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Abstract
Destruction of the roads and disruption in transportation networks are the aftermath
of natural disasters, particularly if they are of great magnitude. As a version of the
network capacity reliability problem, this work researches a post-disaster transporta-
tion network, where the reliability and operational capacity of links are uncertain.
Uncertainty theory is utilized to develop a model of and solve the uncertain maximum
capacity path (UMCP) problem to ensure that themaximum amount of relief materials
and rescue vehicles arrive at areas impacted by the disaster. We originally present two
new problems of α-maximum capacity path (α-MCP), which aims to determine paths
of highest capacity under a given confidence level α, and most maximum capacity
path (MMCP), where the objective is to maximize the confidence level under a given
threshold of capacity value. We utilize these auxiliary programming models to expli-
cate the method to, in an uncertain network, achieve the uncertainty distribution of the
MCP value. A novel approach is additionally suggested to confront, in the framework
of uncertainty programming, the stability analysis problem. We explicitly enunciate
the method of computing the links’ tolerances inO(m) time orO(|P∗|m) time (where
m indicates the number of links in the network and |P∗| the number of links on the
given MCP P∗). After all, the practical performance of the method and optimization
model is illustrated by adopting two network samples from a real case study to show
how our approach works in realistic contexts.
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1 Introduction

Modern societies are crucially dependent on infrastructure systems, such as electric-
ity, telecommunication, and transportation. Such systems have a networked nature;
therefore, natural, internal, or deliberate impairment of one component will cause
other components to fail. Studying system-level reliability against disruption will be
required. As an aftermath of natural disasters, particularly massive ones like floods
and earthquakes, demolished roads may cause serious calamitous events if they lead
to an uncertain transportation network. Consequently, the primary issue to address
by disaster responders is the problem of system reliability, so that reliable paths may
ensure the transmitting relief materials. Therefore, identifying the maximum capacity
paths (MCPs) in the network is needed to ensure that the maximum amount of relief
materials and the maximum number of rescue vehicles arrive at areas impacted by the
disaster.

Transportation networks may be blocked by collapsed buildings, fault rupture, and
falling bridges after catastrophes. Consequently, transportation system capacity may
decline and the network performance becomes uncertain, complicating dispatch of
rescue vehicles and relief materials to impacted areas (Xing and Zhou 2011). Hence,
compared with the deterministic transportation networks, an uncertain network is a
more realistic depiction of an actual post-disaster transportation network. A consid-
erable degree of uncertainty that may be attributed to factors such as capacity and
reliability is disposed on transportation networks especially after disasters. Reliabil-
ity and functional capacity of post-disaster networks are therefore essential factors to
examine since they act as lifelines that make impacted areas reachable and support
evacuation, emergency response, and long-term post-disaster recovery activities (Zhu
et al. 2018). In the absence of precise information on the links’ functionality and
subsequent inability to use random variables to characterize the indeterminacy, it is
impossible to estimate the relevant probability distribution. Adverse and unforeseeable
system performance, demonstrated in a high degree of variability in system parameters
will be the outcomes thereof. Additionally, computationally intractable problems arise
due to probabilistic programming approaches that inflict long computational time and
more expense to decision-makers. Lack of information and avoiding computational
intractability may usually cause inaccurate variables, derived from experts’ empirical
data, to emerge in the form of ’belief degrees’ stated by some domain experts. Nev-
ertheless, since unlikely events are frequent and the variance of belief degree may be
greater than real frequency, dealing with belief degree by probability theory or fuzzy
theory may result in counterintuitive results. Uncertainty theory is propounded to deal
with these uncertain variables and its efficacy has been proved.

The contribution of this paper is twofold. First, it presents a model based on
uncertainty theory for the analysis of a version of the capacity reliability problem
in an uncertain post-disaster transportation network with ‘unknown’ or ‘not accurate
enough’ capacity factors. In the literature, according to the author’s knowledge, there
is no example of the MCP problem and its stability analysis in the framework of
uncertainty theory, and this type of uncertainty is new to the context of transportation
networks that it neither relies on any probability distribution nor fuzzy membership
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function. The second contribution of this survey is to advance research in stability anal-
ysis, also called sensitivity analysis, of transportation networks (Ahuja et al. 1993). If
a post-disaster impaired network is considered, network uncertainty and/or stability
are the significant problems that have to be assessed in the network. Nevertheless, just
a few studies have been conducted on the reliability and stability of networks under
extreme conditions and associated problems. At the time of a disaster, network per-
formance in terms of reliability and accessible capacity becomes an uncertain issue
because of the uncertainty of the street service situation and the varying travel needs.
Therefore, the primary problem to attend to in disaster management is system reli-
ability for dispatching relief materials to the affected areas. Since the transportation
network after a disaster becomes an uncertain network, it should come as no surprise
that the disaster managers wish to find out the stability of MCPs in the system. In
response to such a need, this study examines the network capacity reliability and
aims at assessing the transportation network capacity reliability under extreme events
and catastrophes. We will let links’ capacities be uncertain variables and present the
stability analysis in transportation networks in the framework of uncertainty theory.
Accordingly, some new programming frameworks, called α-maximum capacity path
(α-MCP) and most maximum capacity path (MMCP) are proposed. Both α-MCP and
MMCP are intended, though with different decision standards, to situate paths that
constitute the safe possible routes for transportation accommodating maximum traffic
at a requisite service level. Besides, an approach to get the uncertainty distribution
of the uncertain MCP and an algorithm to assess the influence of changes in links’
reliabilities on MCPs (yielding the concept of tolerances) are provided.

The study will continue with further sections. A review of literature on reliability
problems in transportation networks is presented in Sect. 2, and it is followed by
a selective review on different aspects of network reliability problems in different
premises and various measures and goes on to describe the research gaps and the
contributions of this study. Section 3 develops the necessary definitions, concepts, and
preliminary components on uncertainty theory for Sect. 4 to deal with the problem
of the uncertain maximum capacity path (UMCP), the proposed models, and the
programming models of α-MCP and MMCP. Acquiring the uncertainty distribution
of theUMCP in uncertain transportation networks is also explicated in this section. The
UMCP stability analysis in transportation networks under uncertainty is articulated
and formulated in Sect. 5, which comprises mainly the implementation of α-MCPs to
compute the upper and lower tolerances in uncertain networks. The functionality of
the method is validated in Sect. 6 by adopting two samples from a case study to show
how our approach works in realistic settings. The conclusion, a summary, and some
suggestions for future research are provided in Sect. 7.

2 Related works on network reliability

Different real-life sectors, including transportation, traffic cybernetics, disaster man-
agement, communication, and production–distribution systems will benefit from
utilizing path finding and reliability problems (Xing and Zhou 2011; Hosseini and
Wadbro 2016). Reliability in traffic cybernetics and communication networks is a
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decisive measure of the quality of service for transportation, avoiding traffic conges-
tion, and has a large effect on route selection. Over the last two decades, therefore, the
OR literature has shown substantial interest in network reliability in communication
and transportation networks (Zhu et al. 2018). The literature abounds in analytical
and modeling approaches to help assess the reliability of road networks with varying
metrics. Subsequently, several different aspects of network reliability are reviewed:
travel time reliability, connectivity reliability, and capacity reliability.

The issue involved in travel time reliability is the probability of a successful trip
between a specific source-sink pairwithin a specified period. The network performance
under normal daily flow variation can be usefully assessed by this measure (Xing and
Zhou 2011). Analysis and quantification of travel time variability have been empha-
sized by researchers to be complicated because it being a function with many factors
including congestion, flow, incidents, facility characteristics, and free-flow travel time.
Especially, an interrelation between mean and standard deviation, in particular, has
been observed.A relaxation-based solution procedure for integer programming formu-
lation was suggested by Seshadri and Srinivasan (2012) using a similar formulation.
The formulation is appropriate for correlation structures with cycle covariance prop-
erty. As suggested by Seshadri and Srinivasan (2012), if Cholesky coefficients of the
link covariance matrix are positive, a non-dominance-based method and a heuristic
for the mean–variance trade-off problem can be implemented. Two methods to esti-
mate minimum robust cost path with and without link correlations were presented by
Xing and Zhou (2011) which incorporate a Lagrangian relaxation approach. The path
which, in a specific threshold, optimizes the probability of arrival was specified by
Frank (1969) to be the most efficient. The shortest paths are decided through paired
difference tests even though a well-defined method has been provided for the calcula-
tion of the travel time of their distribution. Another routing procedure under adjustable
conditions was suggested byXiao and Lo (2013) in which the last utility wasmeasured
through prospect theory integrating both scheduled travel time and on-time arrival.

Connectivity reliability is the second important concept of reliability that has been
adequately investigated in networks. This concept involves the probability of nodes
staying connected and indicates the chance of the presence of a minimum of one
path having usable capacity between a definite source-sink pair. Connectivity of the
links is the main factor determining the connectivity reliability of a network and most
researchers have therefore aimed, by different methods, at estimating network reli-
ability based on component reliability. These methods include statistical methods,
simulation, and complex network theory (Hosseini and Wadbro 2016). Zhu et al.
(2018) quantified the quality of connections by a dynamic weighted model based on
NetScan regarding flight capacity and time. Estimation of transit connectivity at differ-
ent levels was suggested through a graph-theoretic method designed by Mishra et al.
(2015). Later, Zhu et al. (2018) bettered a connectivity index and presented it con-
cerning the interaction between transportation networks and the urban environment.
Detection of essential nodes has later been done through this index. An integrated port
connectivity index was created by Wang et al. (2016) which comprised three layers
of the international, inner bay, and hinterland connectivity in addition to providing a
detailed overview of port connectivity. Aydin et al. (2018), using the size of a giant
connected component, suggested the connectivity of networks whose metrics are used
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to identify post-disaster networks or assessed with simulations for varying situations.
Three operational measures of the total length of the network, distance-based acces-
sibility, and areal distance-based accessibility were suggested by Chang and Nojima
(2001) for roads after an earthquake.

Even though the current reliability measures for evaluating different parameters of
the performance of transportation networks are practical, none of the above measures
assesses the capacity of the network to hold demand/traffic. As of now, the few studies
conducted on the reliability of road networks cannot satisfy an extensive network
performance measure since they are mostly focused on connectivity and travel time
reliability. Consequently, Chen et al. (1999) presented the new index of capacity
reliability which is the probability of a network having the capacity to allow a specific
traffic demand at a particular service level, and later on proceeded to expand the
capacity reliability analysis. To examine the operation of a degradable road network,
they provided an extensive methodology by conjoining reliability and uncertainty
analysis, network equilibriummodels, and sensitivity analysis of equilibrium network
flow together with Monte Carlo methods. Kuang et al. (2013) developed a two-level
programming model based on travel time reliability, with regard to source-sink traffic
demand multiplier, for investigating the interaction between two kinds of reliability
and assessing the capacity reliability. Qin et al. (2018) developed an optimization
framework for emergency resource layout regarding the extent of emergency resources,
reserve capacity, and the number of locations. The objective function of this framework
is to reduce the system expenses to theminimum.A recent study by Zhang et al. (2019)
has introduced the concepts of emergency reliability and reserve capacity and designed
a two-level programming model as a solution for transportation network reliability in
an exigency. Such concepts of capacity reliabilities have had a wide application in
transport planning and network operations to include the uncertainties in transport
networks, including air transportation, public transit, and logistic networks.

2.1 Study objectives

The stochastic nature of the network is gainingpopularity for reliability andpathfinding
problems. However, the researchers still employ probability or fuzzy theories for travel
time reliability or connectivity reliability (with different assumptions) (Xing and Zhou
2011). A practical indeterminacy, however, about the parameters (e.g., link capacities)
of transportation networks is present which, in the absence of any samples, random
variables are unable to describe. In case of disaster (e.g., earthquakes), it would not be
possible to get probability distributions of links’ capacities if transportation networks
are dramatically affected. It would be unreasonable to continue to use probability
theory to handle such indeterminacy. Yet, specialists have the experience to assess the
belief degree that the values of links’ capacities are less than or equal to a specific
value. Liu in 2007 introduced the uncertainty theory as a new branch of mathematics
to deal with this kind of human uncertainty. New programming models are required to
find paths of more reliability and functional capacity to improve the performance of
rescue work. This becomes even more important after a disaster when information is
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not sufficient for estimating the probability distributions and using random variables
to specify the indeterminacy in detail.

In summary, it can be concluded that the current literature does not contain enough
analytical and modeling attitudes to the synchronous study of the capacity and the sta-
bility of paths (affected by disasters) in the framework of uncertainty programming.
This paper, therefore, aims to disclose the previously undescribed characteristics;
i.e. the capacity reliability and stability in an uncertain environment. An uncertain
transportation network is discussed in which roads (shown as links) and intersections
(shown as by nodes) are disrupted, leading to uncertain variables for the capacity of
links in the network. The aim here is to find the most commodious paths to the spec-
ified destination to guarantee the arrival of maximum rescue vehicles and materials.
To achieve this goal, the uncertain maximum capacity path (UMCP) programming
model, which accommodates reliability and capacity requirements, is presented and
explicated to ensure that the maximum relief materials reach the afflicted areas. The
uncertain variable that represents each link is not fuzzy or stochastic, andMCP cannot
be found in the normal sense because of the uncertainty. MCP’s objective functions
and constraint functions are monotonic regarding the uncertain capacity parameters.
The MCP uncertain programming model was consequently converted to some new
mathematical programming models. The second goal of this study is to assess the
influence of changes in various links’ reliabilities on MCPs, yielding the concept of
tolerance. In addition, our goal is to ascertain the effect of each corresponding link’s
capacity on the MCPs in the system. In an associated deterministic network, the pres-
ence of an equivalence relation between the tolerances in an uncertain network and
the tolerances of an α-MCP programming model is shown. This relation, using the
operational law of uncertainty theory, will help to calculate the links’ tolerances. As a
result, this paper also marginally contributes to the thriving body of knowledge about
uncertainty programming.

3 Preliminaries of uncertainty theory and concepts

There usually exists insufficient data on an unknown state of nature because of main-
tenance, technical complications, or economic problems and it has been discussed that
the imprecise data behave in neither a fuzzy nor a random pattern (Liu 2010, 2013,
2021; Qing and Yuhong 2012; Hosseini 2015). Domain experts and their evaluation
of belief degree for events’ occurrence are required in such cases. However, dealing
with belief degree by probability theory or fuzzy theory may result in counterintuitive
outcomes, since unlikely events are often and thus the variance of belief degree may be
much larger than real frequency. This situation calls for inventing a new mathematical
tool that is the uncertainty theory. Liu provided the axiomatic system of uncertainty
theory unrelated to probability or fuzzy theories, for a better description of human
decisions in the state of uncertainty (Liu 2021). The uncertainty theory challenges the
dominance of standard probability approaches in decision theory and risk analysis,
and consequently, has undergone numerous expansive researches and has gathered
enormous attention. The efficiency of uncertainty theory has been observed in theory
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and practice as a tool to handle nondeterministic information, especially subjective
estimation (Liu 2010, 2013, 2021; Qing and Yuhong 2012; Hosseini 2015; Gao 2012).

The belief degree that each event will occur needs to be indicated by a set function.
M is an uncertain measure if it follows the under-mentioned axioms of uncertainty.
To rationally cope with belief degrees, let � be a non-empty set (universal set), and L
a σ -algebra over�. The pair (�,L) is called ameasurable space, the triplet (�,L,M)

is called an uncertainty space, and each element E ∈ L is a measurable set that is
referred to as an event. We will associate each element E ∈ L with a number M(E)

indicating the level that E will occur. That is M is a set function. There is no doubt
that the assignment is not arbitrary, and the uncertain measure M must have certain
mathematical properties. If M satisfies the following axioms, then it is an uncertain
measure (Liu 2021).

• Normality: M{�} = 1 for the universal set �,
• Duality: M{E} + M{Ec} = 1 for any event E ∈ L,
• Subadditivity: M{⋃∞

i=1 Ei
} ≤ ∑i=∞

i=1 M{Ei } for any sequence of events {Ei },
• Product measure: M{∏n

i=1 Ei
} = ∧i∈{1,...,n}Mi {Ei } for uncertainty spaces

(�i ,Li ,Mi ) and Ei ∈ Li .

It follows from Normality and Duality axioms that the empty set has an uncertain
measure of zero. Therefore, for any event E ∈ L, we have 0 ≤ M{E} ≤ 1. The
uncertain measure is to be described as the personal belief degree, not the frequency,
of an uncertain event, which can occur. Hence, it is commonly based on personal
knowledge about the event. The uncertain measure can vary if the state of knowledge
varies. The frequency of an event (which is the building block of probability theory)
is, on the contrary, a factual attribute that is not dependent on knowledge about the
event. To put it simply, the frequency, irrespective of being observed or not, is present
throughout and is comparatively invariant (Liu 2010, 2021).

Definition 1 (Liu 2021) The uncertain variable ξ is defined as a measurable function
from (�,L,M) to the set of real numbers such that {ξ ∈ B} = { γ ∈ �|ξ(γ ) ∈ B}
is an event for any Borel set B of real numbers. The uncertain variable ξ is referred as
to nonnegative ifM{ξ < 0} = 0, and positive ifM{ξ ≤ 0} = 0.

Definition 2 (Liu 2010) The uncertain variables ξ1, ξ2, ..., ξm are said to be indepen-
dent if

M
{

m⋂

i=1

{ξi ∈ Bi }
}

= ∧
i∈{1,...,m}M{ξi ∈ Bi },

for any family of Borel sets B1, B2, ..., Bm of real numbers.

Definition 3 (Liu 2021) The uncertainty distribution of an uncertain variable ξ is
defined by a function �(x) = M{ξ ≤ x} for any real number x .

Definition 4 (Liu 2021) A distribution � can be named regular if it is a continuous
and strictly increasing function to x at all x satisfying 0 < �(x) < 1. Namely,
�(x1, x2, . . . , xm) ≥ �(y1, y2, . . . , ym) whenever xi ≥ yi for i = 1, 2, . . . , m, and
�(x1, x2, . . . , xm) > �(y1, y2, . . . , ym) whenever xi > yi for i = 1, 2, ..., m.
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Considering any variable ξ with regular uncertainty distribution �(x), there exists
a well-defined continuous and strictly increasing inverse uncertainty distribution
�−1(α) over the open interval (0, 1) for which M{ξ ≤ �−1(α)} = α (Liu 2021).

Theorem1 (Liu 2021)A function � : R �→ [0, 1] stands as an uncertainty distribution
if and only if it is a monotone increasing function except for �(x) ≡ 0 and �(x) ≡ 1.
Moreover, a function � : (0, 1) �→ R is an inverse uncertainty distribution if and only
if it is a continuous and strictly increasing function.

Theorem 2 (Liu 2010) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with
regular uncertainty distributions φ1, φ2, . . . , φn. If the function ξ = f (ξ1, ξ2, . . . , ξn)

is strictly increasing to ξ1, ξ2, . . . , ξm and strictly decreasing to ξm+1, ξm+2, . . . , ξn,
then

(a) ξ is also an uncertain variable with inverse uncertainty distribution

ψ−1(α) = f
(
φ−1
1 (α), . . . , φ−1

m (α), φ−1
m+1(1 − α), . . . , φ−1

n (1 − α)
)
.

(b) The chance constraint M{ f (x, ξ1, ξ2, . . . , ξn) ≤ 0} ≥ α holds if and only if

f
(

x, φ−1
1 (α), . . . , φ−1

m (α), φ−1
m+1(1 − α), . . . , φ−1

n (1 − α)
)

≤ 0.

Remark 1 (Liu 2021) A real number c can be considered as a constant function ξ(γ) ≡
c that is independent of any uncertain variable on the uncertainty space (�,L,M).
Moreover, for practical purposes, we can consider all uncertainty distributions as
regular. Otherwise, a small perturbation can be given to get a regular distribution.

4 Uncertain maximum capacity path (UMCP)

Themaximum capacity path (MCP) problem is the earliest combinatorial optimization
problem whose primary objective is to detect the maximum attainable flow that a
transportation network can carry. This problem is the core of determining the capacity
reliability of a network or system and provides prominent information for efficient
control of flow, capacity expansion, and other relevant works to improve the reliability
of a network. It also has the potential of devising tools for designing transportation
networks that are resistant to traffic disasters.

Let N = (V , A) be a transportation network with V and A denoting the set of
nodes and links. n = |V | and m = |A| are defined to be the number of nodes and
links, respectively. In the whole of the paper, we let s ∈ V and t ∈ V denote the source
node and the sink node, respectively. A path P from v1 to vk is defined by a sequence
of nodes v1, v2, . . . , vk−1, vk with the property that every consecutive pair of nodes
vi and vi+1 is connected by a link. We let P = {Pk} show the set of all s–t-paths in
N ; that is, P contains whole paths from s to t in N .
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4.1 Deterministic settings

We consider that each link (i, j) ∈ A possesses a capacity parameter ci j ∈ (0,∞] in
the deterministic setting. The capacity calculates the maximum value of flow, which
may be transmitted via the link. The MCP problem is to find a path connecting the
source and sink nodes in the network, such that the minimum link capacity on this path
is maximized. More precisely, we wish to find a path P that has the highest capacity,
and thus we attempt to maximize the objective function cP = min(i, j)∈P ci j over the
set of whole paths from s to t in N , where cp denotes the capacity of path P . Therefore,
the MCP problem in the deterministic setting is of the following form.

max

{
cP |P ∈ PandcP = min

(i, j)∈P
ci j

}
. (1)

4.2 Uncertain settings

We investigate the casewherewe are given an uncertainmeasureM. Besides, each link
is associated with an uncertain capacity variable. Formally, for any link (i, j) ∈ A
there is an uncertain capacity variable ξi j . A path P in an uncertain network with
uncertain capacity variables {ξi j |(i, j) ∈ A} can be represented as an uncertain family
by ξP = {ξi j |(i, j) ∈ P}. The uncertain capacity variable associated with path P is
then represented by

f (ξP ) = min
(i, j)∈P

ξi j = min
(i, j)∈A

{
ξi j xi j + M

(
1 − xi j

)}
(2)

where xi j = 1 if the link (i, j) belongs to path P and zero otherwise, and M is a
constant such that M > max(i, j)∈A

{
ξi j

}
. The capacity of each path is in the form of

Eq. (2) which is a monotonically increasing, measurable function from the uncertainty
space to the set of real numbers. Therefore, f (ξP ) is additionally an uncertain variable.
Moreover, it has an inverse uncertainty distribution as Theorem 2. In other words,
Expression (2) represents the objective function which shall be maximized in the
uncertain MCP problem (to find the paths with highest capacities); i.e.,

max

{
f (ξP )|P ∈ P and f (ξP ) = min

(i, j)∈P
ξi j

}
. (3)

The f (ξP ) value is uncertain; we should specify what we intend with “maximizing
objective function (2)”.

Lemma 1 (Existence of uncertainty distribution) N = (V , A) is an uncertain trans-
portation network that consists of independent uncertain variables {ξi j |(i, j) ∈ A}
along with its links having distributions {�i j |(i, j) ∈ A}. For the objective function
of the UMCP problem in (3), there is the uncertainty distribution 
. For any arbitrary
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s–t-path P as well as for any real number x, we have:


(x) = M{ f (ξP ) ≤ x} = sup
minyi j =x

min
(i, j)∈P

�i j
(
yi j

)
.

Proof The function f (ξP ) is a continuous and strictly increasing function of uncertain
capacity factors; thus, it follows from the Polyrectangular (Liu 2021) that

M{ f (ξP ) ≤ x} = M
{

min
(i, j)∈P

ξi j ≤ x

}

= M
{

∪
minyi j =x

∩
(i, j)∈P

(
ξi j ≤ yi j

)
}

= sup
minyi j =x

M
{

∩
(i, j)∈P

(
ξi j ≤ yi j

)}
(4)

As the uncertain variables ξi j are independent, it is concluded that:


(x) = sup
minyi j =x

min
(i, j)∈P

M{
ξi j ≤ yi j

} = sup
minyi j =x

min
(i, j)∈P

�i j
(
yi j

)
.

�

Corollary 1 If the uncertain capacity variables {ξi j |(i, j) ∈ A} are independent with
uncertainty distributions {�i j |(i, j) ∈ A}, then for any real number x and arbitrary
s–t-path P ∈ P , the uncertainty distribution function 
 may be calculated by 
(x) =
M{ f (ξP ) ≤ x} = max(i, j)∈P�i j (x).

4.3 Mathematical programmingmodels

Utilizing uncertainty programming, we introduce different approaches, as it is not
proper to use the classical deterministic approach while dealing with uncertain vari-
ables for attacking the uncertain MCP problem and create some novel equivalent
optimization exact solution techniques. In an uncertain world, we do have not a natu-
ral ordership distinct from the situation of real numbers. Therefore, a significant issue
rising in this area is how to rank uncertain variables. Uncertainty programming which
utilizes critical value criteria is commonly named chance-constrained programming.
In uncertain networks, we begin by presenting a definition of the α-maximum capacity
path.

Definition 5 [α-maximum capacity path (α-MCP)] We consider N = (V, A) as an
uncertain network, α ∈ (0, 1] stands as a given confidence level, and P indicates
any s–t-path. After that, the α-critical value associated with ξP can be presented as
follows:

ξα
P = sup{c|M{ f (ξP ) ≥ c} ≥ α}. (5)

123



Capacity reliability under uncertainty in transportation networks… 489

It shows that the uncertain variable ξP will reach upwards of theα-critical value ξα
P with

uncertain measure α. We name an uncertain s–t-path ξP∗ as an α-MCP if ξα
P∗ ≥ ξα

P
for any other s–t-path ξP . i.e.,

sup{c|M{ f (ξP∗) ≥ c} ≥ α} ≥ sup{c|M{ f (ξP ) ≥ c} ≥ α}.

It follows fromDefinition 5 that for any predestined confidence level α ∈ (0, 1], the
α-critical value is a decreasing and left-continuous function of α. Also, the following
holds for any positive number ε:

M
{
ξi j ≥ ξα

i j − ε
}

≥ αand M{
ξP ≥ ξα

P − ε
} ≥ α.

As a result, the α-MCP programming model for an uncertain MCP problem may
be formulated as a maximization problem over c (given a confidence level α ∈ (0, 1])
as

max
c∈R,P∈P

c,

subject to M
{

min
(i, j)∈P

ξi j ≥ c

}
≥ α.

(6)

In the following, we demonstrate that the α-MCP is the MCP of the uncertain
network under some confidence level α. Besides, we show that when the uncer-
tain capacity variables ξi j are independent and regular how to compute the inverse
uncertainty distribution 
−1 of the MCP value in an uncertain network; i.e., for any
α ∈ (0, 1), we calculate 
−1(α). We get the uncertainty distribution 
(x) by repeat-
ing this process in a numerical sense that can satisfy any predestined precision given
by the network planner.

Theorem3 [Existence of inverse uncertainty distribution] N = (V , A) is an uncertain
network with independent uncertain capacity variables {ξi j |(i, j) ∈ A} that have
regular distributions {�i j |(i, j) ∈ A}. After that, 
−1 exists for the uncertain MCP
problem’s objective function (in (3)). Besides, it is a continuous and strictly decreasing
function of the confidence level.

Proof In the optimization framework (3), the objective function of the MCP problem
is sequential and strictly rising. Accordingly, it has an inverse uncertainty distribution
(Theorem 2). If P∗ be a α-MCP and also 
−1 be the inverse uncertainty distribution
of the objective function for any given confidence level α ∈ (0, 1) considering x =

−1(1 − α), we have:


(x) = M{ f (ξP∗ ) ≤ x} = M{
f (ξP∗ ) ≤ 
−1(1 − α)

} = 

(

−1(1 − α)

) = 1 − α.

We conclude that they all have inverse uncertainty distributions �−1
i j because whole

ξi j are uncertain variables by regular uncertainty distributions (�i j ). It follows ξα
i j =

�−1
i j (1 − α) for any link (i, j) ∈ A and α ∈ (0, 1) of the definition of α-critical value.
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Hence, we create the following for any P ∈ P by selecting the Monotonicity Theorem
from uncertainty theory (Liu 2021),

M
{

min
(i, j)∈P

ξi j ≤ min
(i, j)∈P

ξα
i j

}
≥ M

{
∩

(i, j)∈P

{
ξi j ≤ ξα

i j

}}

= ∧
(i, j)∈P

M
{
ξi j ≤ ξα

i j

}
= 1 − α.

Besides, while f is strictly increasing and considering Axiom 2 and the independence
of uncertain variables ξi j , it can be concluded that

M
{

min
(i, j)∈P

ξi j ≤ min
(i, j)∈P

ξα
i j

}
≤ M

{
∪

(i, j)∈P

{
ξi j ≤ ξα

i j

}}

= 1 − M
{

∩
(i, j)∈P

{ξi j > ξα
i j }

}

= 1 − ∧
(i, j)∈P

M
{
ξi j > ξα

i j

}

= 1 − ∧
(i, j)∈P

{α} = 1 − α.

By combining the above-mentioned inequalities, we find that

M
{

min
(i, j)∈P

ξi j ≤ min
(i, j)∈P

ξα
i j

}
= 1 − α.

Eventually, by the definition of α-critical value, we conclude that min(i, j)∈Pξα
i j

is a strictly decreasing continuous function of the confidence level. It proves that
min(i, j)∈Pξα

i j is the inverse uncertainty distribution, taking into consideration the def-
inition of inverse uncertainty distribution as well as the α-critical value of f (ξP),
i.e.,

ξα
f = 
−1(1 − α) = min

(i, j)∈P
�−1

i j (1 − α) = min
(i, j)∈P

ξα
i j .

�
Theorem 4 The α-MCP programming model for a given α is equivalent to the follow-
ing model

max
P∈P

min
(i, j)∈P

ξα
i j ≡ max

P∈P
min

(i, j)∈P
�−1

i j (1 − α), (7)

where ξα
i j stands as the α-critical value of the uncertain variable ξi j and {�−1

i j |(i, j) ∈
A} shows the inverse uncertainty distributions of links.

Proof One can replace the constraint of M{ f (ξP ) ≥ c} ≥ α (in problem (6)) with
M{ f (ξP ) ≥ c} = α because of f (ξP ) = min(i, j)∈Pξi j has an inverse uncertainty dis-
tribution and whole ξi j are regular. Therefore, condition M{

min(i, j)∈Pξi j ≥ c
} ≥ α
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remains constant if and only ifmin(i, j)∈Pξα
i j ≥ c holds. Thereupon, the cmaximization

boils down to the maximization of min(i, j)∈Pξα
i j . �

For the capacity of the transmission path, the transport planner may predestinate a
benchmark c and wishes the capacity of the obtained path not to fall below the given
benchmark value. We suggest the concept of a most maximum capacity path (MMCP)
for modeling this sort of uncertain network capacity problem. In this concept, the
underlying philosophy is to select the path with a maximal chance to meet the pre-
given value; i.e., the aim is to maximize the confidence level under a certain threshold
of capacity.

Definition 6 [Most maximum capacity path (MMCP)] We consider N = (V,A) as
an uncertain network with independent uncertain capacity variables ξi j and ξP∗ =
{ξi j |(i, j) ∈ P∗} as an s–t path, and c as a benchmark value determined by the
planner. We introduce P∗ as the MMCP if

M
{

min
(i, j)∈P∗ ξi j ≥ c

}
≥ M

{
min

(i, j)∈P
ξi j ≥ c

}
, (8)

or, equivalently

M{ f (ξP∗) ≥ c} ≥ M{ f (ξP ) ≥ c}, (9)

for any s–t-path P ∈ P . In other words, given a predestined capacity level c, the
MMCP is the optimal path with a capacity of more than c with the largest confi-
dence level. The α-MCP and the MMCP are dual. Hence, the following outcomes are
obtained.

Theorem 5 We consider N = (V , A) as an uncertain transportation network along
with independent uncertain capacity variables {ξi j } that can associate with links
having distributions �i j . c is a given capacity threshold amount. If 
 shows the dis-
tribution function of the objective function of MCP and also the distributions

{
�i j

}

are regular, then the MMCP may be computed with solving an α-MCP problem by
taking into account setting α = 
(c).

Proof The MMCP problem may be formulated (such a maximization problem) over
P ∈ P , and α includedM{

min(i, j)∈Pξi j ≥ c
} ≥ α. All functions �i j are considered

regular; thus, choosing Theorems 3 and 4, the expression ofM{
min(i, j)∈Pξi j ≥ c

} ≥
α retains if and only if the condition min(i, j)∈Pξα

i j ≥ c retains. Consequently, the
MMCP problem can be seen as a maximization problem with α as objective function
and min(i, j)∈Pξα

i j ≥ c as a constraint. Let ξP∗ = {ξi j |(i, j) ∈ P∗} and assume that
α∗ = 
(c) stands as the α∗-MCP of N = (V , A). It is clear that for the MMCP
problem, P∗ is a practical solution by objective function value 
−1(α∗) = c and α∗.
It is demonstrated that α∗ is the proper value for theMMCP problem. For this purpose,
suppose any α > α∗. We can obtain ξα

i j < ξα∗
i j for any (i, j) ∈ A based on α-critical

is a reducing function. Hence, for any s–t-path P ∈ P , the following expression can

123



492 A. Hosseini, M. S. Pishvaee

Fig. 1 An uncertain transportation network (used for Example 1)

be obtained:

min
(i, j)∈P

ξα
i j ≤ max

P∈P
min

(i, j)∈P
ξα

i j < c. (10)

Equation (10) causes an inconsistency by the constraints in the problem of MMCP. It
follows that there does not exist a practical solution for the problem of MMCP for any
α > α∗, after that α∗ has to be optimal. �

Remark 2 We attend the following uncertainty distribution function if some link
(i, j) ∈ A occurs to have a capacity parameter ξi j ≡ ci j , rather than an uncertain
variable.

�i j (x) = 1I{x≥ci j} + 0I{x<ci j}. (11)

It is a regular and strictly increasing function to x (0 < �i j (x) < 1). Also, we state
the value ci j possesses an inverse uncertainty distribution �−1

i j (α) = ci j that is a
continuous and strictly increasing function of α ∈ (0, 1) even though it is not. Hence,
we obtain ξα

i j = ξi j = �−1
i j (α) = ci j for any level of α ∈ (0, 1).

Example 1 Consider the UMCP problem on network N presented in Fig. 1 with
independent uncertain capacity variables associated with links, where s = 1 and
t = 4.

Network N includes 3 distinct s–t-paths from s to t . The set of all distinct s–t-
paths in N is given by P = {P1 : 1 − 2 − 3 − 4; P2 : 1 − 3 − 4; P3 : 1 − 4}. We
remark that for a Zigzag uncertain variable ξ ∼ Z(a, b, c), the α-critical value can be
calculated by the following function.

ξα =
{

(2α − 1)a + 2(1 − α)b ifα ≥ 0.5,
2αb + (1 − 2α)c ifα < 0.5.

(12)

Considering the foregoing relation, Table 1 shows, for some amounts of α, the α-
critical values ξα

i j as well as the optimal value of the objective function in the α-MCP
problem.

We recall that the optimal values of the objective function come from the inverse
distribution of the uncertain MCP in N ; i.e. 
−1(α) = maxP∈Pmin(i,j)∈Pξα

ij. By using
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Table 1 The α-critical values of the uncertain variables associated with the network and the optimal value
of the objective function in the α-MCP problem for some typical values of confidence level α

α ξα
12 ξα

23 ξα
13 ξα

14 ξα
34 maxP∈P min

(i, j)∈P
ξα
i j

α-MCP

0.1 6.6 8.2 8.6 3.5 6.6 6.6 P1

0.3 6.6 6.6 5.8 3.5 5.8 5.8 P2

0.7 6.6 4.6 2.6 3.5 4.2 4.2 P1

0.9 6.6 4.2 2.2 3.5 3.4 3.5 P3

the data in Table 1 we conclude that


(6.6) = 0.1& 
−1(0.1) = 6.6 &0.1 − MCP is P1 : 1 − 2 − 3 − 4,

(5.8) = 0.3& 
−1(0.3) = 5.8 &0.3 − MCP is P2 : 1 − 3 − 4,

(4.2) = 0.7& 
−1(0.7) = 4.2 &0.7 − MCP is P1 : 1 − 2 − 3 − 4,

(3.5) = 0.9& 
−1(0.9) = 3.5 &0.9 − MCP is P3 : 1 − 4.

(13)

As demonstrated before, the uncertain MCP problem’s objective function (
), the
α-critical values ξα

i j and the inverse uncertainty distribution (

−1) are strictly decreas-

ing function of the confidence level α. We manage to obtain the inverse distribution
and the distribution of the UMCP by repeating the process (13) for distinct values of
α (Fig. 2).

Now, let’s assume that the decision-maker presented benchmark c = 4.2 in the
case of the transmission path capacity and wished for obtaining a path not violating
this determined value (’MMCP problem’). According to Theorem 5, it is clear that the
MMCP is identically the 
(4.2)-MCP. Thus, it can be concluded that the MMCP is
the 0.7-MCP that is the path P1 : 1− 2− 3− 4. As seen, P1, with capacity cP1 ≥ 4.2,
is the optimal path by the largest confidence level.

Fig. 2 The MCP inverse uncertainty distribution 
−1(α) v.s. the MCP uncertainty distribution 
(x)

123



494 A. Hosseini, M. S. Pishvaee

5 UMCP stability analysis

Here, we use the concept of α-MCP for calculating upper and lower tolerances
for an uncertain transportation network. It should be noted that the tolerances and
the MCPs can also vary with a variation in confidence level. Nevertheless, for the
tolerances, a formula is proposed that is a function of confidence level. In terms
of a general MCP problem with MCP P∗ and deterministic capacity parameters{
ci j |(i, j) ∈ A, ci j ∈ (0,+∞)

}
, the lower and upper tolerances may be observed as

a value to see how the MCP can be affected with increases and decreases of a link’s
capacity, respectively. Predicting the tolerances is known as a combinatorial optimiza-
tion problem. Thus, we deal with uncertain variables instead of certain parameters in
an uncertain network.

Here, we also present a method for coping with the problem ofMCP in an uncertain
network. The model solution showed in Theorem 5, for a given confidence level α, is
the α-MCP of an uncertain network. The variables of capacity are no more uncertain
variables in that setting; instead, they were changed with determined α-critical values.
For a predetermined confidence level α, any uncertain MCP problem on N may be
varied to an α-MCP problem on a network N (α). Hence, we require to select the
transformations for variables

{
ξi j |(i, j) ∈ A

}
, and after that, utilize an algorithm for

the MCP, such as modified Dijkstra’s algorithm (refer to Remark 3), for finding an
MCP on the converted network.

Definition 7 (λ-added network) We let N±λ
(i, j)(α) define the network N′ = (

V,A′) in
which the α-capacity factor of link (i, j)′ denoted by ξα

(i, j)′ is

ξα

(i, j)
′ =

{
ξα

i j i f (i, j)
′ �= (i, j),

ξα
i j ± λ i f (i, j)

′ = (i, j).
(14)

Note that N±λ
(i, j)(α) is independent of (i, j) when λ = 0. We denote this network

by N (α), that is, N (α) = N 0
(i, j)(α) for any (i, j). Formally, we let N±λ

(i, j)(α) denote

network N (α) for λ ∈ R
≥0, wherein the weight ξα

i j of the link (i, j) is replaced by
ξα

i j ± λ, while all other weights stay unchanged.

In other words, N (α) is the transformed version of the uncertain network N =
(V , A) in which the uncertain capacity variables ξi j are replaced by factors ξα

i j for
a given confidence level α. Therefore, for any given α, the α-MCP can be found
by solving an MCP problem in the auxiliary network N (α). In this framework, the
capacity of a path P in N (α) is defined by

f (P) = min
(i, j)∈P

ξα
i j = min

(i, j)∈A′

{
ξα

i j xi j + M
(
1 − xi j

)}
, (15)

where xi j denotes the incidence factor; i.e., xi j = 1 if the link (i, j) is contained in
path P else xi j = 0. Expression (15) represents the objective function, which shall be
maximized in the MCP problem in the transformed network N (α). It is remarked that
the value of f (P) is no-more uncertain.
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Remark 3 It is feasible to adapt the shortest path algorithms to compute MCPs, by
modifying them to use the bottleneck distance instead of path length. In numerous
cases, even faster methods are feasible. To obtain an MCP, an MCP algorithm can
be established by modifying, e.g., Dijkstra’s algorithm. To do so, we assume that
d(·) represents the distance label function; then, the MCP algorithm is essentially
Dijkstra’s with two modifications. We initialize the label d(·) of each node to 0 and
the source node s to ∞. Further, we update the distance label of a node j if and only
if for some node i ∈ V , (i, j) ∈ A and d( j) < min{d(i), ξα

i j }, i.e., we set d( j) :=
max

{
d( j),min

{
d(i), ξα

i j

}}
. The complexity of this MCP method is O(m + nlogn)

for directed networks using a Fibonacci or hollow heap and O(m) for undirected
networks using Thorup’s algorithm (Ahuja et al. 1993).

Definition 8 (Upper tolerance) Suppose that is a determined confidence level as well
as P∗ is an -MCP. We define the upper tolerance u P∗(i, j) of a link (i, j) with respect
to P∗ as

u P∗(i, j)(α) = sup
λ∈[0,∞)

{
λ|P∗isanMCPforN+λ

(I,j)()
}
. (16)

Definition 9 (Lower tolerance) Suppose that is a determined confidence level as well
as P∗ is an -MCP. We define the lower tolerance lP∗(i, j) of a link (i, j) with respect
to P∗ as

lP∗(i, j)(α) = sup
λ∈

[
0,ξα

i j

]

{
λ|P∗isanMCPforN−λ

(I,j)()
}
. (17)

In words, the upper tolerance is the supremum value λ by which the capacity factor of
(i, j) can be increased such that P∗ remains an MCP, provided that the other capacity
factors remain unchanged. Similarly, the lower tolerance is the supremum value λ by
which the capacity factor of (i, j) can be decreased preserving the optimality of P∗,
provided that the other capacity factors remain untouched.

As stated above, we let P = {Pk} define the all s–t-paths set in N = (V , A),

which means whole paths from source s to sinkt . The set P does not depend on the
capacity parameters; hence, the set P in N (α) is the same as that inN = (V , A). We
are particularly concerned in two subsets ofP , namely the sets P+

(i, j) and P−
(i, j) that

comprise all s–t-paths in N that do and do not include the link (i, j), respectively.

The function amounts C(P(α)), C
(
P+

(i, j)(α)
)
and C

(
P−

(i, j)(α)
)
will be particularly

beneficial for the following technical discussion that interpretations come as below:

• C(P(α)) stands as an MCP value in N (α) without any variations in ξα
i j . In other

words, it provides the α-MCP value in N for a certain value of α.
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• C
(
P−

(i, j)(α)
)
shows an MCP value in N (α) while link (i, j) is not contained in the

network (the MCP not containing (i, j)). We concluded the following expressions,

C
(
P−

(i, j)(α)
)

= lim
λ→ξα

i j

C
(

N−λ
(i, j)(α)

)
.

• C
(
P+

(i, j)(α)
)
stands theMCP value in N (α) including link (i, j) and is certain with

C
(
P+

(i, j)(α)
)

= max
P∈P+

(i, j)

min
(i, j)∈P

{
ξα

i j

}
.

Observation 1 N (α) is the transformed version of the uncertain transportation net-
work N = (V , A) for a predestined confidence level α, and P∗ ∈ P �= ∅ an MCP in
N (α) and link (i, j) ∈ P∗.

(i, j) ∈ ⋂

k
Pk ⇔ lP∗(i, j)(α) = ξα

i j .

(i, j) /∈ ∪
k

Pk ⇒ u P∗(i, j)(α) = +∞.

Remark 4 According to Observation 1, we highlight that for any network and any
confidence level α, the lower and upper tolerances do depend on a particular MCP.

Theorem 6 N = (V , A) is an uncertain network and N (α) its transformed version
for a predestined α, and P∗ an MCP in N (α).

(a) If (i, j)∈ P∗, then u P∗ (i, j)(α)=

⎧
⎪⎨

⎪⎩

+∞ i f C(P(α)) ≥ lim
λ→+∞ C

(
N+λ

(i, j)(α)
)
,

min
(i, j)′∈P∗\(i, j)

{
ξα
(i, j)′

}
− ξα

i j i f C(P(α)) < lim
λ→+∞ C

(
N+λ

(i, j)(α)
)
.

(b) If (i, j) /∈ P∗, then u P∗ (i, j)(α) =

⎧
⎪⎨

⎪⎩

+∞ i f C(P(α)) ≥ lim
λ→+∞ C

(
N+λ

(i, j)(α)
)
,

C(P(α)) − ξα
i j i f C(P(α)) < lim

λ→+∞ C
(

N+λ
(i, j)(α)

)
.

(c) lP∗(i, j)(α) =
{

ξα
i j − C

(
P−

(i, j)(α)
)

i f (i, j) ∈ P∗,
ξα

i j otherwise.

Proof

(a) When dealing with a link (i, j) ∈ P∗ there can be only two possibilities:
either P∗ will remain an MCP for N+λ

(i, j)(α) when λ → +∞ or will not.

P∗ is an α-MCP for N+λ
(i, j)(α) (while λ → +∞) if and only if the condition

C(P(α)) ≥ limλ→+∞C
(

N+λ
(i, j)(α)

)
holds. By definitions of upper tolerance, P∗

remains an α-MCP under such circumstance, and setting u P∗(i, j)(α) = +∞
is supported. The other case is when P∗ is no longer an α-MCP in N+λ

(i, j)(α)

(while λ → +∞), and this takes place if and only if the condition C(P(α)) <

limλ→+∞C
(

N+λ
(i, j)(α)

)
holds. In such a situation, for P∗ to stay an α-MCP for

N+λ
(i, j)(α) (justifying the definitions of upper tolerance), an increase larger than
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min(i, j)′∈P∗\(i, j)

{
ξα
(i, j)′

}
− ξα

i j creates a new α-MCP (violating the definition of

upper tolerance).
(b) The proof is established along the same lines as in the proof for the previous part.
(c) Let’s suppose (i, j) ∈ P∗. Thereupon, according to the definition of lower toler-

ance, we have:

lP∗(i, j)(α) = sup
λ

{
λ ∈

[
0, ξα

i j

]
|P∗is an MCP inN−λ

(i, j)(α)
}

= max
λ∈R

{
λ ∈

[
0, ξα

i j

]
|ξα

i j − λ ≥ C
(
P−

(i, j)(α)
)}

= ξα
i j − C

(
P−

(i, j)(α)
)

= ξα
i j − lim

λ→ξα
i j

C
(

N−λ
(i, j)(α)

)
.

�

According to Theorem 6 and Remark 3, we can obtain the exact values of lower and
upper tolerances of any link for a givenα-MCP in the same asymptotic time complexity
as twoMCP algorithms in the worst case. Thereupon, the overall computational effort
is O(

m2 + mnlogn
)
in directed networks and O(

m2
)
in undirected ones. However,

we now exploit the previous results to extend the following algorithm for computing
the tolerances of all links in even more reduced computational time. To proceed, we
introduce an auxiliary network, called the residual network.

Definition 10 (Residual network) IfN (α) is the transformed version of the uncertain
network N = (V,A) for a predestined confidence level α and P an arbitrary s–t-path
with capacity f (P). The residual network Nr

P (α) = (
V , Ar

P

)
to path P is built on

N (α) where Ar
P =

{
(i, j) ∈ A

∣∣∣ξα
i j

〉
f (P)

}
.It is concluded that for any α-MCP P∗ the

residual network Nr
P∗(α) = (

V , Ar
P∗

)
is an s–t-disconnected network; i.e., the node

set V can be partitioned into at least two disconnected components. This, therefore,
results in defining a possible cut.

Definition 11 (Cut) Let Vs �= ∅ shows the set of nodes reachable from s in Nr
P∗(α) and

Vt �= ∅ the set of nodes reachable from t in Nr
P∗(α). We define Cut

(
Nr

P∗(α), Vs, Vt
)

as the set of pairs (i, j) that satisfy either i ∈ Vs and j ∈ Vt or i ∈ Vt and j ∈ Vs .

We then propose the UMCP Lower–Upper Tolerance Algorithm to efficiently cal-
culate all the links’ tolerances. We represent the algorithm in a pseudo-code which
runs in O(m) (if only upper tolerances are concerned) or O(|P∗|m) time (if both the
upper and lower tolerances are concerned). It was originally developed to obtain the
upper tolerances; however, it is capable to compute the lower tolerances as well.
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At Step 2, the algorithm benefits from Cut
(
Nr

P∗(α), Vs, Vt
)
for any link (i, j) ∈

A\P∗ to determine the links whose weights’ changes affect the optimality of P∗.
Those links are exactly the ones that belong to Cut

(
Nr

P∗(α), Vs, Vt
)\P∗ and were

discussed in Theorem 6. Any link (i, j) ∈ Cut
(
Nr

P∗(α), Vs, Vt
)
can be a bottleneck

link whose weight’s increase may influence the optimality of the already calculated
α-MCP, because it may build a path of capacity strictly larger than f (P∗) = C(P(α)).
Thereupon, when those bottleneck links are detected, we correctly set the tolerances’
values for all links (i, j) ∈ A\P∗ according to the corresponding results established
in Theorem 6.

Analogously, at Step 3, the algorithm sets the lower tolerances for all links (i, j) ∈
A ∩ P∗ according to Theorem 6. After that, it sets the upper tolerances for links
(i, j) ∈ A∩P∗ whose capacities are larger thanC(P(α)). The links in A∩P∗ thatmay

affect the optimality of P∗ are exactly those belonging to Cut
(

Nr
P∗\(k,l)(α), Vs, Vt

)

with capacity C(P(α)). In other words, any link (i, j) ∈ A ∩ P∗ with ξα
i j = C(P(α))

can be a bottleneck link. Indeed, link (i, j) ∈ Cut
(

Nr
P∗\(k,l)(α), Vs, Vt

)
∩ P∗ whose

weight is C(P(α) can build a better α-MCP, so we shall limit it (by upper tolerance)
using Theorem 6.

Taking (A\P∗) ∪ (A ∩ P∗) = A into consideration, the algorithm can compute
the upper tolerances of all links in O(m) time. Hence, if only the upper tolerances
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are required, the algorithm’s run time is O(m) that outperforms the naïve O(
m2

)

implementation (which was discussed earlier). On the other hand, if both lower and
upper tolerances are concerned, the complexity is O(m) + O(|P∗|m) = O(|P∗|m).
The bottleneck operation of the algorithm is the scanning of links (i, j) ∈ A ∩ P∗
(at Step 3) which can take up to O(|P∗|m) time. Finally, the algorithm performs the
construction step in O(m) time.

6 Numerical example and results

This chapter involves the description of the general settings applied in our numerical
experiments. The rationality of the model and the applicability of the algorithm are
explained through a case study with data under two different scenarios (shown in
Table 2; Fig. 3). Several computational tests on a variety of problem settings served
to analyze the UMCP Lower–Upper Tolerance Method. This way, we could highlight
a few features of the optimization model and reach a better understanding of the
method’s behavior. The MATLAB software and the optimization modeling language
GAMS on an × 64-based PC with Intel(R) Core(TM) i7-6600T CPU @ 2.60 GHz,
16 GB of RAM, and the Microsoft Windows 10 Pro OS were used for the models,
figures, and computations.

Two urban areas in Gävle, the oldest municipality in the historical region of Nor-
rland (the northernmost land of Sweden), were selected to evaluate the suggested
strategy. A large body of sample data was gathered for quantitative and topological
analyses and OpenStreetMap and Google Map databases were used for the street data

Table 2 The topology and
statistics of the full experimental
grids associated with our target
areas

Case 1 Case 2

No. of nodes 99 98

No. of links 173 200

Fig. 3 a Topographic map of Gävle, and b street connectivity network of Gävle based on axial lines
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Fig. 4 a the generated natural roads and b obtained axial lines for the city center of Gävle. (No. of natural
roads: 3729) and (No. of axial lines: 5567)

of Gävle and the boundary of the city (Fig. 3). These four major steps were taken
for the topological analysis: (1) the sample data were pre-processed, (2) streets were
transformed into segments, (3) natural roads and axial lines were defined, and (4)
capacity parameters were computed. Jiang (2012) used the generated natural roads to
provide approximate parameters required for defining axial lines. Figure 4 illustrates
these generated natural roads and axial lines in the center of Gävle city. Axial lines
illustrate real roads in the form of straight lines and are the longest visible in urban
street networks. They often serve as representations of urban structures (Sun 2012).

The possible few isolated lines observed after generating axial lines from natural
roadsmight be a result of their straight representation and transforming the curve streets
into straight lines; as a result, the lines may not retain their original shapes. Axwoman
was utilized to render the visualization of the basic patterns and street representations
on the map. A natural road may be formed by merging the adjoining road segments
which fit the principle of good continuity within a specified threshold deflection angle.
We chose a 45-degree threshold of the deflection angle in our setting to which all the
jointed road segments should be adjusted. Domain experts helped provide information
on the threshold deflection angle. The interconnections between streets can be obtained
using the relevant calculated connectivity parameters. The urban pattern of Gävle is
represented in Fig. 3 with a focus on the highly interconnected streets.

Expert assessments were utilized to render the regular independent uncertainty
distributions of the links’ factors (made from the axial lines). We assumed different
values of confidence level α for the tests. Estimation of a few parameters was required
to create the distributions (see Remarks 5 and 6). Three separate domain experts helped
provide the required information in full from their investigations and questionnaires,
and the mean of all the expert results was used to determine the values. We chose
to utilize Linear and Zigzag uncertainty distributions for all cases according to the
expert assessments.

Remark 5 The uncertain variable ξ ∼ L(a, b) is Linear with parameters a and b if it
has the uncertainty distribution as φ(x). Moreover, the Linear distribution is regular
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and its inverse distribution is given by φ−1(α) for a preset α.

φ(x) =
⎧
⎨

⎩

0 i f x ≤ a,
x−a
b−a i f a ≤ x ≤ b,

1 i f x ≥ b.

φ−1(α) = (1 − α)a + αb.

Remark 6 The uncertain variable ξ ∼ Z(a, b, c) is named Zigzag with parameters a,
b, c (a < b < c) if it has an uncertainty distribution as φ(x). Furthermore, the Zigzag
distribution is regular and its inverse distribution is given by φ−1(α) for a preset α.

φ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 i f x ≤ a,
x−a

2(b−a)
i f a ≤ x ≤ b,

x+c−2b
2(c−b)

i f b ≤ x ≤ c,

1 i f x ≥ c.

φ−1(α) =
{

(2α − 1)a + 2(1 − α)b ifα ≥ 0.5,
2αb + (1 − 2α)c ifα < 0.5.

To model and solve the UMCP problem, we applied our proposed method to two
real test cases. The two real cases corresponded to different zones of the street network
and had a grid plan at their base. This is in line with concurrent city management,
which is responsible for finding safe, reliable route plans for a set number of vehicles
(accumulated in depots) in a specific target area (especially planned for emergency
vehicles). This is essential for safely reaching the predefined points at times of disaster
(e.g. earthquake, flood, hurricane). Two source-sinks were also selected. Our test cases
(planning areas) are both polygonal (Fig. 3). Paths that can accommodate the highest
number of rescue vehicles (in depots) to reach the affected areas during disasters
(destination area) are difficult to identify. The location of the depot in both areas is at
the lower-left corner of polygons.

In the following, the components of the uncertain capacity variables, the value
of uncertain maximum capacity paths, and the other network parameters are dis-
cussed in detail. The uncertain capacity of a link (i, j) is represented by the uncertain
variable ξi j (with uncertainty distribution�ij), and f (ξP ) measures the value of a
UMCP. The variables ξα

i j and �−1
i j indicate the α-critical value of the uncertain

variable ξi j and the inverse uncertainty distribution of�ij, respectively. The uncer-
tainty distribution of function f (that is, the distribution of UMCP) is demonstrated
through the function
. Similarly, the inverse distribution of 
 for the confidence
level α is demonstrated through the function
−1(). The value of an α-MCP (or, in
case of a fixedα, the value of a UMCP) is normally calculated through the formula

−1(α) = maxP∈Pmin(i, j)∈Pξα

i j . The capacity variables of a sample of links con-
nected to our target areas are presented in Tables 3, 4, and 5 for a clearer view of
the street networks’ topologies and variable streets’ capacities. For any α ∈ (0, 1),
we set ξα

i j = ξi j = �−1
i j (α) = ci j for links (i, j) with a constant capacity parameter

ξi j ≡ ci j .
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The uncertainty distribution of the UMCP (
), the α-critical values ξα
i j , and the

inverse uncertainty distribution of the UMCP (
−1) are all known decreasing func-
tions of the confidence level α. Namely, an increase in α decreases the optimal value
of uncertain UMCP. From an optimization point of view, this fact can be related to
the relationship between the UMCP’s objective function and the inverse uncertainty
distributions of uncertain links’ variables. An increase in confidence level α necessi-
tates an optimal UMCP solution in a smaller feasible solution set. The result is either
a decrease in the total UMCP value or no change. In other words, a smaller α imposes
less restriction on the street network.

The values of the α-MCPs of the grid networks shown in Fig. 5 are illustrated in
Table 6. The thick red line in Fig. 5 refers to the α−MCP for α = 0.95 and is identified
by the MCP algorithm (discussed in Remark 3). Moreover, as we are dealing, in this
specific example, with vehicles, we need to consider the floor of critical values. These
values were further used to illustrate their UMCP uncertainty distributions in Figs. 6
and 7. Themethod used for relations (13) in Example 1was adopted to approximate the
inverse distribution and the distribution of the UMCP for distinct values of α ∈ (0, 1).
As we are dealing, in this specific example, with vehicles, we need to consider the
floor of values to better understand the results.

At times, the planner’s subjective experience defines the value of confidence levels,
the optimal value of the UMCP problem’s objective function is the best approximate

Fig. 5 The example street networks in Gävle are based on axial lines. From left to right: the base grid
layouts for scenarios 1–2. For both scenarios, the node furthest down at the left (the square) is the depot (of
emergency machines). The destination area is the zone that the emergency vehicles must reach. The thick
line represents an − MCP for confidence level α = 0.95, which is obtained by the MCP algorithm (see
Remark 3).

Table 6 List of α-MCPs associated with the planning areas

α 0.95 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Net 1. 
−1(α) 7.1 8.1 9.3 10.4 12.1 13.0 13.5 14.4 15.1 15.4

Net 2. 
−1(α) 4.1 5.3 6.0 6.8 7.5 9.9 11.2 12.2 12.5 13.2

Net 1. 
−1(α) 7 8 9 10 12 13 13 14 15 15

Net 2. 
−1(α) 4 5 6 6 7 9 11 12 12 13
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Fig. 6 The UMCP uncertainty distributions associated with the planning area 1

Fig. 7 The UMCP uncertainty distributions associated with the planning area 2

number of emergency vehicles that can be sent from the depot through the trans-
portation network to the destination. The different values of α ∈ (0, 1) can obviously
produce different UMCP values. As illustrated in Figs. 6 and 7, it might, therefore,
be more practical here to depict the value of the UMCP as a function of parameters
(confidence levels).

Different settings for the confidence level α were utilized to work out several
medium- and large-scale networks from our case study. The results were then com-
pared for assessing the practicality of the UMCP Lower–Upper Tolerance Method.
The behavior of the algorithm in the analyzed networks was generally similar. Parts
of the computational results are presented in this study’s tables. The algorithm was
primarily introduced because it wasn’t time-consuming and didn’t need a large mem-
ory. Yet, its inherent parallelism was another desirable factor for modern computers. It
should be noted that setting different values for α may result in different UMCPs; that
is, the algorithm can be employed with pre-fixed confidence level α. It can therefore
be stated that the value of α governs the changes in the values of upper and lower
tolerances. Therefore, it is supposedly more reasonable to demonstrate the value of
the tolerances as a (not always continuous) function of confidence level α.

We begin to utilize the algorithm (to calculate the tolerances) on the networks in
Fig. 5 by first determining a value for the confidence level for α ∈ (0, 1). We then
calculate the inverse uncertainty distributions (critical values) of all ξi j and construct
the transformed network N (α). So is the α-MCP (denoted by P∗) in N (α), which is
obtained by the MCP algorithm (Remak 3). Hence, there must be a close connection
between the confidence level value and α-MCPs for our results to be reliable. In
Fig. 5, there exist several paths from the depot to the destination area. The α-MCPs
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for confidence levelα = 0.95 are shown in the formof a thick red line in both networks.
By finding the links with the minimum and the second minimum critical values as

f (P∗) = min(i, j)∈P∗
{
ξα

i j

}
and f (P∗\(k, l)) = min(i, j)∈P∗\(k,l)

{
ξα

i j

}
,the resid-

ual networks Nr
P∗(α) = (

V,Ar
P∗

)
and Nr

P∗\(k,l)(α) =
(
V,Ar

P∗\(k,l)
)
are constructed.

Consequently, these cuts that are formally articulated in the algorithm can be defined:

Cut
(
Nr

P∗(α), Vs, Vt
)
and Cut

(
Nr

P∗\(k,l)(α), Vs, Vt

)
. Using the search procedure on

the algorithm over link sets A\P∗ and A ∩ P∗ helped in finally calculating all links’
tolerances. In the following Table 7, the mentioned calculations provide lower and
upper tolerance values of a sample of links in our target areas.

After solving the algorithm in all samples and zones of the study region, the numer-
ical results proved that this method has a favorable resolving ability in acceptable
computational times (less than one minute in most cases) even on less advanced com-
puters. Higher levels of performance can be achieved by using faster computers and
making the algorithm parallel. The benefits of this method include identifying the
links of higher risks and links with fewer safety margins; and hence, a more reliable
transportation network and a more accurate approximation of the overall network
risk without having to sequential re-optimizations. Disaster managers and network
planners will find these results of greatest usefulness in designing a transportation
network. Conclusively, the reliability and functional capacity of the links determine
the post-disaster reliability of the entire transportation network. Therefore, higher road
capacities are needed for a higher network post-disaster reliability. It must be ascer-
tained that the rescue vehicles will arrive at the affected areas as soon as possible
for post-disaster rescue operations. The safer arrival of rescue services to the affected
destinations provided by the UMCP outweighs their longer distances.

7 Discussion and concluding remarks

Real-life applications of indeterminacy parameters are prevalent, for example in net-
work design as well as transportation networks. The stochastic connectivity of links
and uncertainty of street service makes the post-disaster performance of the trans-
portation network an uncertain problem in terms of connectivity, functional capacity,
and reliability. In the aftermath of a disaster, falling bridges, collapsed buildings, and
fault rupture might leave sections of the transportation system blocked, reducing its
capacity and reliability which conduces to more complicated dispatch of the relief
materials and rescue vehicles to the disaster zones. To afford these non-deterministic
parameters fuzzy theory or probability are employed, yet there are many examples
with no available samples to produce the probability distribution. Modeling human
uncertainty and the use of a decisionmaker’s experience for non-deterministic parame-
ters necessitated the novel approach integrated into uncertainty theory. Originally, this
paper presented a new uncertainty theory-based model for post-disaster rescue work
and on-time arrival of vehicles in disaster areas. This model incorporated uncertain
capacity variables associated with links to assess the maximum capacity path (MCP)
problem in a post-disaster transportation network.
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Although the feasibility and correctness of the models and methods were clearly
illustrated, the transportation network remains complex. The real-life difficulties,
therefore, can be more complicated after heavily devastating events. Therefore, a
sensitivity analysis (also referred to as what-if analysis) was further conducted on a
post-disaster network and the stability of MCPs in the system was determined thereof.
The purpose of sensitivity analysis is to determine how the optimality of a given MCP
depends on the input data. Generally, performing sensitivity analysis is important for
two main reasons. The input data (e.g. links’ operational capacity) used are usually
uncertain. In such cases, such an analysis is compulsory to determine the credibility
of the calculated MCP and conclusions based on that path. Another reason for per-
forming sensitivity analysis is that sometimes rather significant considerations (e.g.
adverse environmental factors caused by disasters) can not be incorporated into the
model due to the difficulty of formulating them. Having solved the simplified trans-
portation model, the decision-maker wants to know how well the obtained MCP fits
in with the other considerations. Therefore, a clear, accurate, and solvable problem
for certain precision was developed from the original, unsolvable sensitivity analy-
sis. Additionally, a global approach to examine the tolerance/sensitivity of uncertain
networks was developed which is employed to suggest a method to calculate all the
tolerances of links that is far superior to successive optimization.

It was shown that in transportation networks with regular uncertain capacity vari-
ables the maximum capacity path has an inverse uncertainty distribution 
−1(α).
Also, the calculation of the maximum capacity path for any confidence level α was
presented and repeated for various values of α to propose to achieve the uncertainty
distribution 
. Distinct decision criteria were selected to expound the concepts of α-
MCP and themost maximum capacity path (MMCP). These concepts helped ascertain,
in an uncertain network and those in an auxiliary deterministic network, the presence
of an equivalence relation between the MCPs. This relation, using the operational
law of uncertainty theory, helped develop a programming model to investigate the
stability of an uncertain transportation network post disasters and calculate the links’
tolerances. The applicability of the model and the subsequent algorithmwas explained
through a case study with real data under two different scenarios. In our samples, three
separate domain experts helped provide the required information from their investi-
gations and questionnaires. According to the expert assessments, we decided to adopt
Linear and Zigzag uncertainty distributions. These distributions were utilized based
on the conditions of our network samples and for detailed evaluation and explanation
of our proposed method. Therefore, others can indeed adjust our suggested method
following their needs and with different uncertainty forms.

This study is among the first to compound the uncertainty theory and capacity
reliability; it may then contain some limitations requiring future research that can
involve computational improvement of our method. Assessing the intricacy of the
approaches was not complete and might need further improvement. A challenge for
future researchers is to improve computational complications in novel directions. An
improvement is concurrently examining perturbations in a set of links, which might
seem self-evident but can be quite difficult. This paper presents methods of computing
the single links’ tolerances. To regard novel approaches to find the lower and upper
tolerances for a set of links is also appealing. Another challenging effort for later
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research can be focusing on the computational complexity issue for the sensitivity
analysis questions for directed networks (discussed here, rather than undirected net-
works). There are several ways to develop α-MCP andMMCP problems. For instance,
this study discusses UMCP problems that are heavily dependent on the reliability of
the links of the transportation network. When the center’s facilities are added to those
governed by uncertainty, new problems may arise. Another type of network reliability
problem may advance the structure in this study extensively, and the uncertain travel
time reliability problem can expand our outcomes in post-disaster transportation net-
works. However, procuring the real data for the travel time distribution after a disaster
as well as the time-dependent travel time function must be methodized. Besides, a
few more transportation network characteristics (e.g., continuously degradable link
capacities and dynamic traffic demand) would be taken into the proposed model to
make it applicable for analyzing more practical issues.
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