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Abstract
This paper first establishes uncertain hypothesis test as a mathematical tool that uses
uncertainty theory to help people rationally judgewhether some hypotheses are correct
or not, according to observed data. As an application, uncertain hypothesis test is
employed in uncertain regression analysis to test whether the estimated disturbance
term and the fitted regression model are appropriate. In order to illustrate the test
process, some numerical examples are documented.

Keywords Uncertainty theory · Uncertain statistics · Hypothesis test · Regression
analysis

1 Introduction

Uncertainty theory, founded by Liu (2007) and perfected by Liu (2009), has been a
branch of mathematics and successfully applied in the fields like science and engi-
neering. As an important application of uncertainty theory, uncertain statistics, first
discussed by Liu (2010), is a methodology of collecting, analyzing and interpret-
ing data based on uncertainty theory. Up to now, uncertain statistics has four main
development fields: estimating uncertainty distribution, uncertain regression analy-
sis, uncertain time series analysis, and parameter estimation in uncertain differential
equation.

Estimating uncertainty distribution is aimed to use uncertainty theory to fit the
uncertainty distribution for an uncertain variable based on the expert’s experimental
data. The first step to estimate uncertainty distribution is to collect expert’s experi-
mental data. For that matter, Liu (2010) designed a questionnaire survey. The next step
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is to fit the uncertainty distribution based on the collected expert’s experimental data.
If the functional form of the uncertainty distribution to be estimated is known but it
contains some unknown parameters, then in order to estimate the unknown parameters
via expert’s experimental data, Liu (2010) investigated the principle of least squares,
andWang and Peng (2014) presented themethod ofmoments. If the functional form of
the uncertainty distribution to be estimated is even unknown, then in order to estimate
the uncertainty distributions, Liu (2010) presented the linear interpolation method,
and Chen and Ralescu (2012) explored a series of spline interpolation methods. In
addition, Delphi method (Wang et al. (2012)) was suggested as a process to estimate
the uncertainty distribution when multiple experts are available.

Uncertain regression analysis is aimed to use uncertainty theory to study the rela-
tionship between explanatory variables and response variables. Parameter estimation
for the unknown parameters is a vital topic in uncertain regression analysis. Many
approaches about estimating unknown parameters in uncertain regressionmodels have
been developed, such as the least squares estimation (Yao and Liu (2018)), the least
absolute deviations estimation (Liu and Yang (2020)), and the maximum likelihood
estimation (Lio and Liu (2020)). In addition, Lio and Liu (2018) proposed an approach
to make interval estimation for predicting the response variables. Furthermore, there
are many other directions in uncertain regression analysis, including cross-validation
(Liu and Jia (2020); Liu (2019)), variable selection (Liu and Yang (2020)), multivari-
ate regression analysis (Song and Fu (2018); Ye and Liu (2020)), and nonparametric
regression analysis (Ding and Zhang (2021)).

Uncertain time series analysis is aimed to use uncertainty theory to predict future
values based on previously observed data. As a basic model of uncertain time series,
uncertain autoregressive model was first proposed by Yang and Liu (2019). In the
uncertain autoregressive model, the observed data depend linearly on its previous
values and an uncertain disturbance term. In order to take the multiple uncertain
disturbance terms in uncertain time series into consideration, Yang and Ni (2020)
presented uncertain moving average model where the observed data depend linearly
on the current and various past values of a disturbance term.

Parameter estimation in uncertain differential equation is aimed to use uncertainty
theory to estimate unknown parameters in uncertain differential equation based on
observed data. Many researchers have studied lots of methods of parameter estima-
tion in uncertain differential equation. For example, Yao and Liu (2020) investigated
moment estimation, Yang et al. (2020) studied minimum cover estimation, Sheng
et al. (2021) investigated least squares estimation, Liu (2021) proposed generalized
moment estimation, and Liu and Liu (2020) presented maximum likelihood estima-
tion. As another topic, initial value estimation was proposed by Lio and Liu (2021)
to estimate the unknown initial value of uncertain differential equation according to
observed data.

This paper explores to develop anewdirectionof uncertain statistics called uncertain
hypothesis test, which is concerned with using uncertainty theory to make decisions
about whether some hypotheses are correct or not, according to observed data. As a
purpose of investigating uncertain hypothesis test, we employ it in uncertain regression
analysis to test whether the estimated disturbance term and the fitted regression model
are appropriate.
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The rest of the paper is organized as follows. Uncertain hypothesis test is introduced
in Sect. 2, and is applied in uncertain regression analysis in Sect. 3. Then, some
numerical examples are given in Sect. 4. Finally, a brief summary is made in Sect. 5.

2 Uncertain hypothesis test

Let ξ be a population with uncertainty distribution Φθ where θ is an unknown param-
eter with θ ∈ Θ . A hypothesis testing problem about the unknown parameter θ can
be formulated as deciding which of the following two statements is true:

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 (1)

where Θ0 and Θ1 are two disjoint subsets of Θ and Θ0 ∪ Θ1 = Θ . The statement H0
is called a null hypothesis, and H1 is called an alternative hypothesis. Especially, the
following hypotheses are called two-sided hypotheses:

H0 : θ = θ0 versus H1 : θ �= θ0,

where θ0 ∈ Θ .
Assume there is a vector of observed data (z1, z2, · · · , zn). A rejection region for

the null hypothesis H0 is a set W ⊂ �n . If the vector of observed data

(z1, z2, · · · , zn) ∈ W ,

then we reject H0. Otherwise, we accept H0. A core problem is how to choose a
suitable rejection region W for the given hypothesis H0.

Definition 1 Let ξ be a population with uncertainty distribution Φθ where θ is an
unknown parameter. A rejection region W ⊂ �n is said to be a test for the two-sided
hypotheses H0 : θ = θ0 versus H1 : θ �= θ0 at significance level α if

(a) for any (z1, z2, · · · , zn) ∈ W , there are at least α of indexes i’s with 1 ≤ i ≤ n
such that

Mθ0{ξ > zi } ∨ Mθ0{ξ < zi } > 1 − α

2
,

(b) for some θ �= θ0 and some (z1, z2, · · · , zn) ∈ W , there are more than 1 − α of
indexes i’s with 1 ≤ i ≤ n and at least α of indexes j’s with 1 ≤ j ≤ n such that

Mθ {ξ > zi } ∨ Mθ {ξ < zi } < Mθ0{ξ > z j } ∨ Mθ0{ξ < z j }.

Remark 1 From Definition 1, we can see that the test W is related to the significance
level α. How do we choose it? Standard values, such as 0.1, 0.05, or 0.01, are often
used for convenience.
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In order to find a suitable rejection region W satisfying the two conditions in
Definition 1, we introduce a concept of nonembedded uncertainty distribution family.

Definition 2 A regular uncertainty distribution family {Φθ : θ ∈ Θ} is said to be
nonembedded for θ0 ∈ Θ at level α if

Φ−1
θ0

(β) > Φ−1
θ (β) or Φ−1

θ (1 − β) > Φ−1
θ0

(1 − β)

for some θ ∈ Θ and some β with 0 < β ≤ α/2.

Example 1 The normal uncertainty distribution family {N(e, σ ) : e ∈ �, σ > 0} is
nonembedded for any θ0 = (e0, σ0) ∈ � × (0,+∞) at any level α. Note that the
inverse uncertainty distribution of N(e, σ ) is

Φ−1(β) = e + σ
√
3

π
ln

β

1 − β
.

Take

θ1 = (e1, σ1) = (e0 − 1, σ0), β = α

2
.

Since

Φ−1
θ0

(β) − Φ−1
θ1

(β) = e0 + σ0
√
3

π
ln

β

1 − β
−

(
e1 + σ1

√
3

π
ln

β

1 − β

)

= e0 + σ0
√
3

π
ln

β

1 − β
−

(
e0 − 1 + σ0

√
3

π
ln

β

1 − β

)

= 1 > 0,

the normal uncertainty distribution family {N(θ, σ ) : e ∈ �, σ > 0} is nonembedded
for θ0 at level α.

Example 2 The linear uncertainty distribution family {L(a, b) : a < b} is nonembed-
ded for any θ0 = (a0, b0)with a0 < b0 at any level α. Note that the inverse uncertainty
distribution of L(a, b) is

Φ−1(β) = (1 − β)a + βθ.

Take

θ1 = (a1, b1) = (a0 − 1, b0 − 1), β = α

2
.
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Since

Φ−1
θ0

(β) − Φ−1
θ1

(β) = (1 − β)a0 + βb0 − [(1 − β)a1 + βb1]
= (1 − β)(a0 − a1) + β(b0 − b1)

= 1 − β + β = 1 > 0,

the linear uncertainty distribution family {L(a, b) : a < b} is nonembedded for θ0 at
level α.

From Definition 2, we also know that a regular uncertainty distribution family
{Φθ : θ ∈ Θ} is embedded for θ0 ∈ Θ at level α if

Φ−1
θ0

(β) ≤ Φ−1
θ (β) and Φ−1

θ (1 − β) ≤ Φ−1
θ0

(1 − β) (2)

for any θ ∈ Θ and any β with 0 < β ≤ α/2. It is obvious that (2) is equivalent to

[Φ−1
θ (β),Φ−1

θ (1 − β)] ⊆ [Φ−1
θ0

(β),Φ−1
θ0

(1 − β)],

which is the reason why {Φθ : θ ∈ Θ} is named as embedded uncertainty distribution
family. To illustrate the concept of embedded uncertainty distribution family, some
examples are given as follows.

Example 3 The uncertainty distribution family

{
N

(
0, exp

(
−(θ − 1)2

))
: θ ∈ �

}

is embedded for θ0 = 1 at any level α. Note that the inverse uncertainty distribution
of

N
(
0, exp

(
−(θ − 1)2

))

is

Φ−1
θ (β) = 0 +

√
3

π
exp

(
−(θ − 1)2

)
ln

β

1 − β
=

√
3

π
exp

(
−(θ − 1)2

)
ln

β

1 − β
.
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Fig. 1 The sketch map in
Example 4

For any θ ∈ � and any β with 0 < β ≤ α/2 < 0.5, since

Φ−1
θ0

(β) − Φ−1
θ (β)

=
√
3

π
exp

(
−(θ0 − 1)2

)
ln

β

1 − β
−

√
3

π
exp

(
−(θ − 1)2

)
ln

β

1 − β

=
√
3

π

(
exp

(
−(θ0 − 1)2

)
− exp

(
−(θ − 1)2

))
ln

β

1 − β

=
√
3

π

(
exp

(
−(1 − 1)2

)
− exp

(
−(θ − 1)2

))
ln

β

1 − β

=
√
3

π

(
1 − exp

(
−(θ − 1)2

))
ln

β

1 − β
≤ 0

and

Φ−1
θ0

(1 − β) − Φ−1
θ (1 − β) =

√
3

π

(
1 − exp

(
−(θ − 1)2

))
ln

1 − β

β
≥ 0,

we have

Φ−1
θ0

(β) ≤ Φ−1
θ (β), Φ−1

θ (1 − β) ≤ Φ−1
θ0

(1 − β),

which implies the uncertainty distribution family{
N

(
0, exp

(
−(θ − 1)2

))
: θ ∈ �

}
is embedded. A sketch map for ease of understanding is shown in Fig. 1.

Example 4 Whether an uncertainty distribution family is nonembedded is related to
the value of θ0 in Definition 2. For example, the uncertainty distribution family{

N
(
0, exp

(
−(θ − 1)2

))
: θ ∈ �

}
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is embedded for θ0 = 1 at any level α, but nonembedded for any θ0 �= 1 at any level
α.

Example 5 Whether an uncertainty distribution family is nonembedded is also related
to the level α in Definition 2. For example, for each θ ∈ �, write

Φθ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ −0.2

x + 0.2, if − 0.2 < x ≤ 0

0.3 exp (θ2)x + 0.2, if 0 < x ≤ exp (−θ2)
0.3

2 − exp (−θ2)
(x − 2) + 0.8, if exp (−θ2) < x ≤ 2

x − 1.2, if 2 < x ≤ 2.2

1, if x > 2.2.

Then, the uncertainty distribution family {Φθ : θ ∈ �} is nonembedded for any θ0 ∈ �
at any level α with 0.4 < α < 1, but embedded for any θ0 ∈ � at any level α with
0 < α ≤ 0.4.

Theorem 1 Let ξ be a population with regular uncertainty distribution Φθ where θ is
an unknown parameter with θ ∈ Θ . If the uncertainty distribution family {Φθ : θ ∈ Θ}
is nonembedded for a known parameter θ0 ∈ Θ at significance level α, then the test
for the two-sided hypotheses H0 : θ = θ0 versus H1 : θ �= θ0 at significance level α

is

W =
{
(z1, z2, · · · , zn) : there are at least α of indexes i’s with 1 ≤ i ≤ n

such that zi < Φ−1
θ0

(α

2

)
or zi > Φ−1

θ0

(
1 − α

2

) }
.

Proof In order to prove that W is a test for the two-sided hypotheses H0 : θ = θ0
versus H1 : θ �= θ0 at level α, we need to verify that W satisfies the two conditions in
Definition 1.

First, we will verify the condition (a) in Definition 1. For any (z1, z2, · · · , zn) ∈ W ,
it follows from the definition ofW that there are at least α of indexes i’s with 1 ≤ i ≤ n
such that

zi < Φ−1
θ0

(α

2

)
or zi > Φ−1

θ0

(
1 − α

2

)
,

i.e.,

Mθ0{ξ > zi } > 1 − α

2
or Mθ0{ξ < zi } > 1 − α

2
.

Therefore W satisfies the condition (a).
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Second, we will verify the condition (b). Since the uncertainty distribution family
{Φθ : θ ∈ Θ} is nonembedded for θ0 at level α, we have

Φ−1
θ0

(β) > Φ−1
θ (β) or Φ−1

θ (1 − β) > Φ−1
θ0

(1 − β)

for some θ ∈ Θ and some β with 0 < β ≤ α/2. Take

zi =
{

Φ−1
θ (β), if Φ−1

θ0
(β) > Φ−1

θ (β) and Φ−1
θ (1 − β) ≤ Φ−1

θ0
(1 − β)

Φ−1
θ (1 − β), if Φ−1

θ (1 − β) > Φ−1
θ0

(1 − β),

i = 1, 2, · · · , n. It is easy to verify that

Mθ {ξ > zi } ∨ Mθ {ξ < zi } ≤ 1 − β

and

Mθ0{ξ > zi } ∨ Mθ0{ξ < zi } > 1 − β, (3)

i = 1, 2, · · · , n. Thus,

Mθ {ξ > zi } ∨ Mθ {ξ < zi } < Mθ0{ξ > z j } ∨ Mθ0{ξ < z j }, i, j = 1, 2, · · · , n.

In addition, since β ≤ α/2, it follows from (3) that

Mθ0{ξ > zi } ∨ Mθ0{ξ < zi } > 1 − β ≥ 1 − α

2
, i = 1, 2, · · · , n.

That is, (z1, z2, · · · , zn) ∈ W . Therefore W satisfies the condition (b). The theorem
is proved. 
�
Remark 2 In order to make it easier to determine if the vector of observed data
(z1, z2, · · · , zn) falls into the test W defined in Theorem 1, we introduce a concept of
singular point. For each i with 1 ≤ i ≤ n, if

zi < Φ−1
θ0

(α

2

)
or zi > Φ−1

θ0

(
1 − α

2

)
,

then zi is called a singular point. It follows from Theorem 1 that (z1, z2, · · · , zn) ∈ W
iff the number of singular points is at leastαn, and (z1, z2, · · · , zn) /∈ W iff the number
of singular points is less than αn.

Example 6 The condition of nonembedded uncertainty distribution family in The-
orem 1 cannot be removed. For example, let ξ be a population with uncertainty
distribution

N
(
0, exp

(
−(θ − 1)2

))
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where θ is an unknown parameter. Write θ0 = 1. For a given significance level α, take
the set

W =
{
(z1, z2, · · · , zn) : there are at least α of indexes i’s with 1 ≤ i ≤ n

such that zi < Φ−1
θ0

(α

2

)
or zi > Φ−1

θ0

(
1 − α

2

)}

where Φ−1
θ0

is the inverse uncertainty distribution of

N
(
0, exp

(
−(θ0 − 1)2

))
.

It follows from the proof of Theorem 1 that the set W satisfies the condition (a) in
Definition 1. However, we claim that the set W does not satisfy the condition (b) in
Definition 1. To prove it, we employ the method of proof by contradiction. Suppose,
on the contrary, that W satisfies the condition (b) in Definition 1. Then for some
θ �= θ0 and some (z1, z2, · · · , zn) ∈ W , there are more than 1− α of indexes i’s with
1 ≤ i ≤ n and at least α of indexes j’s with 1 ≤ j ≤ n such that

Mθ {ξ > zi } ∨ Mθ {ξ < zi } < Mθ0{ξ > z j } ∨ Mθ0{ξ < z j },

i.e.,

Mθ {ξ > zi } ∨ Mθ {ξ < zi } ≤ 1 − β < Mθ0{ξ > z j } ∨ Mθ0{ξ < z j }

for some β with 0 < β ≤ α/2. Thus there exists an index k such that

Φ−1
θ (β) ≤ zk ≤ Φ−1

θ (1 − β)

and

zk < Φ−1
θ0

(β) or zk > Φ−1
θ0

(1 − β).

Hence

Φ−1
θ0

(β) > Φ−1
θ (β) or Φ−1

θ (1 − β) > Φ−1
θ0

(1 − β),

which indicates that the uncertainty distribution family

{
N

(
0, exp

(
−(θ − 1)2

))
: θ ∈ �

}
is nonembedded for θ0 at level α. This contradicts the conclusion shown in Example 3,
i.e., the uncertainty distribution family

{
N

(
0, exp

(
−(θ − 1)2

))
: θ ∈ �

}
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is embedded for θ0 at level α. ThusW does not satisfy the condition (b) in Definition 1.
Therefore the condition of nonembedded uncertainty distribution family cannot be
removed.

Corollary 1 Let ξ be a population that follows a normal uncertainty distribution with
unknown expected value e and variance σ 2. Then the test for the two-sided hypotheses

H0 : e = e0 and σ = σ0 versus H1 : e �= e0 or σ �= σ0 (4)

at significance level α is

W =
{
(z1, z2, · · · , zn) : there are at least α of indexes i’s with 1 ≤ i ≤ n

such that zi < Φ−1
(α

2

)
or zi > Φ−1

(
1 − α

2

) } (5)

where

Φ−1(α) = e0 + σ0
√
3

π
ln

α

1 − α
.

Proof Since Example 1 shows that the normal uncertainty distribution family

{N(e, σ ) : e ∈ �, σ > 0}
is nonembedded for (e0, σ0) at any significance level α, it follows from Theorem 1
that the test for hypotheses (4) is W defined in (5). 
�
Example 7 Let ξ be a population, and let (z1, z2, · · · , zn) be a vector of observed data.
In order to test whether ξ follows the normal uncertainty distribution N(e0, σ0), we
may consider the two-sided hypotheses

H0 : e = e0 and σ = σ0 versus H1 : e �= e0 or σ �= σ0. (6)

Given a significance level α, it follows fromCorollary 1 that the test for the hypotheses
(6) at level α is

W =
{
(z1, z2, · · · , zn) : there are at least α of indexes i’s with 1 ≤ i ≤ n

such that zi < Φ−1
(α

2

)
or zi > Φ−1

(
1 − α

2

)}

where

Φ−1(α) = e0 + σ0
√
3

π
ln

α

1 − α
.

If (z1, z2, · · · , zn) ∈ W , then we reject H0. Otherwise, we accept H0.
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3 Uncertain regression analysis

In this section, we will apply the uncertain hypothesis test in uncertain regression
analysis. Let (x1, x2, · · · , xp) be a vector of explanatory variables, and let y be
a response variable. Yao and Liu (2018) suggested that the functional relationship
between (x1, x2, · · · , xp) and y is expressed by an uncertain regression model

y = f (x1, x2, · · · , xp|β) + ε

where β is a vector of parameters, and ε is an uncertain disturbance term (uncertain
variable).

Suppose there is a set of observed data,

(xi1, xi2, · · · , xip, yi ), i = 1, 2, · · · , n.

By employing least squares method (Yao and Liu (2018)), least absolute deviations
method (Liu and Yang (2020)) or maximum likelihood method (Lio and Liu (2020)),
we can obtain an estimation β̂ for β. Then the fitted regression model is determined
by

y = f (x1, x2, · · · , xp|β̂). (7)

For each i (i = 1, 2, · · · , n), the i-th residual is

εi = yi − f (xi1, xi2, · · · , xip|β̂).

The residuals ε1, ε2, · · · , εn can be regarded as the samples of the uncertain distur-
bance term ε. Thus, Lio and Liu (2018) suggested that the expected value of the
uncertain disturbance term ε can be estimated as the average of residuals, i.e.,

ê = 1

n

n∑
i=1

εi

and the variance can be estimated as

σ̂ 2 = 1

n

n∑
i=1

(εi − ê)2.

Therefore, we may assume the estimated disturbance term ε̂ follows the normal uncer-
tainty distribution N(ê, σ̂ ). Then the forecast uncertain variable of response variable
y with respect to (x1, x2, · · · , xp) is determined by

ŷ = f (x1, x2, · · · , xp|β̂) + ε̂, ε̂ ∼ N(ê, σ̂ ).
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In order to test whether the estimated disturbance term ε̂ is appropriate, we consider
the following hypotheses:

H0 : e = ê and σ = σ̂ versus H1 : e �= ê or σ �= σ̂ . (8)

Given a level of significance α (e.g. 0.05), it follows from Corollary 1 that the test for
the hypotheses (8) is

W =
{
(z1, z2, · · · , zn) : there are at least α of indexes i’s with 1 ≤ i ≤ n

such that zi < Φ−1
(α

2

)
or zi > Φ−1

(
1 − α

2

)} (9)

where

Φ−1(α) = ê + σ̂
√
3

π
ln

α

1 − α
.

For each i (i = 1, 2, · · · , n), if

εi < Φ−1
(α

2

)
or εi > Φ−1

(
1 − α

2

)
,

then (xi1, xi2, · · · , xip, yi ) is regarded as an outlier. If the number of outliers is at least
αn, i.e.,

(ε1, ε2, · · · , εn) ∈ W ,

then either the estimated disturbance termN(ê, σ̂ ) or the fitted regression model (7) is
inappropriate. Otherwise, both the estimated disturbance term N(ê, σ̂ ) and the fitted
regression model (7) are appropriate.

4 Numerical Examples

This section will provide two examples to illustrate how to employ uncertain hypothe-
sis test in uncertain regression analysis to test whether the estimated disturbance term
and the fitted regression model are appropriate.

Example 8 Assume there is a set of observed data (xi1, xi2, xi3, yi ), i = 1, 2, · · · , 30.
See Table 1. In order to fit these observed data, we employ the linear uncertain regres-
sion model

y = β0 + β1x1 + β2x2 + β3x3 + ε

where β0, β1, β2, β3 are some parameters, and ε is an uncertain disturbance term
(uncertain variable).
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Table 1 Observed data in Example 8

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xi1 4 6 9 4 5 6 7 5 9 5 6 7 4 9 10

xi2 15 16 20 20 17 19 14 18 16 17 17 20 16 16 14

xi3 21 21 24 26 28 20 23 26 25 18 29 30 21 29 27

yi 45 50 61 52 54 48 52 57 56 48 55 61 53 56 59

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

xi1 8 9 5 6 8 7 6 6 9 10 7 5 5 6 5

xi2 19 15 20 15 16 20 20 16 18 17 18 14 15 18 17

xi3 21 20 19 25 26 30 22 22 23 20 25 18 20 20 29

yi 60 49 50 47 54 59 56 46 61 50 58 38 44 50 54

Using the observed data in Table 1 and solving the minimization problem

min
β0,β1,β2,β3

30∑
i=1

(yi − β0 − β1xi1 − β2xi2 − β3xi3)
2,

we obtain the fitted linear regression model

y = 4.3965 + 1.3644x1 + 1.3130x2 + 0.7166x3. (10)

From

εi = yi − 4.3965 − 1.3644xi1 − 1.3130xi2 − 0.7166xi3, i = 1, 2, · · · , 30,

we obtain 30 residuals ε1, ε2, · · · , ε30. Thus the expected value of estimated distur-
bance term ε̂ is

ê = 1

30

30∑
i=1

εi = 0.0000,

and the variance is

σ̂ 2 = 1

30

30∑
i=1

(εi − ê)2 = 2.85292.

Therefore, we may assume the estimated disturbance term ε̂ follows the normal uncer-
tainty distributionN(0.0000, 2.8529). Then the forecast uncertain variable of response
variable y with respect to (x1, x2, x3) is determined by

ŷ = 4.3965 + 1.3644x1 + 1.3130x2 + 0.7166x3 + ε̂, ε̂ ∼ N(0.0000, 2.8529).
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Fig. 2 Residual plot in
Example 8

To test whether N(0.0000, 2.8529) is appropriate, we consider the following
hypotheses:

H0 : e = 0.0000 and σ = 2.8529 versus H1 : e �= 0.0000 or σ �= 2.8529. (11)

Given a significance level α = 0.05, we obtain

Φ−1
(α

2

)
= −5.7624, Φ−1

(
1 − α

2

)
= 5.7624

where Φ−1 is the inverse uncertainty distribution of N(0.0000, 2.8529), i.e.,

Φ−1(α) = 0.0000 + 2.8529
√
3

π
ln

α

1 − α
.

Since α × 30 = 1.5, it follows from (9) that the test for the hypotheses (11) is

W = {(z1, z2, · · · , z30) : there are at least 2 of indexes i’s with 1 ≤ i ≤ 30

such that zi < −5.7624 or zi > 5.7624}.

As shown in Fig. 2, we can see that only

ε24 /∈ [−5.7624, 5.7624].

Thus (ε1, ε2, · · · , ε30) /∈ W . Therefore we think both the estimated disturbance term
N(0.0000, 2.8529) and the fitted linear regression model (10) are appropriate.

Example 9 Assume there is a set of observed data (xi1, xi2, xi3, yi ), i = 1, 2, · · · , 30.
See Table 2. In order to fit these observed data, we employ the linear uncertain regres-
sion model

y = β0 + β1x1 + β2x2 + β3x3 + ε
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Table 2 Observed data in Example 9

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xi1 4 5 9 7 4 6 7 4 6 8 8 7 9 9 10

xi2 17 16 15 18 16 16 16 15 19 15 15 16 20 17 16

xi3 21 21 22 28 23 22 30 28 22 18 20 23 30 23 21

yi 44 48 56 56 49 48 58 50 59 47 48 52 62 53 52

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

xi1 4 10 8 5 10 10 4 9 5 7 6 10 4 6 6

xi2 17 14 14 20 17 18 20 18 19 19 18 16 20 20 14

xi3 27 20 28 27 26 26 30 19 23 26 19 23 28 19 23

yi 60 47 56 55 65 59 58 54 51 57 50 52 60 50 46

where β0, β1, β2, β3 are some parameters, and ε is an uncertain disturbance term
(uncertain variable).

Using the observed data in Table 2 and solving the minimization problem

min
β0,β1,β2,β3

30∑
i=1

(yi − β0 − β1xi1 − β2xi2 − β3xi3)
2,

we obtain the fitted linear regression model

y = 4.5285 + 1.0549x1 + 1.1399x2 + 0.9292x3. (12)

From

εi = yi − 4.5285 − 1.0549xi1 − 1.1399xi2 − 0.9292xi3,

we obtain 30 residuals ε1, ε2, · · · , ε30. Thus the expected value of estimated distur-
bance term ε̂ is

ê = 1

30

30∑
i=1

εi = 0.0000,

and the variance is

σ̂ 2 = 1

30

30∑
i=1

(εi − ê)2 = 2.74492.

Therefore, we may assume the estimated disturbance term ε̂ follows the normal uncer-
tainty distributionN(0.0000, 2.7449). Then the forecast uncertain variable of response
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Fig. 3 Residual plot in
Example 9

variable y with respect to (x1, x2, x3) is determined by

ŷ = 4.5285 + 1.0549x1 + 1.1399x2 + 0.9292x3 + ε̂, ε̂ ∼ N(0.0000, 2.7449).

To test whether N(0.0000, 2.7449) is appropriate, we consider the following
hypotheses:

H0 : e = 0.0000 and σ = 2.8529 versus H1 : e �= 0.0000 or σ �= 2.8529. (13)

Given a significance level α = 0.05, we obtain

Φ−1
(α

2

)
= −5.5443, Φ−1

(
1 − α

2

)
= 5.5443,

where Φ−1 is the inverse uncertainty distribution of N(0.0000, 2.7449), i.e.,

Φ−1(α) = 0.0000 + 2.7449
√
3

π
ln

α

1 − α
.

Since α × 30 = 1.5, it follows from (9) that the test for the hypotheses (13) is

W = {(z1, z2, · · · , z30) : there are at least 2 of indexes i’s with 1 ≤ i ≤ 30

such that zi < −5.5443 or zi > 5.5443}.

As shown in Fig. 3, we can see that

ε10 > 5.5443, ε12 > 5.5443, ε15 > 5.5443.

Thus (ε1, ε2, · · · , ε30) ∈ W . Therefore we think either the estimated disturbance term
N(0.0000, 2.7449) or the fitted linear regression model (12) is inappropriate.
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5 Conclusion

This paper first introduced a mathematical tool of uncertain hypothesis test to decide
whether some hypotheses are correct or not, based on observed data. With the help
of the concept of nonembedded uncertainty distribution family, the test for two-sided
hypotheses was constructed. Then uncertain hypothesis test was employed in uncer-
tain regression analysis to test whether the estimated disturbance term and the fitted
regression model are appropriate. Finally, this paper gave some numerical examples
to illustrate the test process.

In the future, the uncertain hypothesis test will be applied in other development
fields of uncertain statistics like estimating uncertainty distribution, uncertain time
series analysis and parameter estimation in uncertain differential equation.
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