstat is “pure,”
i.e., a projection to a one-dimensional subspace, if and only if µ is
concentrated on that subspace.

2. The second situation in which a density matrix is relevant involves
a system S1 that is entangled with another system S2. In this case,
the composite system S1∪S2 possesses a wave function �s1s2(q1, q2)

or � ∈ H1 ⊗H2, but no wave function is associated with S1 alone.
However, the following reduced density matrix can be associated
with S1:

Ŵred = tr2 |�〉〈�| (13a)

respectively

Wred
s1
s′1
(q1, q

′
1) =

∫

Q2

dq2

∑

s2

�s1s2(q1, q2)�
∗
s′1s2
(q ′

1, q2) (13b)

where tr2 denotes the partial trace over H2. This kind of density
matrix was first considered in Ref. 16. Note that Ŵred is an opera-
tor on H1. Like Ŵstat, Ŵred possesses significance in terms of prob-
ability distributions: if one “measures” Â on S1 alone, then the
probability of obtaining a result Z in the set B ⊆ R is

Prob(Z ∈ B) = tr
(
ŴredP̂Â(B)

)
(14)



Role of Density Matrices in Bohmian Mechanics 455

where the trace is, of course, taken in H1. This equation follows
from the fact that the observable on H1 ⊗ H2 that corresponds to
this experiment, as an experiment on S1 ∪ S2, is Â⊗ 1̂, so that the
probability for Z ∈ B is 〈�|P̂

Â
(B)⊗ 1̂|�〉, which equals Eq. (14).

If S1 and S2 are decoupled, i.e., if Ĥ = Ĥ1⊗1̂+1̂⊗Ĥ2, the reduced
density matrix evolves in the same way as statistical density matri-
ces do, governed by Ĥ1:

i–h
∂Ŵred

∂t
= [Ĥ1, Ŵred] (15a)

respectively

i–h
∂Wred(q, q

′)
∂t

= Ĥ1qWred(q, q
′)− Ĥ1q ′Wred(q, q

′) . (15b)

In case S1 and S2 are coupled, Wred does not have an autonomous
dynamics, i.e., its evolution depends on the � from which it arises.
We remark that Ŵred is “pure” if and only if S1 and S2 are disen-
tangled, �s1s2(q1, q2) = ψ

s1
1 (q1) ψ

s2
2 (q2).

3. The third possibility is the combination of the first and the second
types of density matrices: the reduced density matrix of a statisti-
cal mixture. Suppose the wave function � of the system S1 ∪ S2 is
random with distribution µ on S (H1 ⊗H2). Then define the com-
bined density matrix by

Ŵcomb =
∫

S (H1⊗H2)

µ(d�) tr2 |�〉〈�| (16a)

respectively

Wcomb
s1
s′1
(q1, q

′
1) =

∫

S (H1⊗H2)

µ(d�)

∫

Q2

dq2

∑

s2

�s1s2(q1, q2)�
∗
s′1s2
(q ′

1, q2).

(16b)

This kind of density matrix was first considered in Ref. 15,
(p. 424). Ŵcomb can be obtained either by averaging the reduced
density matrix associated with the random state �, or by reduc-
ing, i.e., taking the partial trace of, the statistical density matrix on
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H1 ⊗ H2 associated with µ. Again, the probability that the result
Z of an experiment on S1 “measuring” Â lies in the set B ⊆ R is

Prob(Z ∈ B) = tr
(
ŴcombP̂Â(B)

)
. (17)

This follows either from averaging Eq. (14) over µ or from apply-
ing Eq. (10) to Â⊗ 1̂.
Like the reduced density matrix, Ŵcomb follows the unitary evolu-
tion governed by Ĥ1 whenever that makes sense, i.e., whenever S1
and S2 are decoupled. Ŵcomb is pure if and only if µ is concen-
trated on the subspace Cψ1 ⊗ H2 for some ψ1 ∈ H1.

4. A FOURTH DENSITY MATRIX

We now turn to the fourth, novel, kind of density matrix: the condi-
tional density matrix. It also involves a system S1 that is entangled with
S2, and it is related to the notion of conditional wave function (17) which
we recall first. For the sake of definiteness, we take S2 to be the environ-
ment of S1, i.e., the rest of the universe.

In Bohmian mechanics for spin 0 particles, more precisely in Bohmian
mechanics with complex-valued wave functions, the conditional wave func-
tion of S1 is obtained from the wave function �(q1, q2) of S1∪S2 by insert-
ing the actual configuration Q2 of S2,

ψcond(q1) = 1√N �(q1,Q2) (18a)

where N =
∫

Q1

dq1 |�(q1,Q2)|2 (18b)

is a normalizing factor ensuring that
∫ |ψcond|2 = 1. ψcond can be viewed

as the wave function of S1 alone. It does not, in general, evolve accord-
ing to a Schrödinger equation (3), indeed it does not have an autonomous
dynamics at all.7 In fact, in appropriate situations the evolution of ψcond

7The conditional wave function at time t = 0 need not determine the conditional wave
function at later times. As an example, consider two situations with the same �, the same
Q2(0) and different Q1(0): since ψcond does not depend on Q1, it will be the same in
the two situations at t = 0, but since the motion of Q2 typically depends on Q1, the
two situations will typically have different Q2’s at later times, and thus typically different
ψcond’s.
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leads to collapse, in the usual textbook manner, which seems quite appro-
priate for the wave function of a subsystem. ψcond shares the following
basic properties with the wave function ψ in Bohmian mechanics:

• The conditional distribution of Q1 given Q2 is |ψcond|2. More pre-
cisely, we have the following formula for the conditional probability:

Prob(Q1 ∈ dq1|Q2) = |ψcond(q1)|2dq1 , (19)

which resembles the formula (4) for the probability in terms of the
wave function. Eq. (19) follows from the fact that the pair (Q1,Q2)

is |�|2 distributed.

• The motion of Q1 can be computed from ψcond according to

dQ1j

dt
=

–h
m1j

Im
∇1jψcond

ψcond
(Q11, . . . ,Q1N1

) , (20)

which is the same formula as Eq. (2) for the velocity in terms of the
wave function.

An analogous conditional wave function cannot be formed, however,
when the particles of S2 have spin or any other internal degree of freedom
entailing that the wave function has several complex components. The rea-
son is that ψcond as defined in Eq. (18a) would have too many compo-
nents, i.e., more spin indices than appropriate for a wave function of S1
alone. In particular, ψcond would not be an element of H1.

We propose to consider instead the conditional density matrix, which
is obtained from �(q1, q2)�

∗(q ′
1, q

′
2) by inserting the actual configuration

Q2 of S2 for both q2 and q ′
2, and contracting over the spin index belong-

ing to S2:

Wcond
s1
s′1
(q1, q

′
1) = 1

N
∑

s2

�s1s2(q1,Q2)�
∗
s′1s2
(q ′

1,Q2) (21)

with normalizing factor8

N =
∫

Q1

dq1

∑

s1s2

�s1s2(q1,Q2)�
∗
s1s2
(q1,Q2) . (22)

8One can show that for almost every configuration Q = (Q1,Q2) (almost every with
respect to the |�|2 distribution), N will be neither zero nor infinite.
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One easily checks that Wcond satisfies Eq. (7) and thus is a density matrix.9

The expression for the corresponding operator Ŵcond reads

Ŵcond = tr2
(|�〉〈�|1̂ ⊗ P̂q̂2(dq2)

)

tr
(|�〉〈�|1̂ ⊗ P̂q̂2(dq2)

) (q2 = Q2) (23)

where P̂q̂2 is the PVM on Q2 defined by the joint spectral decomposi-
tion of all position operators of S2, and the fraction is a Radon–Nikodým
derivative of an operator-valued measure on Q2 with respect to a real-
valued measure on Q2, and thus an operator-valued function on Q2, into
which we insert Q2.

We remark that Ŵcond is pure if and only if �(q1,Q2) as an element
of L2(Q1,C

k1) ⊗ C
k2 is a tensor product, �s1s2(q1,Q2) = ψ

s1
1 (q1) ψ

s2
2 . In

particular, Ŵcond is pure if � is complex valued.
The conditional density matrix has the following properties analogous

to those of the conditional wave function:

• The conditional distribution of Q1 given Q2 can be computed from
Wcond by taking the trace on the diagonal. More precisely, we have
the following formula for the conditional probability:

Prob(Q1 ∈ dq1|Q2) = tr
C
k1 Wcond(q1, q1) dq1 . (24)

This follows from the fact that the pair (Q1,Q2) is |�|2 distrib-
uted. Note that the right hand side is the usual expression (11) for
the probability distribution on configuration space when a system is
described by a density matrix.

• The motion of Q1 can be computed from Wcond according to

dQ1j

dt
=

–h
m1j

Im
∇q1j tr

C
k1 Wcond(q1, q

′
1)

tr
C
k1 Wcond(q1, q

′
1)

(q1 = q ′
1 = Q1) . (25)

To be able to appreciate Eq. (25), we have to consider a fifth type of
density matrix.

9The only step that may not be obvious is the finiteness part of Eq. (7b), which follows
from the fact that N < ∞ so that for any fixed value of s2, �s1s2 (q1,Q2) as a function
of s1 and q1 lies in L2(Q1,C

k1 ); thus the scalar product with any ψ ∈ L2(Q1,C
k1 ) is

finite.
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5. A FIFTH DENSITY MATRIX

A density matrix is relevant in yet another way: in a modified version
of Bohmian mechanics in which the particles are guided not by a wave
function but by a density matrix. Let us call this W -Bohmian mechanics.
Whereas in the conventional version of Bohmian mechanics the wave func-
tion (of the universe) is something real, as an objective component of the
state of the universe at a given time, in W -Bohmian mechanics instead of
a wave function (of the universe) we may have only a density matrix. This
density matrix does not arise in any way from an analysis of the theory,
but is built into the fundamental postulates of W -Bohmian mechanics. It
is a fundamental density matrix, Wfund, in contrast to the four other den-
sity matrices we have discussed, which were derived objects, derived from
ψ and Q. Like the conditional density matrix, Wfund has not been con-
sidered previously in the literature. The state at time t of a W -Bohmian
universe is given by the pair (Q(t),Wfund(t)), and it evolves according to

dQj

dt
=

–h
mj

Im
∇qj trCk Wfund(q, q

′)
trCk Wfund(q, q

′)
(q = q ′ = Q) (26)

as the equation of motion for Q, and

i–h
∂Ŵfund

∂t
= [Ĥ , Ŵfund] (27a)

respectively

i–h
∂Wfund(q, q

′)
∂t

= ĤqWfund(q, q
′)− Ĥq ′Wfund(q, q

′) (27b)

for Ŵfund, respectively Wfund(q, q
′). Note that Eqs. (27) are the same as

Eqs. (12) and (15). Eq. (26) was first written down by Bell(1) for the pur-
pose of contrasting it with the implications of Bohm’s equation of motion
(1) for a system with a random wave function, hence described by Ŵstat.

The configuration Q(t) is random with distribution given by the trace
of the diagonal of Wfund(t), i.e.,

Prob(Q(t) ∈ dq) = trCk Wfund(q, q, t) dq. (28)

This is possible because of the following equivariance theorem: if Eq. (28)
holds at t = 0 then it also holds at every other time. To see this, note that
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Eq. (27) implies that

∂trCk Wfund(q, q)

∂t
= − div (trCk Wfund(q, q) v) (29)

where v is the velocity field, i.e., the (time-dependent) vector field on Q
whose j th component is the right hand side of Eq. (26).

6. DISCUSSION

Bohmian mechanics, as described in Sec. 2, is a special case of
W -Bohmian mechanics: if Wfund is pure, i.e., if it arises from a wave func-
tion ψ via

Wfund
s
s′(q, q

′) = ψs(q)ψ∗
s′(q

′) , (30)

then the equation of motion (26) reduces to Bohm’s equation of motion
(1), the probability law (28) reduces to the |ψ |2 law (4), and the evolution
(27) entails that Wfund remains pure and arises from a wave function that
evolves according to the Schrödinger equation (3).

Conversely, the Eqs. (26) and (28) of W -Bohmian mechanics arise for
the behavior of subsystems from Bohmian mechanics for systems of many
particles with spin: The motion of the particles of subsystem S1 is gov-
erned according to Eq. (25) by a density matrix, Ŵcond, in the same way
as in W -Bohmian mechanics the motion of particles is governed according
to Eq. (26) by a density matrix, Ŵfund. In addition to the velocities, also
the probabilities (24) are determined by a density matrix in the same way
as in W -Bohmian mechanics (28). Thus, even were the universe as a whole
governed by Bohmian mechanics, for most subsystems the state would be
described by a density matrix, Wcond, with the velocities and probabilities
of the subsystem governed by the equations of W -Bohmian mechanics for
Wcond. In this sense, W -Bohmian mechanics is the theory relevant to most
systems in a Bohmian universe. (More precisely, this holds for all those
systems for which Ŵcond is not pure.)

A big difference, however, between the dynamics of a subsystem and
W -Bohmian mechanics lies in the fact that, unlike the fundamental density
matrix, see Eq. (27), the conditional density matrix need not evolve uni-
tarily. Nevertheless, there are special situations in which Wcond does evolve
unitarily, at least as a good approximation. This happens trivially when S1
and S2 are disentangled, �(q1, q2) = ψ1(q1) ⊗ ψ2(q2), and decoupled (so
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that they stay disentangled). It also happens when (and for as long as) S1
and S2 are decoupled and

�(q1, q2) = ψ1(q1)⊗ ψ2(q2)+�⊥(q1, q2), (31)

i.e.,

�s1s2(q1, q2) = ψ
s1
1 (q1) ψ

s2
2 (q2)+ (�⊥)s1s2(q1, q2), (32)

where ψ2 and �⊥ have disjoint q2-supports and Q2 ∈ supportψ2. Such a
situation often occurs after a measurement, and indeed allows us to regard
ψ1 as the (effective) wave function of S1, obeying Schrödinger’s equation
(3). For spin 0, Eq. (32) characterizes the situation in which we can expect
the conditional wave function to evolve unitarily; thus, the conditional
density matrix evolves unitarily in all situations in which the conditional
wave function would for spin 0. We obtain another case of unitarily evolv-
ing Wcond by replacing Eq. (32) by

�s1s2(q1, q2) = ψ
s1s2
1 (q1) ψ2(q2)+ (�⊥)s1s2(q1, q2), (33)

with a complex-valued ψ2, and assuming in addition that the Hamiltonian
Ĥ2 for S2 involves no interaction between spin and configurational degrees
of freedom.

For example, consider an EPR–Bohm–Bell pair of spin 1/2 particles,
each headed towards its Stern–Gerlach magnet, with q1 and q2 the posi-
tions of the particles. Suppose both magnets are oriented so as to mea-
sure σz and that the geometry is such that particle 1 completely passes its
SG magnet before particle 2 reaches its SG magnet. Initially the spin state
is the singlet state, depending on neither q1 nor q2, and we may assume
as well that the configuration space wave packet is initially of product
form ψ1(q1)ψ2(q2). Then the initial wave function is of the form (33) with
�⊥ = 0 and (regarding the possible values of si as ±1)

ψ
s1s2
1 (q1) = 1√

2
(δs1,1δs2,−1 − δs1,−1δs2,1)ψ1(q1) , (34)

corresponding to

1√
2
(|↑ 〉|↓ 〉 − |↓ 〉|↑ 〉)⊗ ψ1 (35)

in the standard σz representation.
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Until particle 1 reaches its magnet the Schrödinger evolution pre-
serves this form and Ŵcond = 1

2I ⊗ |ψ1〉〈ψ1|, where ψ1 = ψ1(t) obeys
Schrödinger’s equation for particle 1. Moreover, until particle 2 reaches its
magnet (i.e., in the absence of a magnetic field acting on particle 2), Ĥ2
involves no coupling between spin and translational degrees of freedom,
so that the form (33) is preserved and Ŵcond evolves unitarily according
to Eq. (27), even after particle 1 has reached its magnet. After particle 1
has passed through its magnet (but before particle 2 reaches its magnet)
Ŵcond = 1

2 (Ŵup + Ŵdown), where Ŵup, respectively Ŵdown, corresponds to
the pure state | ↑ 〉 ⊗ ψup, respectively | ↓ 〉 ⊗ ψdown, the states to which
|↑ 〉 ⊗ψ1, respectively |↓ 〉 ⊗ψ1, would evolve under the Schrödinger evo-
lution for particle 1. After particle 2 reaches its magnet, Ŵcond no longer
evolves unitarily (or even autonomously). Rather it collapses either to Ŵup

or Ŵdown according to whether the initial configuration is such that Q2
ends up going down or up.

Throughout the course of the entire experiment Q1 evolves according to
Eq. (25). (Note also that after particle 2 has crossed its magnet, Eq. (33) is again
approximately satisfied, with�⊥ the wave packet that does not containQ2.)

We now turn to the relations between the various density matrices, and dis-
cuss first the relation betweenWcond andWred.Wred is the average conditional
density matrix, with the average taken with respect to quantum equilibrium,
i.e., over the ensemble in whichQ = (Q1,Q2) is |�|2 distributed:

Wred
s1
s′1
(q1, q

′
1) =

∫

Q1×Q2

dQ1 dQ2 |�(Q1,Q2)|2Wcond
s1
s′1
(q1, q

′
1)(Q2). (36)

This relation makes clear that a system can have a conditional and a
reduced density matrix at the same time, the two being different from each
other: the conditional density matrix of a system depends on the config-
uration Q2 of its environment; when this dependence is averaged out by
taking the quantum equilibrium expected value one obtains the reduced
density matrix of the system. (Note that for spin 0, Eq. (36) is the quan-
tum equilibrium average of |ψcond〉〈ψcond|.)

Similarly, the combined (reduced statistical) density matrix is an aver-
age of the conditional density matrix, with the average taken over the
ensemble in which � is µ distributed and, given �, Q is |�|2 distributed:

Wcomb
s1
s′1
(q1, q

′
1)

=
∫

S (H)

µ(d�)

∫

Q1×Q2

dQ1 dQ2 |�(Q1,Q2)|2Wcond
s1
s′1
(q1, q

′
1)(Q2, �).

(37)
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Of course, Wstat can also be viewed as an average (of |ψ〉〈ψ |) over the
ensemble with µ-distributed ψ , but this does not involve the conditional
density matrix.

The fact that Wcond determines the Bohmian velocities according to
(25) should be contrasted with the failure of such a connection for Wstat,
Wred, and Wcomb: If the wave function ψ of a system is random, the Boh-
mian velocities have to be computed from the actual realization of ψ , and
thus could assume different values, corresponding to different ψ ’s, even
when Q is held fixed. Inserting, for example, Wstat in a formula like (25) or
(26) would yield, in contrast, an average velocity at Q, averaged over the
ensemble of different ψ ’s (with the additional Q-dependent weight propor-
tional to |ψ(Q)|2). This is what Bell referred to in the phrase we quoted
in the beginning, and what he elucidated in (2). Similarly, since Wred is
the average of the conditional density matrix, over a certain ensemble, it
leads to an average velocity (in fact to the best guess at the velocity that
one could make without knowing Q2). In contrast, Wcond depends on the
actual value of Q2 and yields the true Bohmian velocity, as defined by (1)
and the wave function of the universe.

The statistical analysis of Bohmian mechanics in Ref. 17 remains
valid when conditional wave functions are replaced by conditional density
matrices.

7. REMARKS

7.1. Conditional Density Matrix in Orthodox Quantum Mechanics

In orthodox quantum mechanics, the definition (21) of the condi-
tional density matrix cannot be written down, for lack of a configuration
Q2 that could be inserted into �. However, orthodox quantum mechan-
ics arguably maintains that macroscopic objects can be viewed and treated
classically, which presumably means that there should exist something like
a “macroscopic configuration.” In case that � is such that the condi-
tional density matrix does not change much with the microscopic details
of Q2 (i.e., that it is quite accurately determined by merely the macro-
scopic information about Q2), a conditional density matrix also makes
sense in orthodox quantum mechanics. In this case, the conditional density
matrix of orthodox quantum mechanics would equal, within its accuracy,
the one of Bohmian mechanics. Another way of obtaining this density
matrix is to collapse the wave function (to the region of configuration
space having q2 compatible with the actual macroscopic configuration of
S2), and then to take the reduced density matrix.
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7.2. Second Quantization

In Ref. 20, we describe a construction that might be called the
“second quantization of a Markov process.” Parallel to the “second
quantization” algorithm of forming a Fock space out of a given 1-parti-
cle Hilbert space and the free Hamiltonian on Fock space out of a given
1-particle Hamiltonian, this construction builds a dynamics on the con-
figuration space of a variable number of particles out of a given 1-parti-
cle dynamics. A key step in this construction is a general procedure for
forming the law of motion for N particles, given an arbitrary 1-particle
law. Interestingly, the conditional density matrix is indispensable for this
procedure (except when wave functions are complex–valued).

A Bohm-type law of motion for one particle associates a velocity vec-
tor field on R

3 with every (smooth) 1-particle wave function. We now
regard this association abstractly as a given mapping, from which we want
to systematically construct the N -particle law that provides the velocities
of all particles from an N -particle wave function and the positions of all
particles. By inserting the positions of all but one particle into the wave
function, we get a conditional object for one particle—for spin 0 a condi-
tional wave function, otherwise a conditional density matrix. Only if the
one-particle law associates with this conditional object a velocity vector
field on R

3, can we insert the position of the remaining particle into the
vector field and get the particle’s velocity. For spin > 0, we thus need
more than what we mentioned at the beginning of this paragraph: we need
that the one-particle law provide a velocity field for every density matrix,
as W -Bohmian mechanics does, and not merely for every wave function.

7.3. Empirical Consequences of W -Bohmian Mechanics

One may wonder whether one can decide empirically between Bohmi-
an mechanics and W -Bohmian mechanics, or, in other words, whether one
can determine empirically in a universe governed by W -Bohmian mechan-
ics if the fundamental density matrix is pure (Eq. (30)). The question is
delicate. We think that the answer is no, for the following reason: com-
pare a W -Bohmian universe with a Bohmian universe with a random wave
function such that the associated statistical density matrix equals the fun-
damental density matrix of the W -Bohmian universe. Since an empirical
decision, if it can be made at time t0, would have to be based solely on
the configuration Qt0 at that time, and since the distribution of Qt0 is
the same in both situations, it seems that there cannot be a detectable
difference: A given Qt0 could as well have arisen from an appropriate
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wave function from the random wave function ensemble as from the cor-
responding fundamental density matrix.

What makes the question delicate, however, is, in part, the follow-
ing: we might not take seriously a theory involving a wave function of
the universe or a density matrix of the universe that is “unreasonable” or
“conspiratorial.” Therefore, the question is connected to questions such as
what would count as a “reasonable” Wfund, and whether a statistical mix-
ture mimicking a given “reasonable” Wfund might have to contain some
“unreasonable” wave functions.

7.4. Conditioning on Spatial Regions

It is often desirable to define the subsystems Si , i = 1, 2, as encom-
passing all those particles which are presently located in the regions Ri ⊆
R

3, with R1 ∪R2 = R
3 and R1 ∩R2 = ∅. To condition on the configuration

Q2 of S2 then means to condition on the configuration in the region R2.
We describe below what appears to be the most convenient way to carry
out such a conditioning on a spatial region. One might suspect that con-
ditioning on a spatial region is a very complicated story. But, in fact, it
could not be simpler.

Since the number of particles in the region Ri can vary over time, it is
helpful to consider right from the start a configuration space of a variable
number of particles. We consider the space

�(R3) :=
∞⋃

n=0

R
3n/Sn (38)

where Sn denotes the group of permutations of n objects, which acts on
R

3n by permuting the particle labels. A configuration from �(R3) repre-
sents any number of identical (unlabeled) particles. For a discussion of this
space, see Ref. 20.

We can extend the definition of � to arbitrary sets R,

�(R) :=
∞⋃

n=0

Rn/Sn. (39)

When R ⊂ R
3, �(R) can be viewed as a subset of �(R3), containing those

configurations for which all particles are located in R. Now observe that,
when R1 and R2 are disjoint sets, then

�(R1 ∪ R2) = �(R1)× �(R2) . (40)
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This property is helpful, as it tells us that the definition of the subsystems
Si in terms of spatial regions Ri leads to a Cartesian product decompo-
sition Q = Q1 × Q2 of configuration space, and thus allows us to use,
without change, all of our considerations on conditional density matrices,
which assumed such a decomposition.

8. CONCLUSIONS

We have introduced the notion of conditional density matrix in Boh-
mian mechanics, and contrasted it, on the one hand, with the notion of
conditional wave function, and on the other hand, with various other
notions of density matrices. In contrast to the statistical, reduced, or com-
bined (reduced statistical) density matrix, the conditional density matrix
possesses direct significance for the particle velocities.

The fact that with the same system can be associated several den-
sity matrices brings into sharp focus that the meaning of a density matrix
is not a priori; instead, various meanings are conceivable. Ultimately, the
meaning of a density matrix arises from its relevance to the primitive
objects, such as particle world lines, that the theory is about. In Bohmian
mechanics, the various types of density matrices that we have considered
are all relevant to the particles, but in very different ways.
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13. D. Dürr, S. Goldstein, and N. Zanghı̀, “Quantum Equilibrium and the Role of Oper-
ators as Observables in Quantum Theory”, J. Stat. Phys. 116, 959–1055 (2004).

14. E. B. Davies, Quantum Theory of Open Systems (Academic Press, London/New
York/San Francisco, 1976).

15. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton Uni-
versity Press, Princeton, 1955). Translation of Mathematische Grundlagen der Quanten-
mechanik (Springer-Verlag, Berlin, 1932).

16. L. Landau, “Das Dämpfungsproblem in der Wellenmechanik”, Z. Physik 45, 430–441
(1927).
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