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It is argued that the long standing failure to show an uncontroversial, loophole-
free, empirical violation of a Bell inequality should be interpreted as a support
to local realism. After defining realism and locality, this as relativistic causal-
ity, the performed experimental tests of Bell’s inequalities are commented. It is
pointed out that, without any essential modification of quantum mechanics, the
theory might be compatible with local realism.
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1. INTRODUCTION

Forty years have elapsed since John Bell(1,2) discovered his celebrated
inequalities. These inequalities, which involve measurable quantities, pro-
vide necessary conditions for local realism. Bell also proved that, in some
experiments with ideal set-ups, the predictions of quantum mechanics vio-
late the inequalities. During these four decades, hundreds of theoretical
papers have pointed out violations of the inequalities in very many differ-
ent phenomena, but only a few dozens empirical tests have been actu-
ally performed. The results of all performed experiments are compatible
with local realism and, with few exceptions, agree with the quantum pre-
dictions. The standard wisdom derived from these facts is that quantum
mechanics has been confirmed and local realism refuted. The latter con-
clusion because allegedly plausible extrapolations of the empirical results
could violate a Bell inequality.

I claim that the current wisdom is misleading and harmful for the
progress of science. Misleading because it attempts answering a fundamen-
tal scientific question by means of a subjective assessment of plausibility.

1Departamento de Fı́sica. Universidad de Cantabria, Spain.

1643

0015-9018/04/1100-1643/0 © 2004 Springer Science+Business Media, Inc.



1644 Santos

Harmful because it discourages people from making the necessary effort
to perform a real, loophole-free, test. The aim of the present paper is to
explain the reasons for my claim.

The long time elapsed without a true disproof of local realism may
be compared, for instance, with the discovery of parity non-conservation,
which required a few months to go from the theoretical paper by Lee-
Yang, in 1957, to the uncontroversial (loophole-free) experiment by Wu
et al. I think that the extreme difficulty to refute local realism, as shown
by the unsuccessful effort of 40 years demands a convincing explanation.

Repeated failures at the experimental level have been extremely impor-
tant in the history of physics. I shall put two examples. After James
Watt made his heat engine in 1765, many people attempted to increase
the efficiency, but in some sense they failed. In fact, nobody was able
to make a perpetuum mobile (of the second kind), that is an engine able
to produce useful work by just cooling a large reservoir like the sea. It
took 60 years to be realized, by Sadi Carnot, that the aim was impossi-
ble because a (large) part of the extracted heat should necessarily go to
a colder reservoir. Carnot’s discovery led soon to the statement of one of
the most important principles of physics: the second law of thermodynam-
ics. Another example is the question of the absolute motion of the Earth.
Several attempts at measuring it failed, the most sophisticated made by
Michelson and Morley in 1887. The failure was “explained” less than
20 years later by Einstein with the hypothesis that absolute motion does
not exist. Again, a repeated experimental failure led to a fundamental
physical law: the relativity principle.

My proposal is that the forty-years failure to show a strict
(loophole-free) violation of a Bell inequality may be “explained” by
another fundamental principle of physics: nature respects local realism.

In this paper, after two introductory sections (Secs. 2 and 3) comment-
ing on the interpretation of quantum mechanics and the question of hidden
variables, I shall analyze the concept of local realism, its relevance in physics
(Sec. 4) and Bell’s inequalities (Secs. 5 and 6). After that I shall review the
experiments aimed at testing local realism vs. quantum mechanics (Secs. 7
and 8) and propose a local realistic model for the Bell experiments (Sec. 9).
Finally, after a digression on philosophy and sociology of science (Sec. 10)
I shall discuss the consequences to be drawn (Secs. 11 and 12).

2. THE DEBATE ABOUT QUANTUM THEORY

Since the discovery of quantum mechanics a warm debate has taken place
about the interpretation of the theory. With some simplification, we may
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say that two main philosophical positions have been mantained, namely
realism and pragmatism, their early representives being, respectively, Ein-
stein and Bohr. According the pragmatic view, the only purpose of physics
is to allow predicting the results of experiments. In contrast realist people
demand that, in addition, physics should provide a picture of the natural
world, a world whose existence independent of the observers is taken for
granted. Of course, neither pragmatists reject realism, in general, nor real-
ists deny the need of an agreement between the predictions of the theory
and the experiments, but the words realist or pragmatist capture the focus
on the interpretation of physics. During many years Franco Selleri has
been one of the most conspicuous representatives of the realist position,(3)

a position which I strongly support.
It is a fact that today most quantum physicists support a pragmatic

attitude towards quantum theory. This fact has been attributed sometimes
to cultural reasons or seen as the consequence of living in a highly techno-
logical environment. In my opinion, however, the main reason is the intrinsic
difficulty which presents the interpretation of the quantum formalism. It is
not only that the formalims does not offer any obvious picture of the world,
or that it predicts counterintuitive phenomena, but the fact the theory sug-
gests contradictory pictures, like fundamental entities being both localized
(particles) and extended (waves). Actually the fact that emerging theories of
physics, or natural science in general, give a counterintuitive picture of the
world is not new, it has been a constant during the history. The reason is
that our intuition rests, to some extent, upon previous theories and a new
one changes the picture. This was the case, for instance, when heliocent-
rism displaced geocentrism, or when time lost an absolute meaning with the
arrival of relativity theory. However, I think that the appearance of a the-
ory suggesting contradictory pictures of the world, like quantum mechanics
does, had no precedent in the history of physics.

I shall not devote more space to the debate about quantum theory,
which is rather well known and has been the subject of many books. Most
of these books defend the pragmatic interpretation, but some are more
or less critical with it. In this respect I should mention those by Franco
Selleri.(3) A recent book by Auletta(4) reviews most of the interpretational
problems of quantum mechanics and the proposed solutions. Many funda-
mental papers are reprinted in a book by Wheeler and Zurek.(5)

3. THE QUESTION OF HIDDEN VARIABLES

Since the early days of quantum mechanics, the realist position has
been associated to the search of hidden variables, although the name is
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somewhat misleading and thus not fully accepted. For instance, Einstein
never spoke about hidden variables in his defense of a realist interpreta-
tion of (or alternative to) quantum mechanics.

The question of hidden variables was considered seriously during the
early times of quantum mechanics as a possible explanation for the sta-
tistical character of this theory. However, the possibility was very soon
discarded. Indeed John von Neumann studied the subject in his cele-
brated book(6) and concluded that hidden variables are incompatible with
the predictions of quantum mechanics (von Neumann’s theorem). Simi-
lar “no-hidden-variables theorems” were proved in the years following von
Neumann’s publication and the impossibility was taken for granted. The
situation changed after the explicit hidden-variables theory of Bohm(7) and
was finally clarified by Bell(8) in 1966, who showed that “contextual” hid-
den variables are always possible. Contextual means that the variables of
the measuring apparatuses are included and, furthermore, the result of the
measurement of every observable may depend on the whole experimental
arrangement (see e.g., the review of Mermin.(9))

The proof of the possibility of contextual hidden variables is so sim-
ple that I include it here. We consider a typical experiment consisting
of the preparation of a system in the quantum state |�〉 followed, after
some evolution, by the measurement of several commuting observables
{A,B, . . . , C}. As is well known there exists a complete orthonormal set
of vectors in the Hilbert space of the system, all of which are simulta-
neous eigenvectors of {A,B, . . . , C}. Let us label these vectors {|λ〉}. Thus
the expectation value of the product of observables A and B, for instance,
may be written (assuming discrete spectrum)

〈AB〉 =
∑

λ

〈�|λ〉〈λ|A|λ〉〈λ|B|λ〉〈λ|�〉

=
∑

λ

AλBλ |〈λ|�〉|2 ,

where we have used

∑

λ

|λ〉〈λ| = 1, 〈λ|A|λ′〉 = 〈λ|A|λ〉δλλ′ ,

and similar for B. The expression for 〈AB〉 has the structure proposed by
Bell as a definition of hidden-variables model (see Eq.(3) below.)

Bell(1) also introduced the concept of local hidden variables theories
and proved that, in some idealized experiments, they are incompatible with
quantum mechanics (Bell’s theorem). Today it is generally believed that
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local hidden variables theories have already been disproved by the experi-
ments, but I claim that this state of opinion is wrong, as said in Sec. 1. In
any case the question about hidden variables theories appears at present as
irrelevant or even nonsense to most quantum physicists. Indeed, from the
pragmatic point of view, today dominant, it is believed that the possible
existence of hidden variables would not change, in any way, the quantum
predictions which are so extremely well confirmed by the experiments. But
I do not agree with this opinion. Thus in the rest of the present section I
shall argüe for the relevance of the question of hidden variables theories,
in particular if they are local. I shall give three arguments:

(1) If a hidden variables theory were found underlying quantum mechan-
ics, it might give predictions more detailed than those provided by
quantum mechanics, although not contradicting them. The possi-
bility of new predictions would give rise to unexpected new physics.
Indeed the history shows how dangerous is to make a guess about the
future, in this case to assume that either such a subquantum theory
cannot be found or that nothing interesting will follow from it.

(2) If there are (are not) local hidden variables models for all possible
experiments, then nature can (cannot) be interpreted as respect-
ing local realism. This is an important knowledge even if it were
considered to belong to philosophy rather than to physics. In fact
the question is whether a picture of the world can be devised
fitting in the tradition of (classical) physics, as supported e.g.,
by Einstein.(10) That is, a world view where physical systems
have properties independently of any observation (“the moon is
there when nobody looks”), actions propagate in space-time at
a speed not greater than that of light (without “spooky actions
at a distance”) and probabilities appear due to ignorance, maybe
unavoidable, rather than by an essential indeterminacy, or lack of
strictly causal laws (that is “God does not play dice”).

(3) If nature respects local realism it is far from obvious that applications
of quantum physics relying on “purely quantum phenomena”, like
entanglement, could produce anything not achievable with devices
working according the laws of classical physics. This might be, for
instance, the case of quantum computation. If there is a general prin-
ciple preventing the violation of a Bell inequality (see below, Sec. 10),
then it is probable that the same principle might prevent the expected
functioning of (large scale) quantum computers. I guess that the prin-
ciple exists and is related to decoherence and other forms of noise, as
will be commented in the last section of the present paper.
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4. WHAT IS LOCAL REALISM?

It is not easy to define realism with a few words, as is proved by the exis-
tence of whole books devoted to the subject. Here I shall give a simple
definition appropriate for physics. Realism is the belief that material bodies
have properties independent of any observation, and that the results of any
possible measurement depend on these properties. The said properties are
usually called “elements of reality”(11) and are frequently identified with
the hidden variables. However I think that the latter correspond rather to
the parameters used for the description of the said properties and should
not be confused with the former.

In order to clarify the point I shall give an example. If I throw
upwards a coin, after a while the coin will collide with, say, a table and
will soon become at rest on it, with either the head or the tail upwards.
The described experiment consists, as is typical, of the preparation of the
state of a system (the coin thrown upwards) followed by the evolution of
the system and finishing by the measurement of a quantity on it. Our
intuition says that the result (head or tail) is determined by the elements
of reality of the coin during the fly. Or maybe, taking into account the
unavoidable existence of non-idealties (e.g., friction with the air), the ele-
ments of reality just determine the probability of the result. In any case
we should carefully distinguish between the observable (head or tail) and
the elements of reality (associated to motion of the coin). The relevant
lesson of our example is that the result of a measurement depends on
both the measured system (the coin) and the measuring apparatus (the
table). Sometimes the observable (head–tail in our example) is even devoid
of sense without the measuring apparatus (the table). Therefore it is not
so strange that quantum mechanics forbids the “simultaneous existence
of definite values for some observables”, namely those which cannot be
measured toghether. This is the essential content of the Kochen–Specker
theorem forbidding non-contextual hidden variables.(9) Our example shows
that the validity of the Kochen–Specker theorem does not contradict real-
ism as defined above.

Possibly most workers in quantum physics consider that realism is
just a philosophical opinion which may or may not be true, but this is
not the case. As Einstein put it,(10) without accepting the existence of an
objective reality, independent of any observation, natural science would be
impossible. Actually, even the most pragmatic quantum physicists admit
that states of physical systems have some “capabilities” of influencing the
results of eventual future measurements on the system. In my view it is a
rather semantic question whether we name these capabilities “elements of
reality”.
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Locality is the belief that no influence may be transmitted with a speed
greater than that of light. Thus we might identify locality with relativis-
tic causality. The concept of locality is subtle, however. In fact, quantum
mechanics is local in the sense that it forbids the transmission of super-
luminal signals (say from a human being to another one), but local real-
ism as analyzed here is stronger than that. At a difference with the idea of
realism which I consider as an unvoidable requirement for the existence of
science, locality derives from our experience at the macroscopic level and
might be violated without demolishing the whole building of physics. That
is, we might assume that some influences travel at a speed greater than
that of light even if this fact does not allow the transmission of superlumi-
nal signals. This seemed the position of John Bell(12) and also the motiva-
tion for Franco Selleri to become interested in the foundations of relativity
theory.(13)

In spite of this, I think that locality is also important, that is local
realism is so fundamental a principle of physics that it should not be
rejected without extremely strong reasons, an opinion which I believe is
quite close to what Einstein maintained until his death. On the other hand
the question of local hidden variables is less relevant than the question of
local realism. It is true that if local realism were untrue local hidden vari-
ables would be impossible, but if local realism is true local hidden vari-
ables may still be useless in practice, although possible in principle. Thus
I shall refer to local realism, rather than to local hidden variables, in the
rest of this article.

5. THE BELL INEQUALITIES

From what we have said it might appear that local realism is a purely
philosophical concept. But a physical necessary condition for local real-
ism was introduced by John Bell(14) as follows: Any correlation between
measurements performed at different places should derive from events which
happened in the intersection of the past light cones of the measurements.
In order to give an empirical content to the statement Bell considered
a generic experiment consisting of the preparation of a pair of particles
(or, more generally, physical systems) which are let to evolve in such a
way that the two particles go to macroscopically distant regions (the argu-
ment that follows has been exposed in more detail elsewhere.(15)) Thus Bell
searched for the probability, p(A, a;B, b), of getting the result a in the
measurement of an observable A of the first particle and the result b in
the measurement of the observable B of the second particle. He proposed
that, if local realism holds true, the probability could be written
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p(A, a;B, b) =
∫
ρ(λ)P1(λ;A, a)P2(λ;B, b)dλ, (1)

where λ is one or several parameters which contain all relevant informa-
tion about the intersection of the past light cones of the two measure-
ments. An expression similar to (1) for the total probability p(A, a), of
getting the result a in the measurement of the observable A on the first
particle, follows at once from the fact that it is unity the sum of probabil-
ities associated to particle 2. That is

p(A, a) =
∑

b

∫
ρ(λ)P1(λ;A, a)P2(λ;B, b)dλ =

∫
ρ(λ)P1(λ;A, a)dλ. (2)

From now on we shall consider only dichotomic observables, so that the
result of the measurement of the observable A may be only 1 (yes) or 0
(not). Thus we shall simplify the notation writing P1(λ,A) (or P2(λ, B))
for P1(λ;A, a) (or P2(λ;B, b)), and p(A,B) (or p(A)) for the left side of
(1) ((2)) so that Eqs.(1) and (2) will be written

p(A) =
∫
ρ(λ)P1(λ,A)dλ, p(A,B) =

∫
ρ(λ)P1(λ,A)P2(λ, B)dλ. (3)

The functions P and ρ in the formula fulfil the conditions required
for probabilities and probability densities, respectively. That is

ρ(λ) � 0,
∫
ρ(λ)dλ = 1, (4)

P1(λ,A), P2(λ, B) � 0, (5)

P1(λ,A), P2(λ, B) � 1. (6)

It is important to stress that the value of P1(λ,A) is assumed to be inde-
pendent of B, that is independent on what measurement is performed on
the second particle, which is Bell’s condition of locality. This independence
is sometimes called “parameter independence”, which is compatible with a
possible “outcome dependence”, that is the results of the measurements of
A and B may be correlated.(16) Hence, using the notation A′, B ′ for the
result 0 in the measurement of A and B, respectively, we obtain a similar
independence for the measurable probabilities

p(A) = p(A,B)+ p(A,B ′) = p(A,D)+ p(A,D′) = . . .

Parameter independence holds true also in quantum mechanics and it
guarantees that superluminal communication is not possible.
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From the conditions (3)–(6) it is possible to derive inequalities involv-
ing only measurable probabilities. We consider an experiment in which we
prepare once and again, say 4N times (N � 1), a pair of particles in a
given state, the same for all preparations. Here, the same means that the
parameters which may be controlled in the preparation have the same val-
ues. After N preparations, chosen at random amongst the 4N made, we
measure the dichotomic observables A and B of the two particles. After
another N preparations, also chosen at random, we measure the dicho-
tomic observables C and D. Similarly C with B are measured N times,
and A with D also N times. We assume that the result of the measurement
of any of the observables may be either 0 or 1, and call p(A,B) the prob-
ability of getting the result 1 for both observables, A and B (the frequen-
cies measured in the experiment should approach the probabilities if N is
large enough). Similarly we may define the probabilities p(A,D), p(C,B)
and p(C,D), and also the probability p(A) corresponds to getting the
value 1 in the measurement of A and any value (1 or 0) in the measure-
ment of B, or D, performed on the partner particle, and similar for p(B).
It is an easy task to derive, from (1) to (6), inequalities involving measur-
able probabilities. For instance(17)

p(A,B)+ p(A,D)+ p(C,B)− p(C,D) � p(A)+ p(B). (7)

This inequality may be related to the existence of a “metric” in
the set of propositions associated to the results “yes”, “no” in the four
measurements. In fact we may define a formal (not measurable) joint
probability distribution on the observables {A,B,C,D} by means of
expressions similar to (3) applied to the four observables, the six pairs
{AB,AC,AD,BC,BD,CD} and the four triples

{
ABC,ABD,ACD,

BCD
}
, in spite of some of them not being actually measurable (e.g.,

p(A,C) cannot be got empirically because A and C correspond to alter-
native, incompatible, measurements on the same particle). Now the mere
possibility of defining a (formal) joint probability implies the existence of
a metric in the set of propositions (yes–no experiments) and the essential
property of the metric is the fulfillment of triangle inequalities, which are
closely related to the inequality (7). But I shall not pursue the subject here
(details may be seen elsewhere.(18))

6. BELL’S vs. TESTED INEQUALITIES. THE CHSH CASE

Soon after Bell’s discovery(1) in 1964, it was realized that no performed
experiment had shown a violation of local realism. Furthermore, no
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simple experiment could do the job. In my view, the difficulty is a
proof that it is wrong the perceived wisdom according to which quantum
mechanics predicts “highly non-local effects”. The truth is that non-local
effects, if any, are extremely weak and difficult to observe.

In 1969 Clauser, Horne, Shimony and Holt (CHSH)(19) made the first
serious proposal for an empirical test of Bell’s inequality . They suggested
the measurement of the polarization correlation of optical photon pairs.
By optical we mean that the corresponding frequencies are in the visible,
the near ultraviolet or the near infrared parts of the spectrum. The men-
tioned authors derived the Bell inequality

S ≡ E(A,B)+ E(A,D)+ E(C,B)− E(C,D) � 2, (8)

where {A,C} correspond to two possible positions of a polarization ana-
lyzer for the first photon and {B,D} for the second. The correlations are
defined by

E(X, Y ) = p++(X, Y )+ p−−(X, Y )− p+−(X, Y )− p−+(X, Y ), (9)

with X = A or C, Y = B or D, p++(X, Y ) being the probability that the
polarization of the first photon is found in the plane X, and that of the
second in the plane Y , p+−(X, Y ) the probability that the polarization of
the first photon is found in the plane X and that of the second is in the
plane perpendicular to B, etc.

It is not difficult to see that the (8) inequality is equivalent to (7) pro-
vided that the sum of the four probabilities involved is unity, that is

p++(X, Y )+ p−−(X, Y )+ p+−(X, Y )+ p−+(X, Y ) = 1. (10)

In fact in this case it is easy to go from (8) to (7) , or viceversa, by
repeated use of relations like

p++(X, Y ) = p(X, Y ), p+−(X, Y ) = p(X)− p(X, Y ),

p−−(X, Y ) = 1 − p(Y )− p+−(X, Y ). (11)

With respect to the empirical tests, however, the two inequalities look
rather different, and only the inequality (7) may be easily adapted to
actual experiments. In fact, in the experiments either Eq.(10) is not true,
thus (8) not being a true Bell inequality (it cannot be derived from local
realism alone) or the quantities E(X, Y ) are no longer correlations, as we
explain in the following.
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In typical experiments there are two arms in the apparatus, each one
consisting of a lens system followed by a polarization analyzer (polarizer,
for short) and a detector (for the moment we do not consider the case of
two-channel analyzers, but see below). Thus we may interpret p(X, Y ) as
the probability that both photons are detected, after crossing the appro-
priate polarizers, and p(X) the probability that the “red” photon of the
pair is detected, with independence of what happens to the “green” pho-
ton (for clarity of exposition we attach fictitious colours, red and green, to
the photons of a pair). However, if this interpretation is carried upon the
quantities E(X, Y ), via the relations (11) , such quantities would be corre-
lations only in the case that both photons of every pair arrive at the polar-
izers and every photon is detected (with 100% efficiency) whenever it has
crossed the corresponding polarizer. But this idealized situation never hap-
pens.

The current practice in recent experiments is to use two-channel
polarizers, with a detector after each outgoing channel. Attaching the
labels + or − to the detectors after the first or second outgoing channel of
a polarizer, respectively, it is possible to define p++ as the probability that
both photons are detected in detectors with label +, p+− the probability
that the red photon is detected in a detector with label + and the green
photon in a detector with label −, etc. With this interpretation the quan-
tities E(X, Y ) of (9) are indeed true correlations and the inequality (8) is
never violated in actual experiments, because all probabilities p++, p+−,
etc. are much smaller than unity due to the low collection–detection effi-
ciency (i.e., for most photon pairs only one photon, or none, is detected).
The “solution” proposed for this problem has been to renormalize the
probabilities defining the correlations by

E∗(X, Y ) = p++(X, Y )+ p−−(X, Y )− p+−(X, Y )− p−+(X, Y )
p++(X, Y )+ p−−(X, Y )+ p+−(X, Y )+ p−+(X, Y )

. (12)

Thus people use the inequality (compare with (8))

S∗ ≡ E∗(A,B)+ E∗(A,D)+ E∗(C, B)− E∗(C,D) � 2, (13)

in the empirical tests. Indeed, this is the inequality violated in most of
the recent experiments. The inequality, however, cannot be derived from
Eqs.(4) to (3) alone (without additional assumptions) and therefore it is
not a genuine Bell inequality.
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7. EXPERIMENTS USING OPTICAL PHOTONS

The first experimental test using optical photons was made by
Freedman and Clauser.(20) They used photon pairs produced in the decay
of excited calcium atoms via a 0–1–0 cascade. That is, the initial and final
atomic states had 0 total angular momentum, so that the two emitted pho-
tons were entangled in polarization. The dichotomic observables measured
were detection or non-detection of a photon, after it passed through a
polarizer . The labels A and C are associated to two different positions of
the polarizer for the “red” photon and similarly B and D for the “green”
one. The authors were aware that the inequality (7) could not be violated
with the technology of the moment because the detection efficiencies of
the available detectors were too small (less than 10%.) As the left hand
side of the inequality (7) is proportional to the efficiency squared, whilst
the right side is proportional to the efficiency, the latter is more than 10
times the former, so that the inequality is very well fulfilled.

More specifically, the predition of quantum mechanics for the exper-
iment may be summarized as follows, with some simplifications for the
sake of clarity. The measurable quantities in the experiment are the single
rates, R1 and R2, and coincidence rate, R12(φ), the latter being a function
of the angle, φ , between the polarizer’s planes X and Y . In terms of the
production rate, R0, in the source they are given by

R1(A) = R2(B) = 1
2
R0η, R12(X, Y ) = 1

4
R0η

2α(1 + V cos (2φ)). (14)

Here α is an angular correlation parameter and η is the overall detection
efficiency of a photon, which includes collection efficiency and quantum
efficiency of the detectors (for simplicity we put the same efficiency η for
the red and the green photons, which is approximately true in practice, but
the generalization would be rather trivial). In actual experiments the quan-
tum prediction (14) is confirmed, except for small deviations which are not
considered significant.

The probabilities needed to test the inequality (7) are just the ratios

p(A) = R1

R0
, p(B) = R2

R0
, p(X, Y ) = R12(φ)

R0
.

The production rate, R0, is not measured but it is not difficult to show
that, if we insert (14) into (7) , R0 cancels out and the inequality becomes

αη

[
1 + 1

2
V

(
3∑

1

cos(2φj )− cos (2φ4)

)]
� 2,
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where {φj } are the angles between the polarization planes of the analyzers,
that is between A and B,A and D,C and B,C and D, respectively. These
angles fulfil φ1+φ4 = φ2+φ3 and the maximum of

∑3
1 cos(2φj )−cos (2φ4)

with that constraint is 2
√

2. Thus the Bell inequality (15) holds true, for
any choice of polarizers positions, whenever

αη
(

1 +
√

2V
)

� 2. (15)

In the actual experiment(20) V � 0.85, but η � 0.0001, and α � 1, so
that the inequality was safely fulfilled (η is the product of the quantum
efficiency, ζ, of a detector times the collection efficiency of the apertures,
see below Eq.(19)).

Freedman and Clauser(20) found a “solution”, to circumvent the prob-
lem of the low detection efficiency, consisting of the replacement of con-
dition (6) by another one, called “no-enhancement”, which they claimed
plausible. This assumption states that, for any value of the parameter λ,
the following inequality holds true:

P1(λ,A) � P1(λ,∞), P2(λ, B) � P2(λ,∞), (16)

where Pj (λ,∞) are the probabilities of detection of the photon with the
corresponding polarizer removed. From inequalities (1)–(5) plus (16), the
authors(20) derived the inequality

p(A,B)+ p(A,D)+ p(C,B)− p(C,D) � p(A,∞)+ p(∞, B), (17)

where p(A,∞) (p(∞, B)) is the probability of coincidence detection with
the polarizer corresponding to the red (green) photon removed. The
results of the measurement, and the quantum predictions, for these prob-
abilities are

p(A,∞) = p(∞, B) = 1
2
αη2,

and the inequality (17) implies
(

1 +
√

2V
)

� 2 ⇔ V �
√

2/2, (18)

to be compared with (15) . This was the inequality tested, and violated, in
the commented experiment.

Note that, in sharp contrast with the obvious inequality (6) , the
inequality (16) is not only empirically untestable, it is counterfactual.
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In fact, as said above, λ is a set of parameters which contains all rele-
vant information about the intersection of the past light cones of the mea-
surements. But the past light cone of one measurement (with a polarizer
in place) is necessarily different from the past light cone of a different
measurement (with the polarizer removed). In order to give a meaning
to the inequality (16) it is necessary to compare a fact (one of the mea-
surements) with a belief (about what would have happened in a different
experiment having the same past light cone). For this reason I say that
the inequality is counterfactual. Of course, it may be checked empirically
that the average over λ of the left hand side is not greater than the aver-
age of the right hand side, that is for any light beam the detection rate
does not increase when we insert a polarizer. (However, it might increase
if we insert a polarization rotator plus a polarization analyzer when the
incoming light is linearly polarized). In summary, the first alleged empiri-
cal disproof of local realism rests upon a counterfactual belief qualified as
plausible. Therefore, strictly speaking, it did not test local realism. How-
ever, I do not mean that the experiment was useless because it opened an
important new line of experimental research.

In the decade that followed the commented experiment, several sim-
ilar atomic-cascade experiments were performed.(21,22) In addition to the
requirement of introducing untestable auxillary assumptions (like (16)), all
of them had the problem of being static. That is, the positions of the
polarizers were fixed well before the detection events took place. Therefore
the experiments could not test locality, in the sense of relativistic causality.
In order to solve the problem, Alain Aspect and coworkers(23) performed
in 1982 a new atomic-cascade experiment where (in some sense) the polar-
izers positions were chosen when the photons were already in flight. How-
ever the inequality tested was of the type (17) rather than a genuine Bell
inequality like (7) .

The experiment of Aspect is usually presented as the definite refuta-
tion of local realism. One of the reasons is that, during the preparation
of the experiment, Aspect was in close contact with Bell, who approved
it. Although Bell was aware that there existed a loophole due to the
low efficiency of the available photon detectors, he considered acceptable
to make a fair sampling assumption. That is, to extrapolate the results
actually got in the experiment, with low efficiency detectors, to detectors
100% efficient. This amounts to testing an inequality obtained from (7)
by dividing the right hand side by the efficiency, η, and the left side by
η2. The inequality so obtained is practically the same as (17) . The fair
sampling assumption was justified by Bell(24) with the frequently quoted
sentence: “It is hard for me to believe that quantum mechanics works so
nicely for inefficient practical set-ups and is yet going to fail badly when
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sufficient refinements are made.” But this sentence cannot be applied to
the commented experiments because the predictions of quantum mechanics
for any atomic-cascade experiment are compatible with local realism even
if the experiment is made with ideal set-up, in particular 100% efficiency
detectors, as is shown in the following.(25) Apparently Bell was not aware
of this fact before he untimely died in october 1990.

The atomic-cascade decay, giving rise to a photon pair, is a
three-body problem with the consequence that the angle, χ, between the
directions of emission of the two photons is almost uniformly distributed
over the sphere. This implies that the angular correlation parameter α (see
(14)) is almost independent of the angle χ , that is α (χ) � 1. On the other
hand both the overall detection efficiency, η, and the “visibility”, V , of the
coincidence curve are functions of the angle, θ, determined by the aper-
tures of the lens system (as seen from the source). The dependence V (θ)
is a loss of polarization correlation when the “red” and “green” photons
do not have opposite wavevectors. In the Aspect experiment the functions
are(21)

η = 1
2 (1 − cos θ)ζ, V = 1 − 2

3 (1 − cos θ)2, α � 1, (19)

where ζ is the quantum efficiency of the detectors. Using these expres-
sions it is easy to see that the maximum value of the left hand side of
(15) is about 0.74 ζ, and the inequality is safely fulfilled even for ideal
detectors (i.e., ζ = 1). The figure should be multiplied times 2, giving
1.48 ζ, if we assume that both photons, red and green, may be detected
in either detector. But still the inequality (15) holds true for any ζ ( � 1).
In summary taking into account the low angular correlation of the pho-
ton pairs produced in atomic cascades, these experiments cannot discrimi-
nate between local realism and quantum mechanics. In spite of this fact, the
Aspect experiment is quoted everywhere as the definite refutation of local
realism.

The problem of the lack of angular correlation might be solved if the
recoil atom were detected(26) but that experiment would be extremely diffi-
cult. A more simple solution is to use optical photon pairs produced in
the process of parametric down conversion, and this has been the source
common in all experiments since about 1984. At a difference with atomic-
cascade experiments, here the photons have a good angular correlation. In
fact the parameter α of (14) as a function of the angle, χ, between the
wavevectors of the two photons is such that the probability of detection
of the green photon conditional to the detection of the red one is just the
quantum efficiency ζ (or close to it.) Thus putting the detectors in appro-
priate places we may rewrite (15) with ζ substituted for αη, that is
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ζ
(

1 +
√

2V
)

� 2. (20)

This inequality might be violated if V is close to 1 (which is achievable in
actual experiments) and ζ > 2

(√
2 − 1

)
� 0.82. But such a high value of

the detection efficiency has not yet been achieved and the low efficiency of
detectors remains as a persistent loophole for the disproof of local realism.

This difficulty has led to the use of the modified CHSH inequality
(13) as the standard inequality tested in practically all recent experiments
with optical photons. These experiments use two-channel polarizers, and
the prediction of quantum mechanics for them may be summarized in
terms of four coincidence detection rates as follows

R++ (φ) = R−− (φ) = 1
2
ηR0 [1 + V cos (2φ)] ,

R+− (φ) = R−+ (φ) = R++
(
φ + π

2

)
, (21)

whilst the single rates are usually not measured (or, at least, not reported
as relevant). In the actual experiments there are small departures from
(21) which are not considered significant, but may be relevant for the rea-
sons to be explained in the next section. As said above the inequality
tested is (13) , and the probabilities involved may be obtained from (21)
as ratios between the measured coincidence rates and the production rate.
That is, putting (21) into (12) we get

E∗ = V cos (2φ) . (22)

If this is used in (13) , steps similar to those leading to (18) give

S∗ = 2
√

2V � 2 ⇔ V �
√

2/2. (23)

This inequality looks the same as (18), but here V is obtained from mea-
surements using two-channel polarizers. In practice V may be got by three
different procedures:

(1) From the best fit of the measured correlation, E(φ), to the the-
oretical curve (9), where the probabilities, p++(φ), etc., are the
ratios of measured rates, R++(φ), etc., to the production rate, R0.
It is easy to see that the fitting does not require the measurement
of R0. We shall label just V the quantity so obtained.

(2) As half the “visibility” of the empirical curve E (φ) , that is the
difference between the maximum and the minimum values divided
by the sum. Again the value of R0 is not required. I shall label VA
this quantity.
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(3) From the value of S∗ measured for the angles φ1 = φ2 = φ3 =
π/8, φ4 = 3π/8, using the first equality (23) . These angles provide
the maximum value of S∗ if the empirical data agree with (21) .
This value will be labelled VB and it is the quantity commonly
used in the test of the inequality (23). Indeed in recent times it
has become standard practice to claim that local realism is refuted
whenever VB >

√
2/2.

According to quantum predictions the equality V = VA = VB should
hold true, but in actual experiments there are small differences between
them. In the next section we will exhibit a local model which also predicts
differences when the detection efficiency is high enough.

8. OTHER EXPERIMENTS AIMED AT TESTING LOCAL REALISM

In his pioneer work(1) Bell used the example of an Einstein–
Podolsky–Rosen–Bohm(27) system, that is a pair of spin-1/2 particles with
zero total spin. Thus it is not strange that some experiments have been
proposed consisting of the measurement of the spin correlation of two
spin-1/2 particles. The use of massive particles has the advantage that they
may be quite reliably detected, so that such experiments do not suffer from
the detection loophole. The proposed experiments use non-relativistic par-
ticles. As far as I know, no experiment of this kind has been proposed
using relativistic particles. The reason is probably the difficulty for produc-
ing a pair with zero total spin if we take into account that spin of relativ-
istic particles is not strictly conserved (only the total angular momentum
of a free particle is strictly conserved in Dirac’s theory).

The non-relativistic particles present the problem that it is difficult
to guarantee the space-like separation of the measurements. As an exam-
ple, we may consider the experiment proposed by Lo and Shimony.(28)

It consists of the dissociation of molecules with two sodium atoms fol-
lowed by the measurement of their spins by means of a Stern–Gerlach
apparatus. The typical velocity of the sodium atoms, after dissociation, is
about 3000 m/s and the length of the measuring magnets 0.25 m this giv-
ing a measurement time about 10−4 s. Thus, in order that the measure-
ments were space-like separated, the Stern–Gerlach apparatused should
be distant by more than 30 km. It is rather obvious that such exper-
iment could not be a practical test of local realism as defined above.
Similar problems appear in the proposed experiment by Adelberger and
Jones(29) using neutron pairs. The neutrons should collide at low energy
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in order to insure a pure S-wave scattering so that, by Pauli’s principle,
the total spin should be zero. Again the distance between the spin mea-
surements (by scattering with magnetized material) should be extremely
large.

In addition there are fundamental constraints, derived from
Heisenberg uncertainty principle, on experiments using non-relativistic
particles.(30) For instance, let us assume that the particle detectors are
static and placed on opposite sides and at a distance L from the source
each, so that the distance between detectors is 2L. If the particles have
mass m (the same for both, for simplicity) and travel at a velocity v,
then the initial position and velocity are uncertain by, at least, �x�v =
–h/2m. Thus the arrival time at the detectors will be uncertain by, at
least,

√
2–hL/(mv3). We may be sure that the measurements are space-like

separated only if this quantity is smaller than 2L/c, which leads to the
constraint L � 2–hc2/(mv3), a macroscopic quantity (for instance, in the
experiment proposed by Lo and Shimony(28) this gives about 1 m). The
quantity is not so big as to put unsurmountable practical difficulties, but
it shows that a Bell test using non-relativistic particles requires measure-
ments made at quite macroscopic distances.

An experiment using the scattering of non-relativistic protons was
performed by Lamehi–Rachti and Mittig in 1976.(31) The spin components
of the protons were measured by scattering on carbon foils. The experi-
mental results agreed with quantum predictions, but the auxiliary assump-
tions needed for the experiment to be a test of a Bell inequality were
stronger than in experiments with optical photons. An experiment has
been recently performed(32) using two 9Be+ ions in a trap, each of which
behaves as a two-state systems. It has been claimed, and widely com-
mented, that the experiment “has closed the detection loophole” because
the atoms may be detected with 100% efficiency. However, the distance
between ions in the trap, 3 �m, was very small. Although this distance is
about 100 times the size of an ion wavepacket, it is 106 times smaller than
the wavelength of the photons involved in the atomic transitions between
the two levels (compare with the fundamental constraints commented in
the previous paragraph). In these conditions the experiment cannot test
locality in the sense of relativistic causality.

A loophole-free experiment involving spin measurements of atoms has
also been proposed. It consists of the dissociation of mercury molecules
followed by the measurement of nuclear spin correlation of the atoms.(33)

In order to make the measurement time very short, the idea was to use
a polarized pulse of laser light, which would induce selectively the ioniza-
tion of the atom when it is in one specific spin state (say up) but not in the
other possible state (down). After several years of preparation, the detailed
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proposal of the experiment was published in 1995, but 9 years later no
results have been reported. (In the Oviedo Conference, held in July 2002,
Fry reported that important difficulties had been found. Fry’s talk was not
published.)

Many other experimental tests of a Bell inequality have been per-
formed or proposed, each one suffering from one or several loopholes. For
instance, several experiments have been performed measuring the polari-
zation correlation of gamma rays produced in the decay of positronium,
one of the experiments violating the quantum prediction.(22) These exper-
iments have the difficulty that the polarization cannot be measured with
high enough precision.

There have been also proposals using high energy particles. For
instance, the strangeness oscillations of pairs K0 − K

0
have been the

subject of many papers,(34,35) but no loophole-free violation of a Bell
inequality seems possible in this case due to the small decay time of the
short K0 in comparison with the oscillation period. Also an experiment
has been recently performed using B0 mesons, but here also the damp-
ing made impossible the violation of a Bell inequality, and only a nor-
malization of the correlation function to the undecayed pair leads to a
violation.(36)

In recent years a lot of effort has been devoted to the so-called “tests
without inequalities”.(37) The idea is to prepare a system in some state
and perform a measurement such that the quantum prediction is definite
(say “yes”) but the prediction of any local realistic model is the opposite
(“no”). For a proof of the incompatibility between local realism and quan-
tum mechanics, in ideal experiments, the proposal is very appealing but from
a practical point of view the possible experiments are less reliable than those
resting upon Bell’s inequalities. In particular they require an extreme control
of the purity of the prepared state, which is not the case in the Bell’s proof
(see Sec. 4). An experimental test of local realism resting upon the idea has
been performed,(38) but the experiment is not conclusive, as is shown be the
existence of a local model reproducing the results.(39)

In summary, no performed experiment has been able to test a genu-
ine Bell inequality with the condition that the measurments are performed
at space-like separation. And, as far as I know, only a detailed proposal
for a loophole-free experiment with available technology exists,(33) but this
experiment seems to present unsurmountable difficulties. In consequence
local realism has not been refuted. Furthermore it is the case that, strictly
speaking, local realism has not yet been tested against quantum mechanics.
That is no experiment has been performed able to discriminate between local
realism and quantum mechanics.
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9. A LOCAL REALISTIC MODEL FOR BELL EXPERIMENTS

In the early papers on the subject it was frequent to assert that local
realistic models for the performed experiments, although possible, would
be necessarily contrived.(17,21) Also, it is generally believed that the pre-
dictions of any local realistic model would depart dramatically from the
quantum predictions when the measuring devices become close to ideal
(e.g., using high efficiency detectors). The purpose of the present section
is to show that both prejudices are false. In fact, we shall exhibit a model
which appears as quite natural and is rather close to quantum mechanics
in the predictions even in situations close to the ideal.

As said above most of the recent experimental tests of Bell’s inequal-
ities use photon pairs produced by parametric down-conversion and the
quantity measured is the polarization correlation of photon pairs, by
means of two-channel polarizers. I shall consider only these experiments
here, although the arguments that follow apply more generally. In the case
of using one-channel polarizers the local model should reproduce Eq.(14) ,
and should consist of three functions, ρ(λ), P1(λ, φ1) and P2(λ, φ2), fulfill-
ing the conditions (4) to (6) and such that

R1

R0
=
∫
ρ(λ)P1(λ, φ1)dλ,

R2

R0
=
∫
ρ(λ)P2(λ, φ2)dλ, (24)

R12(φ)

R0
=
∫
ρ(λ)P1(λ, φ1)P2(λ, φ2)dλ, φ1 − φ2 = φ. (25)

Here φ1 (φ2) is the angle of the polarization plane of the first (second)
analyzer with respect to the horizontal. For experiments with two chan-
nel polarizers we may use two pairs of functions so that Pj−(λ, φj ) =
Pj+(λ, φj + π/2). Many local models have been exhibited in the past, for
instance the 1984 Marshall–Santos–Selleri one,(40) a variant of which is the
following. In order to show that the model is not artificial, I shall compare
it with the quantum calculation.

In quantum mechanics, a pair of photons entangled in polarization
may be represented by the state vector

|ψ〉 = 1√
2

(
a

†
Hb

†
V + a

†
V b

†
H

)
|vacuum〉, (26)

where H (V ) labels horizontal (vertical) polarization and a†(b†) are cre-
ation operators of photons in the first (second) beam. If we search for a
local realistic model, it is natural to attach two-dimensional polarization
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vectors (in the plane perpendicular to the wave-vectors) to the incoming
light signals, such as

α ≡ (αH , αV ) , β ≡ (βV , βH ) . (27)

The scalar product of these two vectors is the model analog of the proba-
bility amplitude associated to (26) , whence the probability should be the
square of that scalar product. This suggests a probability function, ρ (see
Eq.(6)) of the form

ρ ∝ (α · β)2 ∝ cos2 (λ1 − λ2) , (28)

where the hidden variables λ1 and λ2 are angles, say with the horizontal,
defining the directions of the polarization vectors of the photons. It is easy
to see that, after normalization, this gives

ρ = 1
π2

[1 + cos (2λ1 − 2λ2)] . (29)

Now we shall choose the probabilities, Pj (λ, φj ), of detection of a
photon after passage through the corresponding polarizer. In a classi-
cal theory an electromagnetic signal, polarized in the plane forming an
angle λj with respect to the horizontal, would be divided in the polarizer
according to Malus’ law, a large intensity going to the upper channel if λj
is close to the angle, φj , of the polarizer (and similarly to the lower chan-
nel if λj is close to (φj +π/2)). Thus it is natural to assume that a detec-
tion event would be more probable if the intensity is large, which suggests
that Pj (λ, φj ) should decrease with increasing value of the angle

∣∣λj − φj
∣∣.

A simple expression which fits in these conditions is the following one

Pj (λj , φj ) = β if
∣∣λj − φj

∣∣ � γ (modπ)

0 otherwise. (30)

By the nature of polarizers the angle φj is equivalent to φj + π , whence
the periodicity π. For the validity of the model it is crucial that β � 1,
so that conditions (6) are fulfilled. In order to extend the model to exper-
iments with two-channel polarizers it is necessary to define functions Pj+
and Pj−. I propose the following, in terms of those defined by (30)

Pj+(λj , φj ) = Pj (λj , φj ), Pj−(λj , φj ) = Pj (λj , φj + π

2
). (31)
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In this form we obtain a model, not too artificial, reproducing the quan-
tum predictions, Eq. (1) , for all performed experiments involving optical
photons.

In fact, inserting Eqs. (29) and (30) in (25) , it is easy to see that the
model leads to

R++ (φ)
R1

= 2βγ
π

[
1 + sin2(2γ )

4γ 2
cos (2φ)

]
= R−− (φ)

R1
, (32)

R+− (φ)
R1

= R−+ (φ)
R1

= R++ (φ + π/2)
R1

, (33)

which reproduces the quantum prediction (21) if we assume

V = sin2 (2γ )
4γ 2

, η = 4γβ
π
. (34)

(It may be realized that using functions Pj different from (30) , but
depending only on

∣∣λj − φj
∣∣ , would change just the constant factor in

front of cos(2φ) in (32)). The constraint β � 1 shows that, in the typical
range of values considered here, the model may agree with the quantum
predictions only if

V � sin2 (πη/2)

(πη/2)2
� 1 − π2η2

12
. (35)

Typical values in actual experiments are η � 0.2, V � 0.97 (if raw data are
used, see next section), so that the model is compatible with the empir-
ical results. For instance the experiment by Kurtsiefer et al.(41) reports a
value S∗ = 2.6979 ± 0.00012, so that VB = 0.9539 ± 0.00004 (see (13))
with η = 0.214. The values V and VA were measured with less precision,
but they agree with VB within statistical errors. The right hand side of (35)
takes the value 0.962 so that the inequality is fulfilled, that is the results of
the experiment are compatible with our model. Note that the experiment
violates the alleged Bell inequality (23) but it does not violate a genuine
Bell inequality like (20) .

The commented experiment(41) shows that recent tests are close to the
limits of validity of the simple model given by (29)–(31) . It is possible to
get models of the same general type which depart but slightly from the
quantum prediction for higher values of η and/or V . A good model con-
sists of using (30) again for the detection probabilities but using, instead
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of (29), the probability function

ρ = 1√
2π3σ

exp
(
−(λ2/2σ 2)

)
, λ = λ1 − λ2 ∈ [−(π/2), (π/2)] . (36)

Defining ρ (λ+ nπ) = ρ (λ) , n = ±1,±2, . . . this becomes a periodic func-
tion which may be expanded in Fourier series to give

ρ = 1
π2

[
1 + 2

∑

n=1

exp
(
−2n2σ 2

)
cos (2nλ)

]
, (37)

provided that σ is small enough so that the Gaussian function in Eq. (36)
is negligible for λ = π/2. Hence we get a prediction (with β = 1)

R++
R1

= 2γ
π

[
1 + 2

∑

n=1

exp
(
−2n2σ 2

) sin2 (2nγ )

(2nγ )2
cos (2nφ)

]
, (38)

R+− (φ) = R−+ (φ) = R++
(
φ + π

2

)
, R−− (φ) = R++ (φ) . (39)

The expression obtained for E∗ (φ) , which I shall not write explicitly, is
very close to the quantum prediction (22), even for quite high detection
efficiency, using σ = π/18, a value recently proposed.(42) For this choice
it is possible to get V = 1 with efficiencies up to η � 0.848 (that is γ =
πη/4 � 2/3, see (34)) and still the departures from the quantum predic-
tion are only of a few percent. In fact we get

VA = 0.980, VB = 0.957.

Even closer is the prediction for the function E∗ (φ), see Eq.(12) , where
the discrepancy corresponds to a term in cos (6φ) with a coefficient
of order 0.02. This shows that the agreement between the function
E∗ (φ) , empirically got, and the pure cosinus curve, predicted by quantum
mechanics, is not an argument against local realism, contrary to what has
been sometimes claimed.

For higher efficiencies the model cannot reproduce the (ideal) quan-
tum prediction V = 1. In particular, for 100% efficiency, i.e., η = 1 ⇒
γ = π/4, we get V � 8/π2, whatever is the value of σ. But, even in this
limit, the model does not depart too much from quantum mechanics. For
instance, with the same choice σ = π/18, we get

V = 0.7627, VA = 0.8225, VB = 0.7043,
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in comparison with the ideal quantum prediction V = VA = VB = 1. It
may be realized that the value given by that model for the left side of the
inequality (8) is 1.992, very close to the Bell limit, 2, although not so close
to the quantum prediction with ideal set ups, 2.414.

In summary, the proposed family of models agrees exactly with quan-
tum predictions for low enough detection efficiency, and departs when the
efficiency increases. The departure manifests in that the model prediction
for E∗ (φ) , when Fourier analyzed, either contains terms in cos(2nφ) with
n > 1 or has a coefficient for the cos(2φ) term lower than the quantum
prediction, or both. The deviations slowly increase with the detection effi-
ciency up to a few percent for about 85% efficiency and more rapidly for
higher efficiencies, up to about 20% for 100% efficiency.

Our conclusion from this section is that the accuracy of the agree-
ment with quantum mechanical predictions of the experiments (alleg-
edly) testing Bell’s inequalities is not an argument against local realism,
because local models exist also able to reproduce exactly the results of
performed experiments and quite accurately the predictions of quantum
mechanics for (future) experiments with higher efficiency detectors. Only
the loophole-free violation of a genuine Bell inequality would disprove
local realism.

10. DIGRESSION ON PHILOSOPHY AND SOCIOLOGY OF
SCIENCE

For the analysis of significance of the results obtained in the performed
tests of local realism it is convenient to make a digression on philosophy
and sociology of science. The pragmatic approach to quantum mechan-
ics, commented in Sec. 2, has led to an “antimetaphysical” attitude, that is
the idea that science should not be constrained at all by any philosophical
principle. I think that this position is not completely correct. Of course,
the philosophy of the natural world should rest upon knowledge derived
from science, and not viceversa, but it is also true that science itself rests
upon some philosophical principles.

One of the central principles of the philosophy of science is that,
although a single experiment may refute a theory, no theory can ever
be absolutely confirmed by experiments, a principle stressed by Karl
Popper.(43) The reason is that, if an experiment is compatible with a the-
ory, say A, it is sure that there are many other theories, B, C, . . . , also
compatible with the experiment. Thus the only possibility to increase the
degree of confidence in a theory is to perform many experiments able to
refute it. If the results of these experiments are compatible with the theory,
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it becomes increasingly supported. This is precisely what has happened
with local realism. All experiments attempting at violating it have failed
during 40 years.

Another philosophical point which is required in any serious discus-
sion of the present status of local realism is that established theories are
protected, as was stressed by Imre Lakatos.(44) That is, when a new dis-
covery seems to contradict the theory, it is always possible to introduce
some auxillary hypotheses which allow interpreting the new finding within
the accepted theory. It is well known the example put by Lakatos on the
hypothetical observation of an anomaly in the motion of a planet. It could
be explained, without rejecting Newton’s gravitational theory, by the exis-
tence of another, unknown, planet. If this is not found by observation
in the predicted place, it might be assumed that there are two planets
instead of one, etc. Indeed, it is a historical fact that no theory has been
rejected by its contradiction with a single or even several experiments (e.g.,
Newton’s gravity by the anomaly in the motion of Mercury). The the-
ory survives until a new, superior, theory is available (e.g., Newton’s grav-
ity survived until the appearance of general relativity). The consequence
of this sociological fact is that any argument for a established theory is
accepted without too much discussion, but any argument against the the-
ory is carefully analyzed in order to discover a flaw. Thus, even a honest
experimentalist will devote much more care searching for possible errors if
an experiment contradicts the assumed predictions of quantum mechanics
than if it confirms the theory.

A good example of this behaviour has happened in the early, atomic-
cascade, tests of Bell’s inequalities. As said in Sec. 7 the first experiment
of that kind was performed by Freedman and Clauser(20) and the results
agreed with quantum predictions. The second experiment was made by
Holt and Pipkin (see, e.g., the reviews by Clauser and Shimony(21) or
by Duncan and Kleinpoppen.(22)) The results of the experiment disagreed
with quantum predictions but did not violate the inequality (18) tested.
The consequence is that the experimental results were never formally pub-
lished and many people (including the authors) made a careful search
for possible sources of error. The Holt–Pipkin experiment had two main
differences with the Freedman–Clauser one: (1) the use of a cascade of
atomic mercury, instead of calcium, and (2) the use of calcite polarizers,
instead of polarizers made of piles of plates. In order to clarify the anom-
aly, Clauser(45) “repeated” the Holt–Pipkin experiment, that is performed
a new experiment using mercury but, again, piles of plates as polarizers.
This time the results agreed with quantum predictions and violated the
tested inequality (18). However, there are arguments(46) suggesting that it
is the use of calcite what is very relevant, because it has an extremely good
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extintion ratio, less than 10−4 to be compared with 0.02 for typical piles
of plates. In contrast calcite possesses bad efficiency for maximum trans-
mission of linear polarized light, about 80% to be compared with 98%
for typical piles of plates. But there are arguments supporting the opin-
ion that it is the minimal, and not the maximal, transmission of the polar-
izer what matters.(46) In spite of this fact, the Holt–Pipkin experiment has
never been repeated in the sense of using calcite polarizers.

I presume that something similar is happening with the efficiency of
photon counters. Apparently there are already detectors with efficiency
above 80% (which might allow loophole-free tests of local realism), but no
report exists of an experiment performed, or even planned, in recent years
with these detectors. I suposse that the reason is that the said detectors do
not possess the necessary qualities. That is a low enough dark rate and a
linear response (i.e., a quantum efficiency which does not change with the
detection rate). I would guess that some loophole-free experiments have
been attempted, but the results have not been published because they do
not support the standard paradigm, namely that a (genuine) Bell inequal-
ity could be violated when the detection efficiency is high enough.

11. PRESENT STATUS OF LOCAL REALISM AT THE EMPIRICAL
LEVEL

Now we arrive at the crucial question: Is local realism a valid principle
of physics? The current wisdom is that it has been definitely refuted by
the optical experiments already performed, modulo some loopholes due to
nonidealities which, it is added, are quite common in experimental phys-
ics. But, as explained in Sec. 7, this is not true for the atomic-cascade
experiments because they do not discriminate between local realism and
quantum mechanics. Indeed the ideal predictions of the latter are compat-
ible with the former. We are left with experimental tests involving opti-
cal photons produced in the process of parametric down-conversion (e.g.,
the mentioned experiment by Kurtsiefer et al.(41)). As discussed in Sec. 7,
these experiments cannot tests (genuine) Bell inequalities due to the low
efficiency of available photon detectors, and other non-idealities. If we
exclude the down-conversion experiments, the evidence against local real-
ism is meager because all other tests present greater difficulties. It is true
that the efficiency loophole has been closed in experiments with atoms,(32)

what has been used as an argument against the validity of local realism.(47)

In my opinion the fact that different loopholes appear in different experi-
ments is an argument for it. Indeed, it suggests that nature preserves local
realism in every case.
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The assumption behind the claim that Bell’s inequalities have already
been violated is that photons, like electrons, or atoms, or molecules, could
be treated as particles. If this were true there would be no reason why
detectors could not be manufactured having 100% efficiency (without too
much noise). But I think that it is closer to the truth, and less difficult to
understand, the assumption that atoms are (localized) particles which for
yet unknown reasons behave sometimes like waves, but optical photons are
(extended) wavepackets which behave, in some cases, like particles. There
are two arguments, at least, against optical photons being particles. First
there is no “position operator” for photons in quantum mechanics, and
second the photon number is usually not well defined. That is, common
states of light, like laser light or thermal light, have an indefinite number
of photons. A photon is (or should be associated to) a wavepacket in the
form of a needle with a length of the order of the coherence length, which
for atomic emissions is at least of order of centimeters, and several wave-
lengths in transverse dimensions. This associates to a typical optical pho-
ton a volume about 1018 atomic volumes. In sharp contrast, a gamma ray
photon may be associated to a volume smaller than that of an atom. If
we take the atomic volume as standard, we are led to say that high energy
photons are localized entities (behaving mainly as particles) whilst optical
photons are not localized (behaving mainly as waves). Thus, with refer-
ence to the sentence of Bell, quoted in Sec. 3 above, it might not be the
case that quantum mechanics would fail in experiments with highly effi-
cient photon counters, but that counters of optical photons working with
high efficiency and good performance may not exist.

In any test of local realism using photons, it is necessary to measure
both, the position of the photon and other quantity like polarization or
phase. The former may be called a particle property whilst the latter is a
wave property. Thus, if we remenber the Bell inequality (20) , it is natu-
ral to associate the parameters ζ (detection efficiency) and V (visibility of
the polarization correlation curve) to those two quantities and conclude
that the Bell inequality forbids that a photon behaves as a particle and as
a wave at the same time. In contrast, the tested inequality (23) just con-
strains the “amount of wave behaviour, V ”. Thus its violation means that
we cannot dismiss the wave character of optical photons. On the other
hand, tests using gamma rays do not have any problem with the position
measurement (i.e., the efficiency of detection), but there are difficulties for
a precise measurement of polarization, as commented in Sec. 8. I con-
clude that, in tests using photons, a trade-off exists between measurability
of position and measurability of polarization, a trade-off quantified by the
Bell inequality (20). The “corpuscular” property (position), may be accu-
rately measured only in photons much smaller than atoms, like gammas,
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the “wave” property (polarization), in those much larger than atoms, like
optical photons.

In conclusion, I claim that local realism is such a fundamental princi-
ple which should not be dismissed without extremely strong arguments. It is
a fact that there is no direct empirical evidence at all for the violation of
local realism. Only when the existing evidence is combined with theoretical
arguments (or prejudices) it might be argüed that local realism is refuted.
But, in my opinion, this combination is too weak for such a strong con-
clusion.

12. QUANTUM MECHANICS, NOISE AND THE SECOND LAW

The scientific community dismisses the mentioned loopholes as unplausible
explanations (see, e.g., the relatively recent article by Laloë,(48) excellent in
many other respects). I think that this opinion rests upon the theoretical
prejudice mentioned above, namely that the validity of local realism would
imply that quantum mechanics is false. And, for good reasons, nobody is
willing to accept that quantum mechanics is wrong. But I think that a vio-
lation of local realism is no more acceptable than a violation of quantum
mechanics. Thus I claim that there exists a real problem whose only good
solution is the compatibility of local realism with quantum mechanics, or
some “small” modification of this theory.

Quantum mechanics consists of two quite different ingredients: the
formalism (including the equations) and the theory of measurement. We
must assume that the equations are correct, because the extremely accurate
agreement of measured quantities with the theoretical values, for instance
in quantum electrodynamics, cannot be explained otherwise. However, the
quantum theory of measurement is objectable from many points of view,
and only a minimal fraction is really required for the interpretation of
most experiments. For instance, the postulate about position measurements
(i.e., Born’s rule) is enough for the interpretation of scattering experi-
ments, including spectroscopy (which may be seen as photon scattering).
On the other hand the standard proofs of “Bell’s theorem” rest upon
the theory of measurement. Consequently I guess that a weakening of
the standard measurement theory, without touching the formalism, might
make quantum mechanics compatible with local realism. As is well known,
quantum mechanics puts some bounds to the possible preparations and
measurements in the form of Heisenberg inequalities (uncertainty rela-
tions). I guess that stronger bounds should exist preventing the violation
of local realism in any case.



Bell’s Inequality Supports 1671

Quantum mechanics is intrinsically stochastic, in the sense that its
predictions are typically about probabilities of events. In classical physics
the essential ingredient of any stochastic theory is noise. Thus the natural
assumption would be that the probabilistic character of quantum theory
is due to noise, but this is not the standard interpretation. It is believed
that the probabilistic character of quantum predictions is a manifestation
of the lack of strict causality of nature. In my opinion what happens is
that we do not yet understand correctly noise in the quantum domain, in
particular quantum vacuum fluctuations. My guess is that quantum noise
is what may put fundamental constraints to the accuracy of some mea-
surements, in such a way as to prevent the violation of local realism.

Ian Percival(49) has pointed out that, in classical physics, the sec-
ond law of thermodynamics does not contradict the laws of (Newtonian)
mechanics, but nevertheless it restrict the possible evolutions of physical
systems. He proposed that a similar physical principle might prevent the
violation of local realism without actually contradicting quantum mechan-
ics. In my view this is an interesting observation, because I presume that
it is the second law, with quantum noise taken into account, what may
prevent the violation of local realism in the quantum domain. I think
that a better understanding of the laws of thermodynamics at the quan-
tum level is required. Indeed, the traditional interpretation of the third
law (zero entropy at zero Kelvin) seems difficult to be reconciled with the
existence of (non-thermal) quantum vacuum fluctuations. In summary, a
serious attention to the loopholes in the empirical tests of the Bell inequal-
ities, rather than their uncritical dismissal, may improve our understanding
of nature.
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