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Abstract
All existing methods to estimate unknown parameters in uncertain differential equa-
tions are based on difference scheme, and do not workwhen the time intervals between
observations are not short enough. In order to overcome this shortage, this paper
presents a concept of residual. Afterwards, an algorithm is designed for calculat-
ing residuals of uncertain differential equation corresponding to observed data. In
addition, this paper presents a method of moments based on residuals to estimate
the unknown parameters in uncertain differential equations. Finally, some examples
(including Alibaba stock price) are provided to illustrate the parameter estimation
method.

Keywords Uncertainty theory · Uncertain differential equation · Residual analysis ·
Parameter estimation

1 Introduction

For the purpose of rationally handling the belief degree that something will happen,
uncertainty theorywas founded by Liu (2007) and perfected by Liu (2009). To this day,
uncertainty theory has spawned many theoretical branches and has been successfully
applied in various fields of science and engineering.

Among the theoretical branches of uncertainty theory, uncertain differential equa-
tion was first proposed by Liu (2008) to model time-varying system. For the purpose
of investigating the solution of an uncertain differential equation, Chen and Liu (2010)
verified the existence and uniqueness theorem of the solution under linear growth con-
dition and Lipschitz condition. Besides, the stability of uncertain differential equation
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was first investigated by Liu (2009) to study the dependence of the solution on the ini-
tial value. Following that, some theorems were verified by Yao et al. (2013) to perfect
the stability analysis of uncertain differential equations, which has been developed by
many scholars such as stability in p-th moment (Sheng and Wang 2014), almost sure
stability (Liu et al. 2014) and stability inmean (Yao et al. 2015), etc.Another vital prob-
lem in uncertain differential equations is how to solve it. For the sake of dealing with
this problem, Yao-Chen formula, as one of the most important contributions to uncer-
tain differential equations, was proved by Yao and Chen (2013) to associate uncertain
differential equation with ordinary differential equations. On the basis of Yao-Chen
formula, some numerical solution methods for uncertain differential equations were
studied by scholars such as Euler method (Yao and Chen 2013), Runge-Kutta method
(Yang and Shen 2015), Adams method (Yang and Ralescu 2015) and Milne method
(Gao 2016), among others. Up to now, the theory of uncertain differential equations
has been well developed.

Assume an uncertain process follows an uncertain differential equation and some
realizations of this process are observed. A critical problem in the practical applica-
tion of uncertain differential equations is how to estimate the unknown parameters
based on the observed data. For the purpose of dealing with this problem, several
methods have been proposed. For instance, Yao and Liu (2020) presented the method
of moments, Sheng et al. (2020) investigated least squares estimation, Yang et al.
(2020) discussed minimum cover estimation, Liu and Liu (2020) proposed maximum
likelihood estimation, Liu (2021) studied generalized moment estimation, and Lio
and Liu (2021) presented initial value estimation. Based on those methods, uncertain
differential equations have been applied to handling the real-life problems such as
pharmacokinetics (Liu and Yang 2021), chemical reaction (Tang and Yang 2021) and
epidemic spread (Lio and Liu 2021; Jia and Chen 2021; Chen et al. 2021).

However, the above parameter estimation methods are all based on difference
scheme and do not work when the time intervals between observations are not short
enough. In order to overcome this shortage, this paper proposes a concept of resid-
ual, and investigates a method of moments based on residuals to estimate unknown
parameters in uncertain differential equations. The structure of this paper adopts the
form of six parts, including this Introduction section. Sect. 2 begins by introducing the
concept of residual, and Sect. 3 begins by designing an algorithm to calculate residu-
als of uncertain differential equation corresponding to observed data. Afterwards, the
method ofmoments based on residuals is presented to estimate unknown parameters of
uncertain differential equations in Sect. 4. As an application, the method of moments
based on residuals is used to model Alibaba stock price in Sect. 5. Finally, a concise
conclusion is given in Sect. 6.

2 Residual

In order to make a connection between uncertain differential equation and observed
data of some uncertain process, this section will introduce a concept of residual. Let
us consider an uncertain differential equation
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Residual analysis and parameter estimation 515

dXt = f (t, Xt )dt + g(t, Xt )dCt (1)

where f and g are known continuous functions and Ct is a Liu process. Assume

xt1 , xt2 , . . . , xtn (2)

are n observations of some uncertain process Xt at the times t1, t2, . . . , tn with t1 <

t2 < · · · < tn , respectively.
For any given index i with 2 ≤ i ≤ n, let us first solve the updated uncertain

differential equation,

{
dXt = f (t, Xt )dt + g(t, Xt )dCt

Xti−1 = xti−1

(3)

where xti−1 is the new initial value at the new initial time ti−1. The uncertainty distri-
bution of Xti is thus obtained and represented by �ti . Then for any x with 0 < x < 1,
we have

M{�ti (Xti ) ≤ x} = M{Xti ≤ �−1
ti (x)} = �ti (�

−1
ti (x)) = x .

Thus �ti (Xti ) is always a linear uncertain variable whose uncertainty distribution is

F(x) =

⎧⎪⎨
⎪⎩
0, if x ≤ 0

x, if 0 < x ≤ 1

1, if x > 1

denoted by L(0, 1). Substitute Xti with the observed value xti , and write

εi = �ti (xti ). (4)

Then εi can be regarded as a sample of the linear uncertain variable �ti (Xti ). In other
words, εi is a sample of linear uncertainty distribution L(0, 1).

Definition 1 For each index i with 2 ≤ i ≤ n, the term εi defined by (4) is called the
i th residual of uncertain differential Eq. (1) corresponding to the observed data (2).

Example 1 Assume xt1 , xt2 , . . . , xtn are observed values of some uncertain process Xt

that follows the uncertain differential equation

dXt = μdt + σdCt (5)

where μ and σ are constants. For each index i with 2 ≤ i ≤ n, we solve the updated
uncertain differential equation

{
dXt = μdt + σdCt

Xti−1 = xti−1
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and obtain the uncertainty distribution of Xti as follows,

�ti (x) =
(
1 + exp

(
π(xti−1 + μ(ti − ti−1) − x)√

3σ(ti − ti−1)

))−1

.

It follows from Definition 1 that the i th residual is

εi =
(
1 + exp

(
π(xti−1 + μ(ti − ti−1) − xti )√

3σ(ti − ti−1)

))−1

.

Example 2 Assume xt1 , xt2 , . . . , xtn are observed values of some uncertain process Xt

that follows the uncertain differential equation

dXt = μXtdt + σ XtdCt (6)

where μ and σ are constants. For each index i with 2 ≤ i ≤ n, we solve the updated
uncertain differential equation

{
dXt = μXtdt + σ XtdCt

Xti−1 = xti−1

and obtain the uncertainty distribution of Xti as follows,

�ti (x) =
(
1 + exp

(
π(ln xti−1 + μ(ti − ti−1) − ln x)√

3σ(ti − ti−1)

))−1

.

It follows from Definition 1 that the i th residual is

εi =
(
1 + exp

(
π(ln xti−1 + μ(ti − ti−1) − ln xti )√

3σ(ti − ti−1)

))−1

.

Example 3 Assume xt1 , xt2 , . . . , xtn are observed values of some uncertain process Xt

that follows the uncertain differential equation

dXt = μt Xtdt + σ t XtdCt (7)

where μ and σ are constants. For each index i with 2 ≤ i ≤ n, we solve the updated
uncertain differential equation

{
dXt = μt Xtdt + σ t XtdCt

Xti−1 = xti−1

123



Residual analysis and parameter estimation 517

and obtain the uncertainty distribution of Xti as follows,

�ti (x) =
(
1 + exp

(
π(2 ln xti−1 + μ(t2i − t2i−1) − 2 ln x)√

3σ(t2i − t2i−1)

))−1

.

It follows from Definition 1 that the i th residual is

εi =
(
1 + exp

(
π(2 ln xti−1 + μ(t2i − t2i−1) − 2 ln xti )√

3σ(t2i − t2i−1)

))−1

.

Example 4 Assume xt1 , xt2 , . . . , xtn are observed values of some uncertain process Xt

that follows the uncertain differential equation

dXt = (m − aXt )dt + σdCt (8)

wherem, a and σ are constants. For each index i with 2 ≤ i ≤ n, we solve the updated
uncertain differential equation

{
dXt = (m − aXt )dt + σdCt

Xti−1 = xti−1

and obtain the uncertainty distribution of Xti as follows,

�ti (x) =
(
1 + exp

(
π

(
(axti−1 − m) exp (a(ti−1 − ti )) + m − ax

)
√
3σ (1 − exp (a(ti−1 − ti )))

))−1

.

It follows from Definition 1 that the i th residual is

εi =
(
1 + exp

(
π

(
(axti−1 − m) exp (a(ti−1 − ti )) + m − axti

)
√
3σ (1 − exp (a(ti−1 − ti )))

))−1

.

3 Numerical method for calculating residuals

For general uncertain differential equations, the following algorithm is able to calculate
the i th residual εi .

Algorithm 1
Step 0: Set l = 0, r = 1 and a precision δ = 0.0001.
Step 1: Set α = (l + r)/2.
Step 2: Compute Xα

ti of the uncertain differential Eq. (3) by Euler method.
Step 3: If Xα

ti < xti , then l = α. Otherwise, r = α.
Step 4: If |l − r | > δ, then go to Step 1.
Step 5: Output εi = (l + r)/2.
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Table 1 Observed data in Example 5

t xt t xt t xt t xt t xt

0.04 1.00 1.83 3.74 4.32 7.69 7.65 16.58 11.06 27.19

0.15 1.20 1.96 3.91 4.66 8.36 8.63 19.47 11.79 28.87

0.28 1.39 2.25 4.36 4.66 8.36 8.68 19.62 11.81 28.92

0.69 2.24 2.49 4.43 5.41 10.08 9.47 21.50 11.99 29.36

1.02 2.49 3.25 6.01 6.23 12.85 9.64 21.88 12.81 31.69

1.38 2.85 4.12 7.28 7.18 15.43 10.39 24.04 13.38 33.30

Table 2 Residuals in Example 5

i εi i εi i εi i εi i εi

2 0.4183 8 0.2217 14 0.4867 20 0.8483 26 0.6334

3 0.2736 9 0.3072 15 0.5000 21 0.8598 27 0.7124

4 0.5331 10 0.0432 16 0.6300 22 0.6657 28 0.6913

5 0.0951 11 0.5357 17 0.9241 23 0.6051 29 0.8215

6 0.1402 12 0.2729 18 0.7855 24 0.8315 30 0.8169

7 0.4899 13 0.5227 19 0.6922 25 0.9926

Next we provide some examples to illustrate the above algorithm.

Example 5 Table 1 shows 30 observed data of some uncertain process Xt that follows
the uncertain differential equation

dXt =
(
2

t2
+ 1

Xt

)
dt + Xt

t
dCt . (9)

According to Algorithm 1, the 29 residuals of uncertain differential Eq. (9) corre-
sponding to the observed data can be obtained and are shown in Table 2 and Fig.
1.

Example 6 Table 3 shows 30 observed data of some uncertain process Xt that follows
the uncertain differential equation

dXt = exp

(
2

Xt

)
dt + ln XtdCt . (10)

According to Algorithm 1, the 29 residuals of uncertain differential Eq. (10) corre-
sponding to the observed data can be obtained and are shown in Table 4 and Fig.
2.
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Residual analysis and parameter estimation 519

Fig. 1 Residual plot in Example 5

Table 3 Observed data in Example 6

t xt t xt t xt t xt t xt

0.2 1.00 3.69 10.34 5.98 17.63 8.24 22.02 9.28 23.21

0.32 1.26 4.24 11.94 6.07 17.88 8.44 22.37 9.67 23.16

1.03 3.09 4.44 12.40 6.15 18.08 8.69 22.73 10.22 23.56

1.94 5.56 4.74 13.20 6.81 19.45 8.70 22.75 10.62 23.91

2.12 6.15 5.41 16.19 7.01 19.87 8.83 22.74 11.12 24.97

2.79 7.92 5.49 16.38 7.55 20.65 9.07 22.87 11.62 24.68

Table 4 Residuals in Example 6

i εi i εi i εi i εi i εi

2 0.5750 8 0.8387 14 0.8039 20 0.3885 26 0.0206

3 0.7403 9 0.6328 15 0.7124 21 0.2659 27 0.0904

4 0.7851 10 0.7702 16 0.5343 22 0.5000 28 0.1150

5 0.9103 11 0.9886 17 0.5452 23 0.0226 29 0.5542

6 0.7621 12 0.6638 18 0.2674 24 0.0663 30 0.0092

7 0.7772 13 0.7309 19 0.4934 25 0.3338

4 Parameter estimation

Next we will provide a parameter estimationmethod based on residuals to estimate the
unknown parameters in uncertain differential equations. Let us consider the following
uncertain differential equation

dXt = f (t, Xt ; θ)dt + g(t, Xt ; θ)dCt (11)
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Fig. 2 Residual plot in Example 6

where f and g are known continuous functions but θ is an unknown vector of param-
eters. Assume

xt1 , xt2 , . . . , xtn (12)

are observed values of some uncertain process Xt at the times t1, t2, . . . , tn with
t1 < t2 < · · · < tn , respectively.

For each given θ , we can produce n − 1 residuals ε2(θ), ε3(θ), . . . , εn(θ) of the
uncertain differential Eq. (11) corresponding to the observed data (12). Note that
the n − 1 residuals ε2(θ), ε3(θ), . . . , εn(θ) can be regarded as samples of the linear
uncertainty distribution L(0, 1), i.e.,

ε2(θ), ε3(θ), . . . , εn(θ) ∼ L(0, 1).

For each positive integer k, the kth sample moment of the n − 1 residuals is

1

n − 1

n∑
i=2

εki (θ),

and the kth population moment of the linear uncertainty distribution L(0, 1) is

1

k + 1
.

The moment estimate θ is then obtained by equating the first p sample moments to
the corresponding first p population moments, where p is the number of unknown
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Table 5 Observed data in Example 7

t xt t xt t xt t xt t xt

0.00 1.00 0.63 1.52 1.23 2.23 2.04 7.06 2.70 20.1

0.12 1.11 0.72 1.64 1.35 2.45 2.16 8.29 2.76 21.6

0.18 1.15 0.87 1.84 1.47 3.04 2.28 11.0 2.91 27.4

0.30 1.22 0.93 1.96 1.59 3.66 2.40 13.5 3.00 31.1

0.39 1.28 1.02 2.09 1.74 4.42 2.49 15.7 3.06 33.6

0.51 1.44 1.08 2.18 1.89 5.36 2.61 18.0 3.12 36.0

parameters. In other words, the moment estimate θ should solve the system of equa-
tions,

1

n − 1

n∑
i=2

εki (θ) = 1

k + 1
, k = 1, 2, . . . , p. (13)

The above method to estimate the unknown parameters in uncertain differential equa-
tions is called the method of moments based on residuals, and we can solve the system
of Eqs. (13) by using MATLAB1.

Remark 1 Sometimes the system of Eq. (13) has no solution. In this case, we suggest
the generalized moment estimation that solves the following minimization problem,

min
θ

p∑
k=1

(
1

n − 1

n∑
i=2

εki (θ) − 1

k + 1

)2

(14)

where ε2(θ), ε3(θ), . . . , εn(θ) are the residuals and p is the number of unknown
parameters. In particular, we can solve the minimization problem (14) by MATLAB2.

Example 7 Consider the uncertain differential equation

dXt = μXtdt + σ XtdCt

where μ and σ > 0 are two unknown parameters to be estimated. Suppose that we
have 30 observed data as shown in Table 5, and denote the observed data of Xt at the
times t1, t2, . . . , t30 by xt1 , xt2 , . . . , xt30 , respectively. For any given parameters μ and
σ , we can obtain the 29 residuals

εi (μ, σ ) =
(
1 + exp

(
π(xti−1 + μ(ti − ti−1) − xti )√

3σ(ti − ti−1)

))−1

, i = 2, 3, . . . , 30

1 MATLAB R2021a, 9.10.0.1602886, maci64, Optimization Toolbox, “fsolve” function.
2 MATLAB R2021a, 9.10.0.1602886, maci64, Optimization Toolbox, “fminsearch” function.
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Table 6 Observed data in
Example 8

t xt t xt t xt t xt

0.00 1.00 3.21 16.51 5.65 46.03 7.94 97.9

1.12 4.10 3.93 21.05 6.34 58.7 8.79 116.49

1.97 8.36 4.86 34.94 7.47 86.6 9.83 147.71

according to Example 2. Since the number of unknown parameters is 2 and the first
twomoments of the linear uncertainty distributionL(0, 1) are 1/2 and 1/3, the system
of Eq. (13) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

29

30∑
i=2

(
1 + exp

(
π(xti−1 + μ(ti − ti−1) − xti )√

3σ(ti − ti−1)

))−1

= 1

2

1

29

30∑
i=2

(
1 + exp

(
π(xti−1 + μ(ti − ti−1) − xti )√

3σ(ti − ti−1)

))−2

= 1

3
.

Solving the above system of equations by MATLAB, we can get

μ∗ = 1.1201, σ ∗ = 0.5417.

Thus we obtain an uncertain differential equation

dXt = 1.1201Xtdt + 0.5417XtdCt . (15)

Example 8 Consider the uncertain differential equation

dXt = μ
√
Xtdt + σ

√
XtdCt

where μ and σ > 0 are two unknown parameters to be estimated. Suppose that we
have 12 observed data as shown in Table 6. For any given parameters μ and σ , we can
produce 11 residuals

ε2(μ, σ ), ε3(μ, σ ), . . . , ε12(μ, σ )

by Algorithm 1. Since the number of unknown parameters is 2 and the first two
moments of the linear uncertainty distribution L(0, 1) are 1/2 and 1/3, the system of
Eq. (13) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

11

12∑
i=2

εi (μ, σ ) = 1

2

1

11

12∑
i=2

ε2i (μ, σ ) = 1

3
.
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Table 7 Observed data in Example 9

t xt t xt t xt t xt t xt

0.00 1.00 0.79 2.12 2.33 2.70 4.54 2.98 6.70 1.35

0.11 1.06 0.98 1.97 2.55 2.99 4.76 2.39 6.86 1.33

0.24 1.31 1.20 1.75 2.97 5.60 4.98 2.06 6.91 1.33

0.29 1.42 1.50 2.37 3.39 4.03 5.40 1.94 7.10 1.15

0.44 1.79 1.80 3.07 3.74 2.23 5.89 1.60 7.36 0.88

0.62 2.10 2.08 3.03 4.19 2.78 6.41 1.08 7.62 0.79

Solving the above system of equations by MATLAB, we can get

μ∗ = 2.2759, σ ∗ = 0.5166.

Thus we obtain an uncertain differential equation

dXt = 2.2759
√
Xtdt + 0.5166

√
XtdCt . (16)

Example 9 Consider the uncertain differential equation

dXt = sin(μt)Xtdt + cos(σ t)XtdCt

where μ and σ > 0 are two unknown parameters to be estimated. Suppose that we
have 30 observed data as shown in Table 7. For any given parameters μ and σ , we can
produce 29 residuals

ε2(μ, σ ), ε3(μ, σ ), . . . , ε30(μ, σ )

by Algorithm 1. Since the number of unknown parameters is 2 and the first two
moments of the linear uncertainty distribution L(0, 1) are 1/2 and 1/3, the system of
Eq. (13) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

29

30∑
i=2

εi (μ, σ ) = 1

2

1

29

30∑
i=2

ε2i (μ, σ ) = 1

3
.

Solving the above system of equations by MATLAB, we can get

μ∗ = 4.9662, σ ∗ = 1.0786.
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Table 8 Plasma cimetidine concentration-time data during the constant-rate intravenous infusion in a beagle
dog ( Yu and Cao (2017))

Time (hr) Cimetidine (μg/ml) Time (hr) Cimetidine (μg/ml)

0.17 1.38 4.0 4.41

0.5 1.88 5.0 4.27

1.0 2.31 6.0 4.42

1.5 2.83 7.0 4.41

2.0 2.96 7.5 4.34

3.0 3.73 8.0 4.06

Thus we obtain an uncertain differential equation

dXt = sin(4.9662t)Xtdt + cos(1.0786t)XtdCt . (17)

Example 10 Pharmacokinetics is the study of the dynamic movement of drug concen-
trations in the blood of a body. Consider plasma cimetidine concentration in beagle
blood during and subsequent to a constant-rate intravenous infusion. Yu and Cao
(2017) has provided a collection of data as shown in Table 8. For this experiment of
plasma cimetidine concentration, Liu and Yang (2021) derived that the blood plasma
cimetidine concentration Xt follows the uncertain pharmacokinetic equation

dXt = (k0 − k1Xt ) dt + σdCt

where k0, k1 and σ are unknown parameters to be estimated. Based on the observed
data, the uncertain pharmacokinetic equation was inferred as

dXt = (5.581 − 1.473Xt ) dt + 1.304dCt (18)

by using the method of moments based on difference scheme.
Let us re-estimate the parameters by using the method of moments based on resid-

uals. Denote the observed data of Xt at the times t1, t2, . . . , t12 by xt1 , xt2 , . . . , xt12 ,
respectively. For any fixed parameters k0, k1, σ and each index i with 2 ≤ i ≤ 12, we
solve the updated uncertain pharmacokinetic equation

{
dXt = (k0 − k1Xt ) dt + σdCt

Xti−1 = xti−1

and obtain the i th residual as follows,

εi (k0, k1, σ ) =
(
1 + exp

(
π

(
(k1xti−1 − k0) exp (k1(ti−1 − ti )) + k0 − k1xti

)
√
3σ (1 − exp (k1(ti−1 − ti )))

))−1

.
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Table 9 N2O5 concentration data of the decomposition reaction 2N2O5 −→ 4NO2 + O2 ( Henold and
Walmsley (1984))

time (sec) N2O5 (mol/L) time (sec) N2O5 (mol/L) time (sec) N2O5 (mol/L)

0 0.31 2400 0.151 4800 0.0669

600 0.254 3000 0.116 6000 0.0464

1200 0.208 3600 0.0964

1800 0.172 4200 0.0812

Since the number of unknown parameters is 3 and the first three moments of the linear
uncertainty distributionL(0, 1) are 1/2, 1/3 and 1/4, the system of Eq. (13) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

11

12∑
i=2

εi (k0, k1, σ ) = 1

2

1

11

12∑
i=2

ε2i (k0, k1, σ ) = 1

3

1

11

12∑
i=2

ε3i (k0, k1, σ ) = 1

4
.

Solving the above system of equations by MATLAB, we can get

k∗
0 = 1.7429, k∗

1 = 0.3820, σ ∗ = 0.4026.

Thus we obtain an uncertain pharmacokinetic equation

dXt = (1.7429 − 0.3820Xt ) dt + 0.4026dCt . (19)

Example 11 Chemical reaction rate is an important research object in chemical kinetics
and is a measure of how fast a chemical reaction goes. Consider the decomposition
reaction of N2O5 in gas phase. Henold andWalmsley (1984) has provided a collection
of experimental data for the concentration of N2O5 as shown in Table 9. For this
decomposition reaction, Tang and Yang (2021) derived that the N2O5 concentration
Xt obeys the following uncertain chemical reaction equation

dXt = −2μX2
t dt − 2σ X2

t dCt

according to the law of mass action, where μ and σ are unknown parameters to be
estimated. Based on the observed data, the uncertain chemical reaction equation was
obtained as

dXt = −0.0022X2
t dt − 0.0010X2

t dCt (20)

by using the method of moments based on difference scheme.
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Let us employ the method of moments based on residuals to re-estimate the param-
eters. Denote the observed data of Xt at the times t1, t2, . . . , t10 by xt1 , xt2 , . . . , xt10 ,
respectively. For any fixed parameters μ, σ and each index i with 2 ≤ i ≤ 10, we
solve the updated uncertain chemical reaction equation

{
dXt = −2μX2

t dt − 2σ X2
t dCt

Xti−1 = xti−1

and obtain the i th residual as follows,

εi (μ, σ ) =
(
1 + exp

(
π√
3σ

(
xti−1 − xti

2(ti − ti−1)xti−1xti
− μ

)))−1

.

Since the number of unknown parameters is 2 and the first two moments of the linear
uncertainty distribution L(0, 1) are 1/2 and 1/3, the system of Eq. (13) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

9

10∑
i=2

εi (μ, σ ) = 1

2

1

9

10∑
i=2

ε2i (μ, σ ) = 1

3
.

Solving the above system of equations by MATLAB, we can get

μ∗ = 0.001345, σ ∗ = 0.000835.

Thus we obtain an uncertain chemical reaction equation

dXt = −0.00269X2
t dt − 0.00167X2

t dCt . (21)

Example 12 RC circuit is a circuit system composed of resistor and capacitor, and
is driven by a voltage source. Consider the simple series RC circuit with a constant
potential source (5V). Liu (2021) provided a collection of data for the charge stored
on the capacitor as shown in Table 10. For this simple series RC circuit, the charge Qt

stored on the capacitor was derived to follow the uncertain circuit equation

dQt =
(
5

r
− Qt

rc

)
dt + σ

r
dCt

based on the fundamental laws of electrical circuits, where r , c and σ are unknown
parameters to be estimated. Based on the observed data, the uncertain circuit equation
was inferred as

dQt = (0.4614 − 0.0921Qt ) dt + 0.0133dCt (22)

by using the method of moments based on difference scheme.
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Table 10 Charge data stored on the capacitor of series RC circuit ( Liu (2021))

t (s) q (C) t (s) q (C) t (s) q (C) t (s) q (C) t (s) q (C)

0.0025 0.0012 10 3.1355 20 4.3336 34 4.8718 49 4.9663

0.0645 0.0312 13 3.6039 23 4.4971 37 4.9118 50 4.9628

1 0.4624 14 3.7312 26 4.6524 39 4.9495 52 4.9545

4 1.6371 16 3.9386 27 4.6979 42 4.9563 55 4.9785

7 2.5215 18 4.1433 30 4.7587 44 4.9700 56 4.9998

8 2.7731 19 4.2453 31 4.7735 47 4.9857 58 5.0008

Let us re-estimate the parameters by using the method of moments based on resid-
uals. Denote the observed data of Qt at the times t1, t2, . . . , t30 by qt1 , qt2 , . . . , qt30 ,
respectively. For any fixed parameters r , c, σ and each index i with 2 ≤ i ≤ 30, we
solve the updated uncertain circuit equation

⎧⎨
⎩dQt =

(
5

r
− Qt

rc

)
dt + σ

r
dCt

Qti−1 = qti−1

and obtain the i th residual as follows,

εi (r , c, σ ) =

⎛
⎜⎜⎝1 + exp

⎛
⎜⎜⎝

π

(
(qti−1 − 5c) exp

(
ti−1 − ti

rc

)
+ 5c − qti

)
√
3σc

(
1 − exp

(
ti−1 − ti

rc

))
⎞
⎟⎟⎠

⎞
⎟⎟⎠

−1

.

Since the number of unknown parameters is 3 and the first three moments of the linear
uncertainty distributionL(0, 1) are 1/2, 1/3 and 1/4, the system of Eq. (13) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

29

30∑
i=2

εi (r , c, σ ) = 1

2

1

29

30∑
i=2

ε2i (r , c, σ ) = 1

3

1

29

30∑
i=2

ε3i (r , c, σ ) = 1

4
.

Solving the above system of equations by MATLAB, we can get

r∗ = 9.7957, c∗ = 0.9976, σ ∗ = 0.1400.

Thus we obtain an uncertain circuit equation

dQt = (0.5104 − 0.1023Qt ) dt + 0.0143dCt . (23)
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Fig. 3 Alibaba stock prices (weekly average) from January 1, 2019 to June 30, 2020

5 Alibaba stock price

Asa famous internet company,Alibaba is closely related to our daily life. The following
data

136.03 148.96 153.60 154.81 163.82 168.87 168.02 172.37 183.66 181.75

180.61 180.60 178.81 181.47 186.75 185.84 186.66 189.48 181.26 173.52

158.78 151.91 152.29 160.19 165.34 168.65 174.62 167.96 173.66 177.36

170.18 158.32 165.39 173.44 169.48 175.59 177.25 179.81 173.23 167.59

166.89 173.91 172.04 177.25 183.93 184.89 184.77 196.49 198.28 202.65

209.51 215.24 215.45 219.58 226.68 219.38 208.58 218.73 219.46 218.32

206.71 209.29 196.41 181.17 186.91 189.86 196.70 206.91 207.81 201.74

195.80 202.03 212.23 202.45 215.42 219.26 221.62 222.85

show Alibaba stock prices (weekly average) in US$ from January 1, 2019 to June 30,
2020 reported by Nasdaq. See Fig. 3.

Let i = 1, 2, . . . , 78 represent the weeks from January 1, 2019 to June 30, 2020,
and denote the stock prices by

x1, x2, . . . , x78. (24)

In order to fit them, we employ the uncertain differential equation

dXt = (m − aXt ) dt + σdCt

where m, a and σ are unknown parameters to be estimated. For any fixed parameters
m, a, σ and each index i with 2 ≤ i ≤ 78, we solve the updated uncertain differential
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equation

{
dXt = (m − aXt ) dt + σdCt

Xi−1 = xi−1

and obtain the i th residual as follows,

εi (m, a, σ ) =
(
1 + exp

(
π ((axi−1 − m) exp (−a) + m − axi )√

3σ (1 − exp (−a))

))−1

.

Since the number of unknown parameters is 3 and the first three moments of the linear
uncertainty distributionL(0, 1) are 1/2, 1/3 and 1/4, the system of Eq. (13) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

77

78∑
i=2

εi (m, a, σ ) = 1

2

1

77

78∑
i=2

ε2i (m, a, σ ) = 1

3

1

77

78∑
i=2

ε3i (m, a, σ ) = 1

4
.

Solving the above system of equations by MATLAB, we can get

m∗ = 45.9292, a∗ = 0.2404, σ ∗ = 8.6308.

Thus we obtain an uncertain differential equation

dXt = (45.9292 − 0.2404Xt ) dt + 8.6308dCt (25)

where Xt is Alibaba stock price.

6 Conclusion

In order to make a connection between uncertain differential equation and observed
data of some uncertain process, this paper first introduced the concept of residual, and
designed an algorithm to calculate residuals of uncertain differential equation corre-
sponding to observed data. Following that, a method of moments based on residuals
was presented to estimate the unknown parameters in uncertain differential equations.
Finally, some examples (including Alibaba stock price) were provided to illustrate the
method of moments.
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