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The Pioneer Anomaly as Acceleration of the Clocks
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This work proposes an explanation of the Pioneer anomaly, the unmodelled and
as yet unexplained blueshift detected in the microwave signal of the Pioneer 10
and other spaceships by Anderson et al. in 1998. What they observed is simi-
lar to the effect that would have either (i) an anomalous acceleration aP the
ship towards the Sun, or (ii) an acceleration of the clocks at = aP /c. The sec-
ond alternative is investigated here, with a phenomenological model in which the
anomaly is an effect of the background gravitational potential �(t) that per-
vades all the universe and is increasing because of the expansion. It is shown
that 2at = d�/dt = d2τclocks/dt2, evaluated at present time t0, where t and
τclocks are the coordinate time and the time measured by the atomic clocks,
respectively. The result of a simple estimate gives the value at � 1.8×10−18 s−1,
while Anderson et al. suggested at = (2.9±0.4)×10−18 s−1 on the basis of their
observations. The calculation are performed near the Newtonian limit but in the
frame of general relativity.

KEY WORDS: Pioneer anomaly; Pioneer acceleration; acceleration of the
clocks; background gravitational potential.

1. INTRODUCTION

1.1. The Anomaly

Anderson et al. reported in 1998 the observation of an unmodelled Dopp-
ler blueshift in the microwave signals from the Pioneer 10/11, Galileo
and Ulysses spacecrafts that increases linearly in time.(1) They had been
observing it since more than 20 years. Obviously, its simplest interpreta-
tion is that the ships were not following the predicted orbits, as if our star
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pulled a bit too much from them with a force independent of the distance.
The corresponding anomalous acceleration, directed towards the Sun and
constant, would have the value(2)

aP = (8.74 ± 1.33) × 10−10 m s−2. (1)

Intriguingly enough, the effect does not show up in the planets. In their
first paper they said: “it is interesting to speculate on the possibility that
the origin of the anomalous signal is new physics”,(1,2) and later “The
veracity of the signal is now undisputed, although the source of the
anomaly, some systematic or some not understood physics, is subject to
debate”.(3) For an interesting argument showing that it may not necessar-
ily be due to systematics (see Ref. 4). The effect is still unexplained.(2)

Anderson et al. say that their data show(1) “a steady frequency drift
of about −6×10−9 Hz s−1, or 1.5 Hz over 8 yr. This equates a clock accel-
eration, −at, of −2.8×10−18 s s−2”, what would mean that the frequencies
would drift as

ν = ν0[1 + 2at(t − t0)], (2)

t0 being here the initial time of the observations (with the best value for
aP (1), at = (2.9 ± 0.4) × 10−18 s−1). The relation with the Pioneer accel-
eration is aP ≡ atc. This is important since they say that the drift in the
Doppler residuals cannot be removed without either an acceleration of the
ship aP or the inclusion of a “clock acceleration” at. Such acceleration at
would imply that all the clocks would be changing with a constant accel-
eration or, in other words, that there would be a non-uniformity of time.
They found that the first alternative leads to problems with the equiva-
lence principle and with the cartography of the solar system. They consid-
ered the second by means of several models in which the time is distorted
phenomenologically (see Ref. 2, Secs. XI.D and XI.E). The best results
were obtained with a model that adds a quadratic term to the definition of
the International Atomic Time. However, they found some problems and
concluded: “The orbit determination process clearly prefers the constant
acceleration model, aP, over the quadratic in time model.”

1.2. Purpose and Assumption of this Work

This paper considers this second alternative. It shows that, because
of the expansion, the background gravitational potential that pervades all
the universe produces an acceleration of the cosmological proper time with
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respect to the coordinate time. In its turn, this implies an acceleration at
of the atomic clocks. A simple estimation gives a value for at that is close
to that found by Anderson et al. The anomaly is thus in this model an
effect of the expansion of the universe. It is assumed, for simplicity, that (i)
all the matter and energy of the universe are uniformly distributed, (ii) the
space sections t = constant are flat, and (iii) the near Newtonian approx-
imation is adequate and meaningful. The time coordinate t is so chosen
as to go in the Newtonian limit to the Newtonian time. The model here
presented is the relativistic version of a previous Newtonian one.(5–7) Two
other models in which the anomaly is also due to the expansion are pro-
posed in Refs. 8 and 9.

1.3. Two Definitions of the Light Speed

It is important to know precisely which one of the several meanings
of “speed of light” is used.(10) Particularly, it must be reminded here that
the light speed can be defined in general relativity in two different ways: (i)
with respect to the cosmological proper time τ , c∗ = d�/dτ (= constant),
and (ii) with respect to the coordinate time t , c = d�/dt = c(r, t), where
d�, dτ and dt are elements of spatial distance, proper time and coordi-
nate time along a null geodesic, respectively (the first is the usual defi-
nition). These two speeds will be denoted as c∗ and c, respectively, and
will be called “proper speed of light” and “ordinary or non-proper speed of
light. The derivative of c with respect to t at present time t0, denoted as
a� = ċ(t0) = dc(t0)/dt , will be called non-proper acceleration of light or just
acceleration of light if there is no risk of confusion. The first is a univer-
sal constant of nature (as it must happen in general relativity), the second
is not but, quite on the contrary, it depends generally on space and time
c = c(r, t). The duality between c∗ and c reflects the relation between the
proper time and the coordinate time.

The element of interval can be written(11–14) (assuming for simplicity
that g0i = 0)

ds2 = c∗ 2 dτ 2 − d�2 (3)

with dτ = √
g00 dt and d�2 = gij dxi dxj , so that c∗ is constant and c is

equal to

c = c(r, t) = c∗√g00. (4)

Near the Newtonian limit, g00 � 1 + 2�/c2, at first order, � being the
gravitational potential, so that c = c(r, t) = c∗[1 + �(r, t)/c2]. Taking a



1958 Rañada

non-zero origin for the potential at a reference laboratory R, this can be
written, at first order, as

c = c(r, t) = c0[1 + �(r, t)/c2(r, t) − �R/c2
0], (5)

where c0 and �R are the values of c and the potential at that laboratory.
In this paper, we are interested in the effect of the background gravi-

tational potential that pervades all the universe and is due to all the exist-
ing matter and energy. Assuming a uniform distribution of matter and
energy, it is clear that is time depending but space independent. It will be
denoted as �av(t) (“av” stands for average since the mass-energy density
is averaged). The same must happen therefore to c = c(t). Instead of (5)
one would have then

c = c(t) = c0[1 + �av(t)/c
2(t) − �av(t0)/c

2
0] (6)

with c0 = c(t0), t0 being a reference time that will be the present time or
age of the universe, in general. Because of the expansion, it turns out that
�av(t)/c

2(t) is an increasing function, as will be shown in Sec. 4 where its
derivative with respect to t will be calculated. Consequently, c(t) is also
increasing.

If the universe would contain only matter, be it ordinary or dark, the
background potential �av would be negative so that

c(t) < c0[1 − �av(t0)/c
2
0] . (7)

As will be seen in Sec. 3, this implies c(t) < c∗, as it could be expected.
However, the effect of the cosmological constant or of dark energy

changes dramatically this question. The cosmological model used here is
the standard with 27% of matter and 73% of dark energy. For the latter
we take either a cosmological constant or the quantum vacuum, but the
conclusion would be the same for any kind of dark energy with an equa-
tion of state implying repulsion. The potential �av(t) is the addition of the
two effects of matter and dark energy.

What is important here is that both the cosmological constant and
the quantum vacuum produce a positive potential. Furthermore, it turns
out that �av(t) is an increasing positive function after a certain time, in
particular now (this will be shown in Sec. 4). Equation (6) implies then
that c increases as far as the universe expands and, in particular, it can be
larger than the proper speed of light c∗. Although this maybe seem strange
and contrary to current wisdom, it must not be a matter of concern since,
as it must be emphasized, the proper light speed of light c∗ is in fact a
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universal constant in this model. Moreover, c < c∗ if there is only matter,
let it be ordinary or dark. It is only the dark energy, which, in addition to
accelerate the universe, can make that c(t) could be larger than the proper
speed of light c∗. This intriguing result will be considered in Sec. 3. To
understand this property, one must keep in mind that almost all our intu-
itions in general relativity were generated in the study of the gravitation of
matter (i.e. without dark energy).

There is moreover a functional relation between the two times τ =
τ(t), such that τ must accelerate with respect to t . Because of the freedom
to choose the coordinates in general relativity, this last statement must be
qualified: the time coordinate t is defined here so in the Newtonian limit
it goes over the Newtonian time. All this means that

c(t) = d�

dτ

dτ

dt
= c∗ dτ

dt
and

dc(t)

dt
= c∗ d2τ

dt2
. (8)

Equation (8) states that the non-proper light speed c(t) must increase if
the proper time τ accelerates with respect to the coordinate time t , its time
derivative being equal to the proper light speed c∗ times the second deriv-
ative of τ with respect to t .

The expression “light speed” means usually the proper speed c∗ that,
being a universal constant, is of the utmost importance. However, the non-
proper light speed c is also used in some important cases. For instance,
in the study of the bending of a light ray grazing the Sun surface. Let M

and R be the mass and radius of the Sun. The interval around any star is
given by the Schwarzschild metric, what implies that c = c(r) = c∞(1 −
ηR/r), with c∞ = c(∞) and η = GM/c2∞R � 2.1×10−6. Einstein gave two
formulae for this effect. The first (1907) is based only in the equivalence
principle and gives φ = 2η = 0.875′′, just one half of the observed effect.
The second (1916), in the frame of general relativity, gives the complete
result φ = 4η = 1.75′′. The first one can be obtained simply by considering
the propagation of a wave light with the previous value of the non-proper
light speed, in other words as the solution of the variational problem

δT = δ

∫ 2

1

1 + ηR/r

c∞
d� = 0, (9)

where d� = dx2 + dy2 + dz2 is the Euclidean line element, i.e. as a conse-
quence of the application of the Fermat principle to the non-proper light
speed c. The complete effect is obtained by taking instead the non-Euclid-
ean spatial line element of the Schwarzschild geometry. In other words,
the problem is solved by assuming that the light propagates through space
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with the non-proper speed c(r) = c∞(1 − ηR/r) (taking into account the
Riemannian character of the spatial metric).

These considerations can be summarized as follows: because of the
background gravitational potential of all the matter and energy in the uni-
verse, (i) the cosmological proper time τ accelerates with respect to the
coordinate time, and (ii) the non-proper speed of light c(t) increases so
that a� > 0.

1.4. Plan of the Paper

In Sec. 2, the Maxwell equations in general relativity are reviewed,
with emphasis on the ideas of permittivity and permeability of geometri-
cal origin and on their effect on the non-proper speed of light c(r, t). It
is shown that 2at must be equal to the derivative with respect to t of the
background potential over c2(t) and that the corresponding non-proper
of light acceleration a� implies a blueshift. In Sec. 3, the reasons for the
acceleration of the atomic clocks are considered, showing that it is equal
to 2at. In Sec. 4, an estimation of at is carried out, the agreement being
good with the result found by Anderson et al. on the basis of their obser-
vations.(1) The conclusions will be stated in Sec. 5.

2. THE SPEED OF LIGHT AND THE MAXWELL EQUATIONS

In order to understand the behavior of the non-proper speed of light
c(r, t) (different, don’t forget, from the proper speed of light c∗, which is
a universal constant), let us consider the effect of a gravitational field on
the Maxwell equations, in which the time derivatives are with respect to
the coordinate time t . As was seen in Sec 1.3, the proper speed of light
c∗ and the non-proper speed of light c are equal in absence of potential
or, in other words, the reason for their difference is the presence of mat-
ter and energy. It is clear that near the special relativity or the Newtonian
limits, the electromagnetic fields obey the classical wave equation with the
velocity c(r, t) (remember that flat space sections are assumed). That local
value of c must be used at any space–time point in the wave equation. Let
us take a reference laboratory where c = c0. The following discussion is
based on the well-known textbook The Classical Theory of Fields by Lan-
dau and Lifshitz (Ref. 15, Sec. 90).

The electromagnetic tensor is defined in general relativity by means
of a vector field such that Fµν = Aν;µ − Aµ;ν = ∂µAν − ∂νAµ. The
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electromagnetic vectors E, D and antisymmetric tensors Bij , Hij are
defined as follows:

Ei = F0i , Bij = Fij , Di = −√
g00 F 0i , H ij = √

g00 F ij ,

the vectors B, H being the dual to the three-tensors Bij and Hij , i.e.
Bi = −eijkBjk/(2

√
γ ), Hi = −√

γ eijkH
jk/2, where γ = det(γij ),

γij = −gij being the three-dimensional metric tensor (assuming for sim-
plicity g0i = 0). It follows that(15) (assuming, for simplicity, ε0 = 1, µ0 = 1
in this argument)

D = E/
√

g00, B = H/
√

g00. (10)

If the space is empty, i.e. without free charges or currents, the Maxwell
equations can be written as

∇ · B = 0, ∇ × E = − 1√
γ

∂t

(√
γ B

)
, (11)

∇ · D = 0, ∇ × H = 1√
γ

∂t

(√
γ D

)
. (12)

In a static situation, these four equations have exactly the same form as in
special relativity, since the factors

√
γ cancel. However, Eq. (10) implies

that the relative permittivity εr and permeability µr of empty space are
different from 1, their common value being εr = µr = (g00)

−1/2. This is
due to the geometry of space–time. If the potential depends on time and
near the Newtonian limit one has g00 = 1+�(r, t)/c2(r, t)−�R/c2

0, where
�R is the potential at a reference laboratory where c = c0, so that the
empty space is like an inhomogeneous optical medium with

εr(r, t) = µr(r, t) = 1 −
[
�(r, t)/c2(r, t) − �R/c2

0

]
. (13)

Since c = c0/
√

εrµr, the non-proper speed of light is given as

c(r, t) = c0

{
1 + �(r, t)/c2(r, t) − �R/c2

0

}
, (14)

�R being a reference potential, at present time in a terrestrial laboratory
R, where the observed light speed is c0. As a historical comment, this last
equation was first obtained in 1911 by Einstein himself, as a first order
approximation in the static case, in a paper entitled “On the influence of
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gravitation on the propagation of light”(16) (in 1907 he had already shown
that c depends on � as a consequence of the equivalence principle. Note
that it is still valid in general relativity, at first order). After a discussion
on the synchronization of clocks, he concludes there “if we call the veloc-
ity of light at the origin of coordinates c0, where we take � = 0, then the
velocity of light at a place with gravitational potential � will be given as”

c = c0

(
1 + �/c2

)
. (15)

Einstein had not as yet introduced the general relativistic idea of proper
time and used only the coordinate time to define the speed of light.(17,18)

Note that (14) reduces to (15) in the static case if the potential at the refer-
ence laboratory vanishes and that the consideration of the Maxwell equa-
tions confirms Eq. (5) from the expression of the interval.

In this work, we are interested in the case of a potential depending
only on time. Let �av(t) be the background potential of all the matter and
energy and �(t) = �av(t)/c

2(t) its dimensionless expression (the subindex
“av” being omitted in � in order to simplify the notation). The permittiv-
ity and permeability (13) take then the form near present time t0 (i.e. the
age of the universe)

εr(t) = µr(t) = 1 − [�(t) − �(t0)]. (16)

The non-proper speed of light is then

c(t) = c0 [1 + �(t) − �(t0)] , (17)

where c0 = c(t0). This can be written as

c(t) = c0[1 + 2at(t − t0)] = c0 + a�(t − t0), (18)

the quantity at and the non-proper acceleration of light a� = ċ(t0) being

2at = �̇(t0), a� = 2atc0 = 2�̇(t0)c0. (19)

As will be seen in the following: (i) a� is in fact 2aP, being therefore an
adiabatic acceleration, and (ii) at is what Anderson et al. termed acceler-
ation of the clocks.
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2.1. The Blueshift

It will be shown now that the non-proper acceleration a� implies a
blue shift of the light with respect to the coordinate time, at first order in
a�. More precisely, it turns out that the frequency ν of a monochromatic
light wave with such an adiabatic acceleration a� increases, its derivative
with respect the coordinate time t , ν̇, satisfying

ν̇/ν0 = a�/c0. (20)

This means that an adiabatic non-proper acceleration of light has the
same radio signature as a blue shift of the emitter, although a peculiar
blue shift with no change of the wavelength (i.e. all the increase in velocity
is used to increase the frequency).

The derivative with respect to t of the background gravitational
potential of all the universe �(t) is positive and of the order of the Hub-
ble parameter H0 = 2.3×10−18 s−1, since the galaxies are separating (a cal-
culation will be made in Sec. 4). Equation (16) tells then that the relative
permittivity εr and permeability µr of empty space are decreasing, their
derivatives with respect to t being negative and also of order H0, i.e. very
small. This can be expressed by saying that the optical density of empty
space is decreasing adiabatically. To study the propagation of the light
in a medium with time depending permittivity and permeability, we must
take the Maxwell equations and deduce the wave equations for the electric
field E and the magnetic intensity H, which are ∇2E − ∂t (µ∂t (εE)) = 0,
∇2H − ∂t (ε∂t (µH)) = 0, or, more explicitly

∇2E − ∂2
t E/c2(t) − (µ̇/µ0 + 2ε̇/ε0) ∂tE/c2(t) − ε̇µ̇E/(ε0µ0c

2(t)) = 0,

(21)

∇2H − ∂2
t H/c2(t) − (2µ̇/µ0 + ε̇/ε0) ∂tH/c2(t) − ε̇µ̇H/(ε0µ0c

2(t)) = 0

(22)

with c(t) = c0 + at(t − t0), since at present time εr = 1, µr = 1. Because
ε̇/ε0 and µ̇/µ0 are of order H0 = 2.3×10−18 s−1, the third and the fourth
terms in the LHS of (21) and (22) can be neglected for frequencies ω �
H0, in other words for all practical purposes. We are left with two classical
wave equations with time dependent light velocity c(t).

∇2E − ∂2
t E/c2(t) = 0, ∇2H − ∂2

t H/c2(t) = 0. (23)

In order to find the behavior of a monochromatic light beam according
to these two wave equations, we take for instance the first one and insert
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E = E0 exp{−i[κz − (ω0 + ω̇(t − t0)/2)(t − t0)]}, where the frequency is the
time derivative of the phase of E, i.e. ω0 + ω̇(t − t0). Neglecting the sec-
ond time derivatives and working at first order in ω̇ (with ω̇(t − t0) 	 ω0,
ω̇ 	 ω2

0), substitution in (21) gives κ2 = [
(ω0 + ω̇(t − t0))

2 − iω̇
]
/c2(t). It

follows that κ = k+ iζ = ±(ω0/c(t))[1+ ω̇(t − t0)/ω0](cos ϕ+ i sin ϕ), with
ϕ = −ω̇/2ω2

0, so that k = ±(ω0/c0) (1 + ω̇(t − t0)/ω0)/(1 + al(t − t0)/c0)

what implies k = ±ω0/c0, ω̇/ω0 = a�/c0, as stated before. Equation (20)
has thus been proved. Also, ζ = −ω̇/2ω0c0 = a�/2c2

0. The wave ampli-
tude decreases in the direction of propagation as e−z/� with � = 2c2

0/a�,
but as a� is of order H0c0, � is of order of 5000 Mpc, or, in other words,
this attenuation can be neglected. As is easy to show, to take k+k̇t for the
wave vector leads to k̇ = 0. These results are equally valid for the second
equation in (23). Taking into account that a�/c0 = 2at and according to
(16)–(19), the frequencies drift as

ν = ν0[1 + 2at(t − t0)], (24)

what shows that 2at = �̇(t0) is the acceleration of clocks mentioned
by Anderson et al. According to these arguments, its value is the deriva-
tive with respect to the coordinate time t of the background gravitational
potential of all the universe. This will be further studied in next section.

3. THE ACCELERATION OF THE ATOMIC CLOCKS

3.1. The Effect of the Dark Energy: Can c(t) be Larger than c∗?

The observations are made by using atomic clocks, which measure
proper time τ not coordinate time t . However, up to now we have used
mainly in this paper the coordinate time. This question is addressed in this
section. Taking the t derivative of (17) at time t0, it is found that ċ(t0) =
c(t0)�̇(t0). The same argument can be applied to the expression for c(t)

near any other fixed time t̃ , what implies that c(t) = c(t̃) exp[�(t) − �(t̃)],
an expression valid for ∀t . In particular, taking t̃ = t0, one finds

c(t) = c0 e[�(t)−�(t0)]. (25)

As can be seen (17) is the first order approximation to (25). The shape of
the function c(t) defined by (25) does not change if the reference time (t0
or t̃) is changed, because c(t1)e

−�(t1) = c(t2)e
−�(t2). Since c∗ and c are

equal if � = 0, it follows that c∗ = c0e
−�(t0), what does not depend on
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the particular value of t0. In other words, the non-proper speed of light is

c(t) = c∗e�(t). (26)

We can precise now some ideas exposed in Sec. 1.3. If there is only mat-
ter in the universe (i.e. without dark energy), then �(t) is necessarily neg-
ative, so that c(t) < c∗. This is the usual situation that everybody has in
mind. However, if there is dark energy, �(t) can be positive, and in that
case c(t) > c∗. We find thus that the non-proper speed of light could be
larger than the proper speed and constant of the nature c∗. Even if this is
a surprising effect of the dark matter, in addition to accelerate the expan-
sion, it must be emphasized that it is compatible with the constancy of c∗
and with general relativity therefore. Indeed, it is an unexpected and new
effect of the dark energy.

3.2. On the Time of the Atomic Clocks

The interval can be written then as

ds2 = e2[�(t)−�(t0)]c2
0 dt2 − d�2 = c∗ 2 dτ 2 − d�2 (27)

so that

dτ = e�(t) dt and
d2τ

dt2

∣∣∣∣∣
t0

= �̇(t0)e
�(t0) = 2ate

�(t0) > 0, (28)

since �(t) is now an increasing function and �̇(t0) > 0 (the precise calcu-
lation is done in Sec. 4). Note that τ is a well defined cosmological proper
time and that it accelerates with respect to t , its second derivative being
in general non-nil. This means that if, sometime ti in the past, an atomic
clock was set to click at the same rate as the coordinate time, it would
be advanced now with respect to the coordinate time. In particular, the
two time intervals would be different now, since dτ = e�(t0) dt . If there
is only matter, be it ordinary or dark, then �(t0) < 0 and dτ < dt . On
the other hand, if the dark energy exists, then �(t0) can be positive and
then dτ > dt . This second possibility is the one that actually happens: the
background potential not only increases, but is positive also because of the
effect of the quantum vacuum, or the dark energy, as is shown in Sec. 4.

However, in the actual measurements these differences between dt and
dτ do not occur, since both times are based now on the international sec-
ond, defined with reference to the period of a transition of the cesium
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atom. This means that a small interval of the atomic clock time and of the
coordinate time are equal, dτclocks = dt , at precisely t = t0. Therefore, the
time of the atomic clocks has been renormalized, indeed, multiplying the
cosmological proper time by the constant scale factor e−�(t0). This argu-
ment shows that the time really measured by the atomic clocks is

dτclocks = e[�(t)−�(t0)] dt so that
d2τclocks

dt2

∣∣∣∣∣
t0

= �̇(t0) = 2at. (29)

This explains the real meaning of at: it is one-half the second derivative
with respect to the coordinate time t of the time of the atomic clocks, if they
have been renormalized by a multiplicative factor to tick now, just at time
t0, at the same rate as the coordinate time (in order for both to use the
same definition of second). Of course, in the future the atomic clocks will
advance over t , i.e. dτclocks > dt if t > t0.

Taking the first-order approximations near t0, the intervals of both
times are related as dτclocks = [1 + �(t) − �(t0)] dt . This is equal to
dτclocks = [1 + �̇(t0)(t − t0)] dt = [1 + 2at(t − t0)] dt (compare with (2)).
It follows:

τclocks − τclocks(t0) = (t − t0) + at(t − t0)
2, (30)

what reminds the quadratic in time model tried by Anderson et al. to
solve the anomaly. Probably, this explains why this was the best among
the other models they used with phenomenologically distorted time (see
Sec. 1.1 at the end).

In order to refer to the time of the clocks, at must be multiplied by
the factor dt/dτclocks what produces the change

at ⇒ aτ = at
dt

dτclocks
= at[1 − 2at(t − t0)] = at , (31)

neglecting the terms of second order in at. Since at = aτ , at first order,
Eq. (2) can be written as

ν = ν0{1 + 2aτ [τclocks − τclocks(t0)]} (32)

at first order, what states that the frequency must drift, according to the
measurements made with atomic clocks. This gives a solution to the riddle.

Indeed the two derivatives of the background potential � with respect
to the times t and τclocks are equal because the intervals of the two times
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are equal at precisely the time t0 (or τclocks(t0)). Consequently, the acceler-
ation of the clocks can be calculated as one-half the derivative of � with
respect to any one of the two times (at first order). Therefore, this model
seems to offer an attractive solution to the anomaly. But in order to test
it, its prediction for the inverse time at must be calculated and compared
with the value proposed by Anderson et al. This is done in next section.

4. ESTIMATION OF THE ACCELERATION OF THE CLOCKS

Unfortunately, a rigorous calculation of at that would take into
account all the eventual effects, is not easy. However, a simple crude esti-
mate of its value can indeed be made, as is done in this section, tak-
ing (17) and (19) as starting point. Although involving approximations
and simplifications, the result is meaningful since it shows the main ideas
of the model, giving a convincing representation of the phenomenon. In
order to do that, the shape of the function �(t) near t0 must be deter-
mined first to calculate its time-derivative Eq. (19). The potential of all the
universe at the terrestrial laboratory R can be written, with good approx-
imation, as �all = �loc(R)+�av(t). The first term �loc(R) is the part due
to the local inhomogeneities, i.e. the nearby bodies (the Solar System and
the Milky Way). It is constant in time since these objects are not expand-
ing. The second �av(t) is the space averaged potential due to all the mass
and energy in the universe (except for the nearby bodies), assuming that
they are uniformly distributed. Contrary to the first, it depends on time
because of the expansion. The former has a non-vanishing gradient but
is small, the latter is space independent, but time dependent and much
larger. The value of �loc/c

2
0 at the laboratory R is the sum of the effects

of the Earth, the Sun and the Milky Way, which are about −7 × 10−10,
−10−8 and −6 × 10−7, respectively, certainly with much smaller absolute
values than �av(t0), of the order of −10−1 as will be seen below.

Since the background gravitational potential of all the universe �av(t)

is increasing because of the expansion (the galaxies are separating and
their interaction potential increasing), Eq. (19) imply that at and a� are
both positive, as will be seen in the following. In this sense, there is a
non-proper acceleration of light a� = ċ (see Sec. 1.3) (as it may be con-
venient to stress again, all this is compatible with the constancy of the
proper speed of light c∗ = d�/dτ ).

Let �M = 0.27, �� = 0.73 be the corresponding present time relative
densities of matter (ordinary plus dark) and dark energy corresponding to
the cosmological constant �. We take a universe with k = 0 and Hubble



1968 Rañada

parameter H0 = 71 km s−1 Mpc−1 = 2.3 × 10−18 s−1. In order to deter-
mine the average potential �av(t), let �0(t0) be the gravitational poten-
tial produced by the critical density of mass distributed up to the present
radius of the visible universe RU(t0) = c0/H0 = 4200 Mpc. One has then
�0(t0)/c

2
0 = − ∫ c0/H0

0 c−2
0 Gρcr4πr dr = 2πGρcr/H

2
0 � −0.78. It must be

emphasized that, although this value of the potential might seem to be too
large for this approximation to apply, there is no problem in fact since it
is space independent and its time derivative is extremely small. It will be
absorbed in the redefinition of time, its effect being only to accelerate adi-
abatically the proper time with respect to the coordinate time, i.e. to accel-
erate the clocks, precisely what we want to investigate.

Because the radius of the universe is changing, the potential must be
multiplied by the factor [RU(t)/RU(t0)]2, with ṘU(t0) = c0. It turns out
then that �0(t)/c

2
0 = 2πGρcrR

2
U(t)/c2

0.
The present time value of the background potential is then �av(t0) =

�0(t0)(�M − 2��) � 0.92 > 0 (it is positive because of the contri-
bution of the cosmological constant). Because of the expansion of the
universe, the gravitational potentials due to matter and dark energy equiv-
alent to the cosmological constant vary in time as the inverse of the
scale factor R(t) and as its square R2(t), respectively (with R(t) =
(�M/��)1/3 sinh2/3 [

(3�)1/2t/2
]

for this model universe). This implies
that the average background gravitational potential can be expressed as

�av(t) = �0(t0)

(
RU(t)

RU(t0)

)2 [
�M

R(t)
− 2��R2(t)

]
(33)

(remember: �(t) = �av(t)/c
2(t)). Note that, as announced in Sec. 1.3 and

since �0(t0) < 0, the term in �� overcomes necessarily the one in �M,
after a certain time, the potential being positive afterwards, as far as the
expansion goes on. The non-proper speed of light c(t) is then larger than
c∗. As is easy to see, �av(t) → 0 at time zero, because RU(t) ∼ t2 in that
limit. After a bit of simple algebra, the inverse time 2at = �̇(t0) (19) can
be expressed as

at = H0

2

(1 − 9��)�0/c
2
0

1 + 2(1 − 3��)�0/c
2
0

. (34)

Introducing in this equation the values of �� and �0, the acceleration of
the clocks at turns out to be

at � 0.8H0 � 1.8 × 10−18 s−1. (35)
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This is to be compared with the value suggested by Anderson et al. on the
basis of their data at = (2.9 ± 0.3) × 10−18 s−1. Taking into account the
simplicity of the calculation and the approximations involved, the predic-
tion of this model can be considered to be acceptable. This is encouraging.

4.1. An Intuitive and Phenomenological Understanding of the Phenomenon

Let a photon with frequency hν0 travel across the space at time τ0.
Its energy is hν0. If the time runs from τ0 until τ , when the gravitational
potential is �(τ), it will pick up potential energy, its total energy being
then hν(τ) = hν0[1 + �(τ) − �(τ0)]. It will be seen as having a frequency
ν(τ) = ν0[1 + �(τ) − �(τ0)]. The derivative of the frequency with respect
to the time of the atomic clocks will be 2aτ = d�/dτclocks > 0. In other
words, it must be expected that the frequency of the photons will increase
adiabatically, because of the expansion of the universe. This means a small
blueshift, just what was observed. Since c∗ is constant, the wavelengths
much decrease accordingly. That is the Pioneer anomaly.

5. SUMMARY AND CONCLUSIONS

The model here presented suggests an explanation of the Pioneer
anomaly that is simple and based in standard physical ideas: the accel-
eration aP is not related to any anomalous or unmodelled motion of the
spaceships. Instead, it is an effect of the increasing background gravitational
potential that pervades the universe and produces an acceleration 2at (=
2ap/c) of the time of the clocks τclocks with respect to the coordinate time
t , i.e. 2at = d2τclocks/dt2

∣∣
t0

, t0 being the present time (remember that
the time coordinate was so chosen as to go to the Newtonian time in
the Newtonian limit). This acceleration of the clocks at is also equal, in
this model, to the time derivative of the background gravitational poten-
tial �(t), i.e. 2at = d�/dt |t0 = d�/dτclocks|t0 (note that dτclock/dt = 1,
at present time t0 but not before or after). The anomaly would be thus an
interesting case of the dynamics of time.(19,20) A further comment: as it
might be worth to point out, this model is similar to the explanation by
Mach of the origin of the inertia.

According to this model, the anomaly is a manifestation of the
expansion of the universe, which causes the increase of the background
potential �(t). This increase, in its turn, accelerates the cosmological time
and causes the acceleration 2at. A simple estimation gives a good agree-
ment with the value proposed, on the basis of their observations, by
Anderson et al. the discoverers of the anomaly (see Eq. (35)).
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The model complies with the principles of general relativity, partic-
ularly because the proper speed of light (i.e. c∗ = d�/dτ , τ being the
cosmological proper time) is a universal constant. However, what is here
called the non-proper speed of light (i.e. c(t) = d�/dt , t being the coor-
dinate time) is not constant. This is standard. If there is only matter, be
it ordinary or dark, then c(t) < c∗. On the other hand, it happens that
c(t) can accelerate until being larger than the proper light speed c∗, if and
only if there is cosmological constant (or any other form of dark energy that
implies repulsion). This is unusual and might seem perplexing at first sight,
but it does not imply any contradiction as far as c∗ is still constant. It
would be just another unexpected effect of the dark energy, in addition to
accelerate the universe.

The Pioneer anomaly poses a most intriguing riddle for physics
and very complex and difficult problems for metrology. Taking this into
account, the main conclusion of this paper is that the ideas here presented
should be considered by the experts who know the details of the motion of
the spacecrafts and of the metrological procedures involved in the obser-
vation.

ACKNOWLEDGEMENTS

I am indebted to A. Tiemblo for information on the dynamics of
time, to J. L. Sebastián for explanations on microwave detection and to
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