
Vol.:(0123456789)

Fuzzy Optimization and Decision Making (2024) 23:199–217
https://doi.org/10.1007/s10700-023-09417-3

1 3

Partial derivatives of uncertain fields and uncertain partial 
differential equations

Tingqing Ye1 

Accepted: 12 October 2023 / Published online: 20 November 2023 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2023

Abstract
Multivariate uncertain calculus is a branch of mathematics that deals with differen-
tiation and integration of uncertain fields based on uncertainty theory. This paper 
defines partial derivatives of uncertain fields for the first time by putting forward the 
concept of Liu field. Then the fundamental theorem, chain rule and integration by 
parts of multivariate uncertain calculus are derived. Finally, this paper presents an 
uncertain partial differential equation, and gives its integral form.

Keywords Uncertainty theory · Uncertain calculus · Uncertain process · Uncertain 
field · Partial derivative

1 Introduction

Uncertain calculus is a branch of mathematics that deals with differentiation 
and integration of uncertain processes based on uncertainty theory founded by 
Liu (2007) and perfected by Liu (2009). As the basics of uncertain calculus, Liu 
(2009) proposed Liu process which is a type of stationary independent increment 
process whose increments are normal uncertain variables. Following that, the 
arithmetic and geometric Liu processes were presented. In order to study the inte-
gral of uncertain processes with respect to Liu process, Liu integral was invented 
by Liu (2009). Then some properties of Liu integral, such as linearity, additivity 
with respect to integration region and integrability of sample-continuous uncer-
tain processes, were proved by Liu (2009). In order to research the differential of 
uncertain processes, Chen and Ralescu (2013) presented a general Liu process, 
and defined the differential of the general Liu process. Later, the concept of gen-
eral Liu process was revised by Ye (2021) via requiring its drift and diffusion 
to be sample-continuous. Furthermore, Ye (2021) proved that almost all sample 
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paths of general Liu process are locally Lipschitz continuous. In order to facili-
tate the calculation of differential of uncertain processes, Liu (2009) proposed the 
fundamental theorem of uncertain calculus which was rigorously proved by Ye 
(2021). On this basis, Liu (2009) investigated the chain rule, the change of vari-
ables and the integration by parts. These work laid a theoretical foundation for 
uncertain differential equations.

Uncertain differential equation is a type of differential equation involving 
uncertain processes. In order to apply uncertain differential equations in practice, 
Liu and Liu (2022) proposed the method of moments to estimate the unknown 
parameters in an uncertain differential equation based on the concept of residual, 
and Ye and Liu (2023) used uncertain hypothesis test to judge whether the uncer-
tain differential equation fits the observed data. Up to now, uncertain differen-
tial equations have many applications such as chemical reaction (Tang and Yang, 
2021), electric circuit (Liu, 2021), pharmacokinetics (Liu and Yang, 2021), epi-
demic spread (Lio and Liu, 2021), software reliability (Liu et al., 2022), finance 
(Liu and Liu, 2022; Yang and Ke, 2023; Ye and Liu, 2023), birth rate (Ye and 
Zheng, 2023), and gas futures price (Mehrdoust et al., 2023).

Uncertain partial differential equation is a type of partial differential equa-
tion involving uncertain fields. Yang and Yao (2017) proposed the concept of 
uncertain partial differential equation for the first time when they studied the 
one-dimensional uncertain heat equation. Following that, the three-dimensional 
uncertain heat equation (Ye and Yang, 2022) and its application (Ye, 2023) were 
further studied. In addition, Gao and Ralescu (2019) investigated the uncertain 
wave equation which is a second-order partial differential equation describing the 
wave propagation. Furthermore, Yang et al. (2022) deduced the uncertain seepage 
equation to describe the phenomenon of liquid seepage in fissured porous media. 
Recently, Yang and Liu (2023) studied the solution method and parameter estima-
tion of uncertain partial differential equation.

This paper aims to study some fundamental theoretical problems of multivari-
ate uncertain calculus, including the concept of partial derivative of uncertain 
fields, the fundamental theorem, and the integral form of uncertain partial dif-
ferential equations. The remainder of the paper is organized as follows. Section 2 
introduces some basic concepts and theorems of uncertain processes and uncer-
tain fields. Section 3 proposes the concept of Liu field to show the partial deriva-
tive and the differential of Liu fields. Section 4 deduces the fundamental theorem 
of multivariate uncertain calculus from which the techniques of chain rule and 
integration by parts are derived in Sects.  5 and 6, respectively. On these bases, 
Sect. 7 presents the uncertain partial differential equation whose integral form is 
also given. Finally, some conclusions are made in Sect. 8.

2  Preliminaries

In this section, we introduce some basic concepts and theorems about uncertain 
processes and uncertain fields.
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Definition 1 (Liu, 2008) Let (� ,L,M) be an uncertainty space and let T be a totally 
ordered set. An uncertain process is a function Xt(�) from T × (� ,L,M) to the set 
of real numbers such that {Xt ∈ B} is an event for any Borel set B of real numbers at 
each time t.

We call an uncertain process Xt independent increment process if 
Xt1

,Xt2
− Xt1

,Xt3
− Xt2

,⋯ ,Xtk
− Xtk−1

 are independent uncertain variables where t1 , 
t2,⋯ , tk are any times with t1 < t2 < ⋯ < tk . An uncertain process Xt is said to 
have stationary increments if, for any given t > 0 , the increments Xt+s − Xt are 
identically distributed uncertain variables for all s > 0.

Definition 2 (Liu, 2009) An uncertain process Ct is said to be a Liu process if 

 (i) C0 = 0 and almost all sample paths are Lipschitz continuous,
 (ii) Ct has stationary and independent increments,
 (iii) every increment Cs+t − Cs is a normal uncertain variable with expected value 

0 and variance t2.

The uncertainty distribution of Ct is

and inverse uncertainty distribution is

Theorem 1 (Liu, 2015) Let Ct be a Liu process. Then for each time t > 0 , the ratio 
Ct∕t is a normal uncertain variable with expected value 0 and variabce 1. That is,

for any t > 0.

Definition 3 (Liu, 2009) Let Xt be an uncertain process and let Ct be a Liu process. 
For any partition of closed interval [a, b] with a = t1 < t2 < ⋯ < tk+1 = b , the mesh 
is written as

Then Liu integral of Xt with respect to Ct is defined as

�t(x) =

�
1 + exp

�
−

�x
√
3t

��−1

�−1
t
(�) =

√
3t

�
ln

�

1 − �
.

Ct

t
∼ N(0, 1)

� = max
1≤i≤k |ti+1 − ti|.
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provided that the limit exists almost surely and is finite. In this case, the uncertain 
process Xt is said to be integrable.

Definition 4 (Chen and Ralescu, 2013; Ye, 2021) Let Ct be a Liu process, and let Zt 
be an uncertain process. If there exist two sample-continuous uncertain processes �t 
and �t such that

for any t ≥ 0 , then Zt is called a general Liu process with drift �t and diffusion �t . 
Furthermore, Zt has an uncertain differential

Theorem 2 (Liu, 2009) Let Ct be a Liu process, and let h(t, c) be a continuously dif-
ferentiable function. Then Zt = h(t,Ct) has an uncertain differential

Definition 5 (Liu, 2008) Suppose f and g are continuous functions, and Ct is a Liu 
process. Then

is called an uncertain differential equation. A solution is an uncertain process Xt that 
satisfies (1) identically in t.

Definition 6 (Liu, 2014) Let (� ,L,M) be an uncertainty space and let T be a par-
tially ordered set. An uncertain field is a function Xt(�) from T × (� ,L,M) to the set 
of real numbers such that {Xt ∈ B} is an event for any Borel set B of real numbers at 
each t.

3  Partial derivatives

Definition 7 Let Ct and Dx be Liu processes indexed by temporal variable t and spa-
tial variable x respectively, and let Z(t, x) be an uncertain field. If there exist some 
sample-continuous uncertain fields �1(t, x) , �1(t, x) , �2(t, x) and �2(t, x) such that

∫
b

a

XtdCt = lim
�→0

k∑

i=1

Xti
⋅ (Cti+1

− Cti
)

Zt = Z0 + ∫
t

0

�sds + ∫
t

0

�sdCs

dZt = �tdt + �tdCt.

dZt =
�h

�t
(t,Ct)dt +

�h

�c
(t,Ct)dCt.

(1)dXt = f (t,Xt)dt + g(t,Ct)dCt
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for any temporal variable t ≥ 0 and any spatial variable x ≥ 0 , then Z(t, x) is called 
a Liu field with drifts �1(t, x),�2(t, x) and diffusions �1(t, x), �2(t, x) . Furthermore, 
Z(t, x) has an uncertain differential

and uncertain partial derivatives

where Ċt is the formal derivative dCt∕dt , and Ḋx is the formal derivative dDx∕dx . 
The uncertain differential (3) can be written as

Remark 1 Based on the defined partial derivatives (4), we can write the Liu field 
Z(t, x) in (2) as

Example 1 It follows from

that Z(t, x) = Ct + Dx is a Liu field, and has an uncertain differential

and uncertain partial derivatives

Example 2 It follows from

that Z(t, x) = tCt + D2
x
 is a Liu field, and has an uncertain differential

(2)
Z(t, x) = Z(t0, x0) + ∫

t

t0

�1(s, x0)ds + ∫
t

t0

�1(s, x0)dCs

+ ∫
x

x0

�2(t, y)dy + ∫
x

x0

�2(t, y)dDy

(3)dZ(t, x) = �1(t, x)dt + �1(t, x)dCt + �2(t, x)dx + �2(t, x)dDx,

(4)
𝜕Z

𝜕t
(t, x) = 𝜇1(t, x) + 𝜎1(t, x)Ċt,

𝜕Z

𝜕x
(t, x) = 𝜇2(t, x) + 𝜎2(t, x)Ḋx

dZ(t, x) =
�Z

�t
(t, x)dt +

�Z

�x
(t, x)dx.

Z(t, x) = Z(t0, x0) + ∫
t

t0

�Z

�t
(s, x0)ds + ∫

x

x0

�Z

�x
(t, y)dy.

Ct + Dx = ∫
t

0

dCs + ∫
x

0

dDy

dZ(t, x) = dCt + dDx

𝜕Z

𝜕t
(t, x) = Ċt,

𝜕Z

𝜕x
(t, x) = Ḋx.

tCt + D2
x
= ∫

t

0

Csds + ∫
t

0

sdCs + ∫
x

0

2DydDy

dZ(t, x) = Ctdt + tdCt + 2DxdDx
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and uncertain partial derivatives

4  Fundamental theorem of multivariate uncertain calculus

Theorem 3 Let Ct and Dx be Liu processes indexed by temporal variable t and spa-
tial variable x respectively, and let h(t, x, c, d) be a continuously differentiable func-
tion. Then Z(t, x) = h(t, x,Ct,Dx) has uncertain partial derivatives

and an uncertain differential

Proof By using Theorem 2, we obtain

Thus, it follows from Definition 7 that the theorem is proved immediately.   ◻

Remark 2 Let Ct,Dx1
,Dx2

,⋯ ,Dxn
 be Liu processes, and let h(t, x1,⋯ , xn, c, d1, 

⋯ , dn) be a continuously differentiable function. Then it can be proved that

has uncertain partial derivatives

for i = 1, 2,⋯ , n and an uncertain differential

𝜕Z

𝜕t
(t, x) = Ct + tĊt,

𝜕Z

𝜕x
(t, x) = 2DxḊx.

𝜕Z

𝜕t
(t, x) =

𝜕h

𝜕t
(t, x,Ct,Dx) +

𝜕h

𝜕c
(t, x,Ct,Dx)Ċt,

𝜕Z

𝜕x
(t, x) =

𝜕h

𝜕x
(t, x,Ct,Dx) +

𝜕h

𝜕d
(t, x,Ct,Dx)Ḋx

dZ(t, x) =
�Z

�t
(t, x)dt +

�Z

�x
(t, x)dx.

Z(t, x) = Z(t0, x0) + Z(t, x0) − Z(t0, x0) + Z(t, x) − Z(t, x0)

= Z(t0, x0) + ∫
t

t0

�h

�s
(s, x0,Cs,Dx0

)ds + ∫
t

t0

�h

�c
(s, x0,Cs,Dx0

)dCs

+ ∫
x

x0

�h

�y
(t, y,Ct,Dy)dy + ∫

x

x0

�h

�d
(t, y,Ct,Dy)dDy.

Z(t, x1,⋯ , xn) = h(t, x1,⋯ , xn,Ct,Dx1
,⋯ ,Dxn

)

𝜕Z

𝜕t
(t, x1,⋯ , xn) =

𝜕h

𝜕t
(t, x1,⋯ , xn,Ct,Dx1

,⋯ ,Dxn
)

+
𝜕h

𝜕c
(t, x1,⋯ , xn,Ct,Dx1

,⋯ ,Dxn
)Ċt,

𝜕Z

𝜕xi
(t, x1,⋯ , xn) =

𝜕h

𝜕xi
(t, x1,⋯ , xn,Ct,Dx1

,⋯ ,Dxn
)

+
𝜕h

𝜕di
(t, x1,⋯ , xn,Ct,Dx1

,⋯ ,Dxn
)Ḋxi
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Remark 3 Let Z1(t, x1,⋯ , xn), Z2(t, x1,⋯ , xn),⋯ , Zm(t, x1,⋯ , xn) be Liu fields, and 
let h(z1,⋯ , zm) be a continuously differentiable function. Then it can be proved that

has uncertain partial derivatives

for i = 1, 2,⋯ , n and an uncertain differential

Example 3 Let us calculate uncertain partial derivatives of xCt + tDx . In this case, 
we have h(t, x, c, d) = xc + td whose partial derivatives are

It follows from the fundamental theorem that

Example 4 Let us calculate uncertain partial derivatives of txCt + txDx . In this case, 
we have h(t, x, c, d) = txc + txd whose partial derivatives are

It follows from the fundamental theorem that

Example 5 Let us calculate uncertain partial derivatives of 
A(t, x) = at + bx + �Ct + �Dx . In this case, we have h(t, x, c, d) = at + bx + �c + �d 
whose partial derivatives are

dZ(t, x1,⋯ , xn) =
�Z

�t
(t, x1,⋯ , xn)dt +

n∑

i=1

�Z

�xi
(t, x1,⋯ , xn)dxi.

Z(t, x1,⋯ , xn) = h(Z1,⋯ , Zn)

�Z

�t
(t, x1,⋯ , xn) =

n∑

i=1

�h

�zi
(Z1,⋯ , Zn) ⋅

�Zi

�t
(t, x1,⋯ , xn)

�Z

�xi
(t, x1,⋯ , xn) =

n∑

i=1

�h

�zi
(Z1,⋯ , Zn) ⋅

�Zi

�xi
(t, x1,⋯ , xn)

dZ(t, x1,⋯ , xn) =

n∑

i=1

�h

�zi
(t, Z1,⋯ , Zn)dZi(t, x1,⋯ , xn).

�h

�t
(t, x, c, d) = d,

�h

�x
(t, x, c, d) = c,

�h

�c
(t, x, c, d) = x,

�h

�d
(t, x, c, d) = t.

𝜕

𝜕t
(xCt + tDx) = Dx + xĊt,

𝜕

𝜕x
(xCt + tDx) = Ct + tḊx.

�h

�t
(t, x, c, d) = xc + xd,

�h

�x
(t, x, c, d) = tc + td,

�h

�c
(t, x, c, d) = tx,

�h

�d
(t, x, c, d) = tx.

𝜕

𝜕t
(txCt + txDx) = x(Ct + Dx) + txĊt,

𝜕

𝜕x
(txCt + txDx) = t(Ct + Dx) + txḊx.
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It follows from the fundamental theorem that

Example 6 Let us calculate uncertain partial derivatives of 
G(t, x) = exp(at + bx + �Ct + �Dx) . In this case, we have 
h(t, x, c, d) = exp(at + bx + �c + �d) whose partial derivatives are

It follows from the fundamental theorem that

5  Chain rule

Theorem  4 Let f(c,  d) be a continuously differentiable function. Then 
Z(t, x) = f (Ct,Dx) has uncertain partial derivatives

Proof It follows from Theorem 3 immediately.   ◻

Example 7 Let us calculate uncertain partial derivatives of sin(Ct + Dx) . In this case, 
we have f (c, d) = sin(c + d) whose partial derivatives are

It follows from the chain rule that

Example 8 Let us calculate uncertain partial derivatives of sin(CtDx) . In this case, 
we have f (c, d) = sin(cd) whose partial derivatives are

It follows from the chain rule that

�h

�t
(t, x, c, d) = a,

�h

�x
(t, x, c, d) = b,

�h

�c
(t, x, c, d) = �,

�h

�d
(t, x, c, d) = �.

𝜕A

𝜕t
(t, x) = a + 𝜇Ċt,

𝜕A

𝜕x
(t, x) = b + 𝜎Ḋx.

�h

�t
(t, x, c, d) = ah(t, x, c, d),

�h

�x
(t, x, c, d) = bh(t, x, c, d),

�h

�c
(t, x, c, d) = �h(t, x, c, d),

�h

�d
(t, x, c, d) = �h(t, x, c, d).

𝜕G

𝜕t
(t, x) = aG(t, x) + 𝜇G(t, x)Ċt,

𝜕G

𝜕x
(t, x) = bG(t, x) + 𝜎G(t, x)Ḋx.

𝜕Z

𝜕t
(t, x) =

𝜕f

𝜕c
(Ct,Dx)Ċt,

𝜕Z

𝜕x
(t, x) =

𝜕f

𝜕d
(Ct,Dx)Ḋx.

�f

�c
(c, d) = cos(c + d),

�f

�d
(c, d) = cos(c + d).

𝜕 sin(Ct + Dx)

𝜕t
= cos(Ct + Dx)Ċt,

𝜕 sin(Ct + Dx)

𝜕x
= cos(Ct + Dx)Ḋx.

�f

�c
(c, d) = d cos(cd),

�f

�d
(c, d) = c cos(cd).
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Example 9 Let us calculate uncertain partial derivatives of (Ct + Dx)
2 . In this case, 

we have f (c, d) = (c + d)2 whose partial derivatives are

It follows from the chain rule that

6  Integration by parts

Theorem 5 Suppose Z1(t, x) and Z2(t, x) are Liu fields. Then we have

and

Proof Since h(z1, z2) = z1z2 is a continuously differentiable function, and

the theorem follows from Remark 3 immediately.   ◻

Example 10 It follows from the integration by parts that

and

Example 11 The integration by parts may calculate the uncertain differential and 
uncertain partial derivatives of

In this case, we define

𝜕 sin(CtDx)

𝜕t
= Dx cos(CtDx)Ċt,

𝜕 sin(CtDx)

𝜕x
= Ct cos(CtDx)Ḋx.

�f

�c
(c, d) = 2(c + d),

�f

�d
(c, d) = 2(c + d).

𝜕(Ct + Dx)
2

𝜕t
= 2(Ct + Dx)Ċt,

𝜕(Ct + Dx)
2

𝜕x
= 2(Ct + Dx)Ḋx.

d(Z1Z2) = Z2dZ1 + Z1dZ2,

�(Z1Z2)

�t
(t, x) = Z1

�Z2

�t
(t, x) + Z2

�Z1

�t
(t, x),

�(Z1Z2)

�x
(t, x) = Z1

�Z2

�x
(t, x) + Z2

�Z1

�x
(t, x).

�h

�z1
(z1, z2) = z2,

�h

�z2
(z1, z2) = z1,

d(CtDx) = DxdCt + CtdDx

𝜕(CtDx)

𝜕t
= DxĊt,

𝜕(CtDx)

𝜕x
= CtḊx.

Z(t, x) = txCtDx.
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Then

It follows from the integration by parts that

and

Example 12 The integration by parts may calculate the uncertain differential and 
uncertain partial derivatives of

In this case, we define

Then

It follows from the integration by parts that

and

Example 13 Let f, g, h and v be continuously differentiable functions. It is clear that

is an uncertain field. In order to calculate the uncertain differential and uncertain 
partial derivatives of Z(t, x), we define

Z1(t, x) = tCt, Z2(t, x) = xDx.

dZ1(t, x) = Ctdt + tdCt, dZ2(t, x) = Dxdx + xdDx.

dZ(t, x) = xDx(Ctdt + tdCt) + tCt(Dxdx + xdDx)

= xCtDxdt + txDxdCt + tCtDxdx + txCtdDx

𝜕Z

𝜕t
(t, x) = xCtDx + txDxĊt,

𝜕Z

𝜕x
(t, x) = tCtDx + txCtḊx.

Z(t, x) =

(

∫
t

0

sdCs

)
⋅

(

∫
x

0

exp(Dy)dDy

)
.

Z1(t, x) = ∫
t

0

sdCs, Z2(t, x) = ∫
x

0

exp(Dy)dDy.

dZ1(t, x) = tdCt, dZ2(t, x) = exp(Dx)dDx.

dZ(t, x) = t

(

∫
x

0

exp(Dy)dDy

)
dCt + exp(Dx)

(

∫
t

0

sdCs

)
dDx

𝜕Z

𝜕t
(t, x) =t

(

∫
x

0

exp(Dy)dDy

)
Ċt,

𝜕Z

𝜕x
(t, x) = exp(Dx)

(

∫
t

0

sdCs

)
Ḋx.

Z(t, x) = f (t)g(Ct)h(x)v(Dx)
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Then

It follows from the integration by parts that

and

7  Uncertain partial differential equation

Definition 8 Suppose f1 , f2 , g1 and g2 are continuous functions, and Ct and Dx are 
Liu processes indexed by temporal variable t and spatial variable x, respectively. 
Then

is called an uncertain partial differential equation, where Ċt is the formal derivative 
dCt∕dt , and Ḋx is the formal derivative dDx∕dx.

The solution of (5) is an uncertain field Z(t, x) satisfying the following uncertain 
integral

where �(t, x) is a sample-continuous uncertain field, and f1 is supposed to be never 
0.

Example 14 Consider the uncertain partial differential equation

Z1(t, x) = f (t)g(Ct), Z2(t, x) = h(x)v(Dx).

dZ1(t, x) =f
�(t)g(Ct)dt + f (t)g�(Ct)dCt,

dZ2(t, x) =h
�(x)v(Dx)dx + h(x)v�(Dx)dDx.

dZ(t, x) = h(x)v(Dx)[f
�(t)g(Ct)dt + f (t)g�(Ct)dCt]

+ f (t)g(Ct)[h
�(x)v(Dx)dx + h(x)v�(Dx)dDx]

= f �(t)g(Ct)h(x)v(Dx)dt + f (t)g�(Ct)h(x)v(Dx)dCt

+ f (t)g(Ct)h
�(x)v(Dx)dx + f (t)g(Ct)h(x)v

�(Dx)dDx

𝜕Z

𝜕t
(t, x) =f �(t)g(Ct)h(x)v(Dx) + f (t)g�(Ct)h(x)v(Dx)Ċt,

𝜕Z

𝜕x
(t, x) =f (t)g(Ct)h

�(x)v(Dx) + f (t)g(Ct)h(x)v
�(Dx)Ḋx.

(5)
𝜕Z

𝜕t
= f1(t, x, Z)

𝜕Z

𝜕x
+ f2(t, x, Z) + g1(t, x, Z)Ċt + g2(t, x, Z)Ḋx

(6)

Z(t, x) = Z(t0, x0) + ∫
t

t0

[f1(s, x0, Z)�(s, x0) + f2(s, x0, Z)]ds

+ ∫
t

t0

g1(s, x0, Z)dCs + ∫
x

x0

�(t, y)dy − ∫
x

x0

g2(t, y,Z)

f1(t, y,Z)
dDy



210 T. Ye 

1 3

where k, a and b are real numbers with k ≠ 0.
First, we deduce a format solution of (7) by the method of characteristics. Indeed, 

the characteristic equation of (7) is

whose solution is x = −kt + r where r is a constant. Write x(t) = x = −kt + r and 
z(t) = Z(t, x(t)) . Then r = x(t) + kt , and

Thus we have

where m is a constant. Then

Suppose m = �(x(0)) = �(r) where � is an arbitrarily continuously differential func-
tion. Thus

Substituting x(t) with x obtains

Second, we will verify that (8) is the solution of the uncertain partial differential Eq. 
(7). Write �(t, x) = ��(x + kt) . Since

(7)
𝜕Z

𝜕t
= k

𝜕Z

𝜕x
+ aĊt + bḊx

dx

dt
= −k

dz

dt
=

𝜕Z

𝜕t
+

𝜕Z

𝜕x

dx

dt

=
𝜕Z

𝜕t
− k

𝜕Z

𝜕x

= aĊt + bḊx.

z(t) = m + aCt −
b

k
Dx

z(0) = m −
b

k
Dx(0).

Z(t, x(t)) = z(t) = �(r) + aCt −
b

k
Dx = �(x(t) + kt) + aCt −

b

k
Dx.

(8)Z(t, x) = �(x + kt) + aCt −
b

k
Dx.

�(0) + ∫
t

0

k��(ks)ds + ∫
t

0

adCs + ∫
x

0

��(y + kt)dy − ∫
x

0

b

k
dDy

= �(0) + �(kt) − �(0) + aCt + �(x + kt) − �(kt) −
b

k
Dx

= �(x + kt) + aCt −
b

k
Dx

= Z(t, x),
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it follows from (6) that

is indeed the solution of (7).
In addition, we also can use the method of computing partial derivatives to verify 

that (8) is the solution of the uncertain partial differential Eq. (7). It follows from the 
fundamental theorem that the uncertain partial derivatives of

are

Thus

which means the uncertain partial differential Eq. (7) i.e.,

holds. Thus the solution of the uncertain partial differential Eq. (7) is

where � is an arbitrarily continuously differential function. For example, when 
k = a = b = 1 and �(x) = x2 , the solution of the uncertain partial differential Eq. (7) 
becomes

Example 15 Consider the uncertain partial differential equation

where f(t, x) is a a continuously differential function, and k, a and b are real numbers 
with k ≠ 0.

The characteristic equation of (9) is

Z(t, x) = �(x + kt) + aCt −
b

k
Dx

Z(t, x) = �(x + kt) + aCt −
b

k
Dx

𝜕Z

𝜕t
= k𝜙�(x + kt) + aĊt,

𝜕Z

𝜕x
= 𝜙�(x + kt) −

b

k
Ḋx.

𝜕Z

𝜕t
−
[
k
𝜕Z

𝜕x
+ aĊt + bḊx

]

= k𝜙�(x + kt) + aĊt −
[
k
(
𝜙�(x + kt) −

b

k
Ḋx

)
+ aĊt + bḊx

]

= 0

𝜕Z

𝜕t
= k

𝜕Z

𝜕x
+ aĊt + bḊx

Z(t, x) = �(x + kt) + aCt −
b

k
Dx

Z(t, x) = (x + t)2 + Ct − Dx.

(9)
𝜕Z

𝜕t
= k

𝜕Z

𝜕x
+ f (t, x) + aĊt + bḊx
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whose solution is x = −kt + r where r is a constant. Write x(t) = x = −kt + r and 
z(t) = Z(t, x(t)) . Then r = x(t) + kt and

Thus we have

where m is a constant. Then

Suppose m = �(x(0)) = �(r) where � is an arbitrarily continuously differential func-
tion. Thus,

Substituting x(t) with x obtains

Second, we will verify that (10) is the solution of the uncertain partial differential 
equation (9). Write

dx

dt
= −k

dz

dt
=

𝜕Z

𝜕t
+

𝜕Z

𝜕x

dx

dt

=
𝜕Z

𝜕t
− k

𝜕Z

𝜕x

= f (t, x) + aĊt + bḊx.

z(t) = m + ∫
t

0

f (s, x(s))ds + aCt −
b

k
Dx

z(0) = m + ∫
t

0

f (s, x(s))ds −
b

k
Dx(0).

Z(t, x(t)) = z(t) = z(0) + ∫
t

0

f (s, x(s))ds + aCt −
b

k
Dx

= �(r) + ∫
t

0

f (s,−ks + r)ds + aCt −
b

k
Dx

= �(x(t) + kt) + ∫
t

0

f (s,−ks + x(t) + kt)ds + aCt −
b

k
Dx

= �(x(t) + kt) + ∫
t

0

f (s, x(t) + k(t − s))ds + aCt −
b

k
Dx.

(10)Z(t, x) = �(x + kt) + ∫
t

0

f (s, x + k(t − s))ds + aCt −
b

k
Dx.

�(t, x) = ��(x + kt) + ∫
t

0

�f

�x
(s, x + k(t − s))ds
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where �f∕�x is the partial derivative of the function f(t, x) with respect to the second 
variable x. Since

it follows from (6) that

is indeed the solution of (7).
In addition, we also can use the method of computing partial derivatives to verify 

that (10) is the solution of the uncertain partial differential equation (9). It follows 
from the fundamental theorem that the uncertain partial derivatives of

are

Thus

�(0) + ∫

t

0

[

k�′(ks) + k ∫

s

0

�f
�x

(�, k(s − �))d� + f (0, s)
]

ds + ∫

t

0
adCs

+ ∫

x

0

[

�′(y + kt) + ∫

t

0

�f
�x

(s, y + k(t − s))ds
]

dy − ∫

x

0

b
k
dDy

= �(0) +
[

�(kt) + ∫

t

0
f (s, k(t − s))ds − �(0)

]

+ aCt −
b
k
Dx

+
[

�(x + kt) + ∫

t

0
f (s, x + k(t − s))ds − �(kt) − ∫

t

0
f (s, k(t − s))ds

]

= �(x + kt) + ∫

t

0
f (s, x + k(t − s))ds + aCt −

b
k
Dx

= Z(t, x),

Z(t, x) = �(x + kt) + ∫
t

0

f (s, x + k(t − s))ds + aCt −
b

k
Dx

Z(t, x) = �(x + kt) + ∫
t

0

f (s, x + k(t − s))ds + aCt −
b

k
Dx

𝜕Z

𝜕t
= k𝜙�(x + kt) + k ∫

t

0

𝜕f

𝜕x
(s, x + k(t − s))ds + f (t, x) + aĊt,

𝜕Z

𝜕x
= 𝜙�(x + kt) + ∫

t

0

𝜕f

𝜕x
(s, x + k(t − s))ds −

b

k
Ḋx.

�Z
�t

−
[

k �Z
�x

+ f (t, x) + aĊt + bḊx

]

= k�⅊϶∨̂‶∨̄϶(x + kt) + k ∫

t

0

�f
�x

(s, x + k(t − s))ds + f (t, x) + aĊt

− k
(

�⅊϶∨̂‶∨̄϶(x + kt) + ∫

t

0

�f
�x

(s, x + k(t − s))ds − b
k
Ḋx

)

− f (t, x) − aĊt − bḊx

= 0
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which means the uncertain partial differential equation (9), i.e.,

holds. Thus the solution of the uncertain partial differential equation (9) is

where � is an arbitrarily continuously differential function. For example, when 
k = a = b = 1 , f (t, x) = t + x and �(x) = x2 , the solution of the uncertain partial dif-
ferential equation (9) becomes

Example 16 Consider the uncertain partial differential equation

Step 1. We decompose solving uncertain partial differential equation (11) into solv-
ing the following two uncertain partial differential equations

and

Then it follows from the fundamental theorem that

Thus the solution of (11) is

since

𝜕Z

𝜕t
= k

𝜕Z

𝜕x
+ f (t, x) + aĊt + bḊx

Z(t, x) = �(x + kt) + ∫
t

0

f (s, x + k(t − s))ds + aCt −
b

k
Dx

Z(t, x) = (x + t)2 + ∫
t

0

(x + t)ds + Ct − Dx

= x2 + 3xt + 2t2 + Ct − Dx.

(11)
𝜕Z

𝜕t
=

𝜕Z

𝜕x
+ t + x + Z + Ċt + Ḋx.

(12)
𝜕Z1

𝜕t
=

𝜕Z1

𝜕x
+ t + x + Z1 + Ċt

(13)
𝜕Z2

𝜕t
=

𝜕Z2

𝜕x
+ Z2 + Ḋx.

�Z

�t
=

�Z1

�t
+

�Z2

�t
,

�Z

�x
=

�Z1

�x
+

�Z2

�x
.

Z = Z1 + Z2
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Step 2. It follows from the method of characteristics provided by Examples  14 
and 15 that the solution of (12) is

and the solution of (13) is

where �1 and �2 are arbitrarily continuously differential functions. Thus we have

In addition, since �1 and �2 are arbitrarily continuously differential functions and

we can write

and the solution of the uncertain partial differential Eq. (11) is

where � is an arbitrarily continuously differential function. For example, when 
�(x) = x , the solution becomes

𝜕Z

𝜕t
−
[
𝜕Z

𝜕x
+ t + x + Z + Ċt + Ḋx

]

=
𝜕Z1

𝜕t
+

𝜕Z2

𝜕t
−

[
𝜕Z1

𝜕x
+

𝜕Z2

𝜕x
+ t + x + Z1 + Z2 + Ċt + Ḋx

]

=

[
𝜕Z1

𝜕t
−

(
𝜕Z1

𝜕x
+ t + x + Z1 + Ċt

)]
+

[
𝜕Z2

𝜕t
−

(
𝜕Z2

𝜕x
+ Z2 + Ḋx

)]

= 0.

Z1(t, x) = et�1(x + t) + (x + t)(et − 1) + ∫
t

0

et−sdCs

Z2(t, x) = e−x�2(x + t) − ∫
x

0

ey−xdDy

Z(t, x) = Z1(t, x) + Z2(t, x)

= et�1(x + t)+e−x�2(x + t)+(x + t)(et − 1)+∫
t

0

et−sdCs−∫
x

0

ey−xdDy.

et�1(x + t) + e−x�2(x + t) = et[�1(x + t) + e−(x+t)�2(x + t)],

�(x + t) = �1(x + t) + e−(x+t)�2(x + t),

Z(t, x) = et�(x + t) + (x + t)(et − 1) + ∫
t

0

et−sdCs − ∫
x

0

ey−xdDy,

Z(t, x) = (x + t)(2et − 1) + ∫
t

0

et−sdCs − ∫
x

0

ey−xdDy.
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8  Conclusion

Partial derivative is an important concept and cornerstone in multivariable calculus, 
as well as in multivariate uncertain calculus. For that matter, this paper first defined 
the partial derivative of uncertain fields by putting forward the concept of Liu field. 
In order to calculate the partial derivative of uncertain fields, the fundamental the-
orem, chain rule and integration by parts of multivariate uncertain calculus were 
derived. On these bases, this paper proposed a type of uncertain partial differential 
equation, and gave its integral form. Finally, some examples were documented to 
illustrate how to solve uncertain partial differential equations.
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