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Abstract

Probabilistic linguistic variable is a kind of powerful qualitative fuzzy sets, which
permits the decision makers (DMs) to apply several linguistic variables with proba-
bilities to denote a judgment. This paper studies group decision making (GDM) with
normalized probability linguistic preference relations (NPLPRs). To achieve this
goal, an acceptably multiplicative consistency based interactive algorithm is pro-
vided to derive common probability linguistic preference relations (CPLPRs) from
PLPRs, by which a new acceptably multiplicative consistency concept for NPLPRs
is defined. When the multiplicative consistency of NPLPRs is unacceptable, models
for deriving acceptably multiplicatively consistent NPLPRs are constructed. Then,
it studies incomplete NPLPRs (InNPLPRs) and offers a common probability and
acceptably multiplicative consistency based interactive algorithm to determine miss-
ing judgments. Furthermore, a correlation coefficient between CPLPRs is provided,
by which the weights of the DMs are ascertained. Meanwhile, a consensus index
based on CPLPRs is defined. When the consensus does not reach the requirement, a
model to increase the level of consensus is built that can ensure the adjusted LPRs to
meet the multiplicative consistency and consensus requirement. Moreover, an inter-
active algorithm for GDM with NPLPRs is provided, which can address unaccept-
ably multiplicatively consistent INNPLPRs. Finally, an example about the evaluation
of green design schemes for new energy vehicles is provided to indicate the applica-
tion of the new algorithm and comparative analysis is conducted.

Keywords Group decision making - NPLPR - Common probability - Acceptably
multiplicative consistency - Consensus

P4 Yongliang Zhang
zhyoliang@163.com

Extended author information available on the last page of the article

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10700-021-09360-1&domain=pdf

100 J.Tang et al.

1 Introduction

Due to various subjective and objective reasons, it becomes more and more diffi-
cult to demand the DMs to offer exact or fuzzy numerical judgments. In view of
this situation, linguistic variables (LVs) proposed by Zadeh (1975) are powerful as
a tool to express the subjective recognitions of DMs such as “very good”, “very
bad”, and “fair”. After the original work of Zadeh (1975), various decision-making
methods with linguistic information are proposed. Taking the merits of LVs and
preference relations (PRs), Herrera and Herrera-Viedma (2000) introduced LVs to
PRs and presented linguistic preference relations (LPRs). Then, the authors studied
the application of LPRs in decision making by the linguistic choice function and
mechanism. Xu (2004a) first noted the consistency of LPRs and introduced an addi-
tive consistency concept for LPRs, which are defined on the additive linguistic scale
(ALS) T={s la=—t, —t+1, ..., t—1, t}. Alonso et al. (2008) offered an additive
consistency concept for LPRs defined on the ALS S={s la=0, 1, ..., 2¢t}. Then, the
authors offered an interactive algorithm to determine missing LVs in unacceptable
InLPRs and defined a distance measure based consensus index. Different from the
additive consistency concepts for LPRs (Alonso et al., 2008; Xu, 2004a), Xia et al.
(2014) proposed a multiplicative consistency concept for LPRs defined on the ALS
S={s,la=0, 1, ..., 2¢t}. In a similar way as Alonso et al. (2008), Xia et al. (2014)
offered an interactive algorithm to ascertain missing LVs in InLPRs. Furthermore,
Alonso et al. (2009) researched GDM with InLPRs that follows the additive consist-
ency concept in the literature (Alonso et al., 2008). Different from the above consist-
ency-based research, Herrera et al. (1996) first studied the consensus of GDM with
LPRs by the linguistic quantifier function, which ensures the ranking results with
the given agreement level. To measure the consensus level and to detect the non-
consensus judgments, the authors defined three consensus measures. Considering
the situation where different DMs may use different linguistic granularities to better
express their quality judgments, Herrera-Viedma et al. (2005) discussed the consen-
sus of GDM with multigranular LPRs using the proximity measure and guidance
advice system. To achieve these goals, the authors defined three similarity based
consensus levels and offered a non-consensus judgment identification rule. Mean-
while, Herrera-Viedma et al. (2005) gave four adjustment direction rules.

With the development of decision making with linguistic information, some
researchers noted that LVs still have some limitations of denoting the judgments
of DMs. Considering the issue, many extension forms of LVs are proposed (Meng
et al., 2019; Rodriguez et al., 2011; Xu, 2004b). They are defined to denote dif-
ferent kinds of qualitative judgments such as uncertain qualitative judgments, pre-
ferred and non-preferred qualitative judgments, and hesitant qualitative judgments.
With respect to hesitant fuzzy linguistic variables (Rodriguez et al., 2011), Pang
et al. (2016) noted that this type of linguistic fuzzy sets can only express the hesitant
qualitative judgments, but cannot discriminate their probabilities. Thus, Pang et al.
(2016) introduced the concept of probabilistic linguistic term sets (PLTSs), which
are composed by several LVs with each one having a probability to show the differ-
ence of corresponding judgments. Then, the authors offered a probabilistic linguistic
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TOPSIS method based on the defined aggregation operator. Following the original
work of Pang et al. (2016), some probabilistic linguistic matrix based decision-mak-
ing methods are proposed such as probabilistic linguistic ORESTE method (Wu &
Liao, 2018), probabilistic linguistic MULTIMOORA method (Liu & Li, 2019), and
probabilistic linguistic ELECTRE III method (Liao et al., 2019).

In contrast to the above methods, Zhang et al. (2016) developed the first decision-
making method with probabilistic linguistic preference relations (PLPRs), which is
based on the additive consistency analysis. To deal with incomplete PLPRs (InPL-
PRs), where the probabilities of some LVs in PLTSs are missing, Gao et al. (2019a)
developed an expected additive consistency based decision-making method. Dif-
ferent from InPLPRs discussed by Gao et al. (2019a), Tang et al. (2020) studied
decision making with InPLPRs whose LVs in PLTSs are incompletely known. To
do this, the authors considered any unknown LV as an interval LV [s_, s,] for the
ALS T={sa=—t,—t+1, ..., t—1, t}. Then, they transformed InPLPRs to inter-
val fuzzy preference relations (IFPRs) and developed an additive consistency based
decision-making method with InPLPRs. Besides the above additive consistency
based decision-making methods, Gao et al. (2019b) proposed a multiplicative con-
sistency concept for PLPRs, which is based on the score of PLTSs. According to the
relationship between interval judgments and priority weights (Tanino, 1984), Gao
et al. (2019b) built a model for calculating the priority weight vector from score
based acceptably multiplicatively consistent PLPRs. It should be noted that this con-
cept is a direct utilization of Xia et al.’s concept for LPRs (Xia et al., 2014). There
are some drawbacks: (i) it causes information loss because this concept only uses
one LPR; (ii) it cannot reflect the qualitative hesitancy of the DMs; (iii) none of
LPRs constructed by LVs in PLPRs is multiplicatively consistent, while it is score
based multiplicatively consistent; (iv) the numerical priority weight vector cannot
indicate the qualitative information. Song and Hu (2019) also researched decision
making with PLPRs based on the multiplicative consistency analysis, which is simi-
lar to Gao et al.’s method (Gao et al., 2019b). After reviewing previous research
about decision making with PLPRs, we find that there are some limitations: (i) all
previous consistency concepts cause information loss; (ii) none of them is sufficient
to cope with InPLPRs. Besides these two issues, multiplicative consistency based
methods (Gao et al., 2019b; Song & Hu, 2019) have more drawbacks such as (i)
neither of them studies InPLPRs; (ii) interactive methods for improving the multi-
plicative consistency level cannot ensure the minimum total adjustments; (iii) they
cannot ascertain which LVs case the inconsistency; (iv) neither of them considers
GDM with PLPRs.

Since any PLPR can be easily converted into NPLPRs by normalizing the prob-
ability distribution on PLTSs, the paper further studies GDM with NPLPRs and
offers a new method. The main contributions include: (i) a new acceptably multi-
plicative consistency based interactive algorithm is provided to derive CPLPRs, and
then a new acceptably multiplicative consistency concept for NPLPRs is defined;
(i1) models for deriving acceptably multiplicatively consistent NPLPRs from unac-
ceptable ones are constructed; (iii) a common probability and acceptably multipli-
cative consistency based interactive algorithm to determine missing judgments is
offered, which can fully cope with InNPLPRs; (iv) a correlation coefficient between
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CPLPRs is provided to obtain the weights of the DMs; (v) a distance measure based
consensus index to measure the agreement degrees of individual opinions is given;
(vi) a model is established to improve the level of consensus, which makes the
adjusted LPRs meet the requirements of multiplicative consistency and consensus;
(vii) an interactive algorithm for GDM with NPLPRs is provided that can address
unacceptably multiplicatively consistent InNPPRs; (viii) numerical example and
comparative analysis are offered. The originalities of this paper include: (i) this is
the first (acceptably) multiplicative consistency concept for NPLPRs that fully con-
siders PLTSs offered by the DMs; (ii) this is the first multiplicative consistency
based method that can cope with INNPLPRs; (iii) this is the first method for increas-
ing the multiplicative consistency (and consensus) level of NPLPRs in view of the
minimum total adjustment; (iv) this is the first method for GDM with InNPLPRs
that follows the multiplicative consistency and consensus analysis.

The rest of this paper is organized as follows: Sect. 2 offers some basic knowledge
about LPRs and NPLTRs. Section 3 gives an interactive algorithm to derive CPL-
PRs in view of the multiplicative consistency of LPRs. Then, an acceptably multi-
plicative consistency concept for NPLPRs based on CPLPRs is defined. Section 4
discusses INNPLPRs and offers a common probability and acceptably multiplicative
consistency based interactive algorithm to determine missing judgments. Section 5
constructs models for getting acceptably multiplicatively consistent NPLPRs from
unacceptable ones. Section 6 studies GDM with NPLPRs. First, a similarity measure
between individual NPLPRs is defined, which is used to determine the weights of the
DMs. Based on the comprehensive expect LPR, a new consensus index is defined.
When the consensus level is lower than the given threshold, a model for improving
the consensus degree is built that can ensure the acceptably multiplicative consist-
ency of the adjusted LPRs. Then, an interactive algorithm for GDM with NPLPRs
is provided. Section 7 selects the evaluation of green design schemes for new energy
vehicles to show the application of the new method. Conclusion is offered in Sect. 8.

2 Basic concepts

To show the pairwise qualitative judgments, Herrera and Herrera-Viedma (2000)
introduced LPRs as follows:

Definition 2.1 (Herrera & Herrera-Viedma, 2000) The matrix R = (ry),y, on the
finite object set X={x i=1, 2, ..., n} for the ALS S={s,| a=0, 1, ..., 2¢} is called
a LPRif.

P @1 =S, T =8, )

where r; € S is the qualitative preferred degree of the object x; over x; for all i, j=1,
2, ..., 1.

Remark 2.1 Let s, and Sp be any two LVs in the ALS S={s,| a=0, 1, ..., 2¢}. Then,
their operational laws are defined as (Xu, 2004a):
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@H s, ® Sp = Sep
(i) 5,@85 =544 )
(iii) As, =s5),and (s,)" = 54, 4 € [0, 1].

For the convenience of following discussion, let I be a function defined on the
ALS S={s,la=0, 1, ..., 2t}, where I: S ={0, 1, ..., 2¢t}, namely, I(s,) =a for any s,,
eS.

Similar to the multiplicative consistency concept for fuzzy preference relations
(FPRs) (Tanino, 1984), Xia et al. (2014) offered the following multiplicative consist-
ency concept:

Definition 2.2 (Xia et al., 2014) Let R = (r;),x, be a LPR on the finite object set
X={xli=1, 2, ..., n} for the ALS S={s,/i=0, 1, 2, ..., 2¢t}. R is multiplicatively
consistent if.

rij®rjk®rki=rji®r,-k®rkj 2)

foralli,k,j=1,2,...,n
According to Definition 2.2, Xia et al. (2014) offered another equivalent condi-
tion to judge the multiplicative consistency of LPRs.

Property 2.1 (Xia et al., 2014) Let R = (rij)an be a LPR on the finite object set
X={xli=1,2,...,n} for the ALS S={s,1i=0, 1, 2, ..., 2t}. It is multiplicatively con-
sistent if and only if the following condition is true, where

)\ o Lo 1)
() Moo, ®

foralli,j=1,2,...,nsuch thati <j.

For each triple of (i, k, j), by Eq. (3) we have

I(rl-j) R L I(ry) I(rkj)
(2o <2t - 1<r,-,->) = Licris (logA <2t - I(r,-k)> +logs <2r— 1<rk,-)))

1)\ 1 n I(ry) 1(ryy)
=8 (51 ) = 755 B (o0 (55005 ) + oo (57

4
_ " 1) 20-1(ry)
where A = maxy._, . ( 210y’ TGy
1) 2-1(ry) . .
To make meaningfully on the ALS S={s1i=0, 1, 2, ..., 2t}, we
2-1(ry) 1(ry)

let I(r;) =0.001 or 2t — 0.001 when I(r;) =0or 2z, namely, we replace
ryj = 80 O 85, With r; = 80 091 OF 85,0 091> Where i, j=1, 2, ..., n such thati < j.

To measure the multiplicative consistency of LPRs, we define the following for-
mula for any LPR R = (ry),, on the ALS S={s,l =0, 1, ..., 2}:
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2 n
MCIR) =1~ ( b ZiJ‘:l,K/ (5)
I(ry) 1 n I(ry) 1(r;)
o2 (2: - 1(ri/-)> ) (Zkﬂ-k#u (logA (2; - I(r,»k)> *logs (21 ~10) )))

I 21
From the definition of A, we know that ~ < i) < Aforall i j=1,2,
A 2t—1(r ) 1y

..., n such that i < j. Therefore, —1 < log, <2l[_(;(i )>»10gA <211(i()y)> <1 for all i,

j=1,2,...,nsuchthati <.
B e a u S e
_ ’(r,',') _ I(r,»k) ](rkj)
3 <logy <2r—1(n-j)> 2 (Zk Lke#ij ( (2t—1(r‘-k)> +log, (2:—1@)))) <3, and
there are 2= jtems in Eq. (5), we know that 0 < MCI(R) < 1. Furthermore, the

bigger the value of Eq. (3) is, the higher the multiplicative consistency level will be.
Especially, when MCI(R) = 1, we have

I(ry) 1 n I(ry) 1(ry)
o2 (5 1) = s (o8 (5705 ) e (577

for each pair of (i, j) such thati < j, by which one can conclude that this LPR R is
completely multiplicatively consistent.

Different from LPRs that can only denote the exact qualitative recognitions of the
DMs, Pang et al. (2016) presented PLTSs to express the qualitative hesitant judg-
ment and endow each LV with a probability to discriminate the difference.

Definition 2.3 (Pang et al., 2016) Let S={sli=0, 1, ..., 2t} be an ALS. A PLTS
L, is denoted as: L(p)={L(p)| L, € S, p;>0, [=1,2, ..., m, Y pi<1}, where L,
(pp is the LV L, with the probability p,, and m is the number of LVs in L(p). When
Z;L p;=1, then L(p) is called a normalized PLTS (NPLTS).

Based on the concept of PLTSs, Zhang et al. (2016) introduced them to prefer-
ence relations and defined PLPRs.

Definition 2.4 (Zhang et al., 2016) A PLPR B on the object set X={x;, x5, ..., X,,}
for the ALS S={s1i=0, 1, ..., 2t} is denoted as: (LU(p)) , where Ly(p)= {szl
(pij,l)ILij?lES, pij,,zo, =12, ..., m, Zz 1PU1<1} is a PLTS denotlng the prefer-
ence judgment of the object x; over x;, and m; is the number of LVs in L(p). Ele-
ments in B have the following propertles

Pija = Pjimgr1-1 Lo + Lji 11 = 825 Li(p) = {s: (D}, my = my, Ly < Ly,
(6)
where [=1, 2, ..., m,-jfor alli,j=1,2,...,nwithi<j.

Because any PLTS L(p)={L(p)| L, € S, p;=0, [=1, 2, ..., m, Z;’ilplsl} can
be easily derived its NPLTS by normalizing the probability distribution, namely,
L)={L@/Y", p) L, €S, p/Y p,>0, [=1, 2, ..., m}. Therefore, this paper
restricts to normalized PLPRs (NPLPRs) whose elements are NPLTSs. Notably,
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NPLPRs are equivalent to distribution linguistic preference relations, which was first
introduced by Zhang et al. (2014).

Considering the multiplicative consistency of NPLPRs, Gao et al. (2019b) intro-
duced the following score based multiplicative consistency concept:

Definition 2.5 (Gao et al., 2019b) Let B=(Ly(p)) _ be an NPLPR on the object set

X={x;, %y, ..., x,} for the ALS S={s5/i=0, 1, ..., 2?}X It is multiplicatively consistent if

E(Ly(p)) ® E(Ly(p) ® E(Ly(p)) = E(Ly(p)) ® E(Ly(p)) ® E(Liy(p))  (7)

forall i, k, j=1, 2, ..., n such that i # k #j, where E(Lij(p)) =ZZ’1 Li/‘,lpi/}l is the score
of the PLTS Lij(p) foralli,j=1,2, ..., n.

Remark 2.2 From Definition 2.5, one can find that E(Lij(p)) isa LV forall i, j=1,
2, ..., n. This means that Definition 2.5 analyzes the multiplicative consistency of
PLPRs based on LPRs. This process cannot reflect the hesitancy of the DMs and
will ineluctably lead to information loss. Let us consider the following NPLPR

{541} {53(1/4),54(1/2),55(1/4)} {5,(1/3),5,(1/2),54(1/6)}
B = {s3(1/4),5,(1/2),55(1/4)} {s4(1)} {s,(D}
{54(1/6),56(1/2),57(1/3)} {s6(1)} {s,(D)}

which is defined on the object set X={x,, x,, x5} for the ALS S={s,li=0, 1, ..., 8}.

S4 Su Sy
According to Eq. (7), we derive the score based LPR E(R) =] 54 s, 5, |- One
S6 S6 S4
can check that each LV in E(R) is derived from one LV in the corresponding NPLTS.
According to Definition 2.5, we conclude that this NPLPR B is multiplicatively con-
sistent from the multiplicative consistency of E(R). However, this concept neither
considers the LVs in the sets {s;, s5} and {s;, s,} derived from the NPLTSs L,,(p)
and L,5(p) nor considers any probability information. Especially, it cannot show the
qualitative hesitancy of the DMs. On the other hand, an NPLPR may be score based
multiplicatively consistent while none of LPRs derived from the NPLPR is multipli-
catively consistent. This further shows that Definition 2.5 is unsuitable to define the
multiplicative consistency of NPLPRs.

Example 2.1 Let X={x,, x,, x;} be the object set and S={s,1 i=0, 1, ..., 8} be the
ALS. The NPLPR B on X for the ALS S is defined as:

s,(D)} 55(1/3),53(2/3)} s5(2/3),s6(1/3)§
B= s5(2/3),s6(1/3){ sy(D)} 56(3/5),5,(2/5)} |
5,(1/3),55(2/3) 51(2/5)752(3/5)} S4(1)}
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Sq  Sg/3 S16/3
According to Eq. (7), we derive the score based LPR E(R) =| s16/3 54 S35 |,
Sg/3 S8/5 S4
which is multiplicatively consistent according to Definition 2.2. Following Defini-
tion 2.5, we conclude that the NPLPR B is multiplicatively consistent. However, one
can check that none of LPRs directly obtained from the LVs in the NPLPR B is mul-
tiplicatively consistent, where

S4 Sy S5 S4 Sy S5 S4 Sy S¢ S4 Sy S
Rl = S6 S4 S6 ,R2 = S() S4 S7 ,R3 = S6 54 Sﬁ ,R4 = S6 S4 S7 N
S3 8y 84 S3 81 84 Sy Sy 84 Sy §1 84
S4 83 S5 S4 83 S5 S4 §3 S¢ S4 53 S¢
Rs =155 54 ¢ |, Rg =155 4 57 |\ Ry =] 55 54 5¢ |, Rg =] 55 54 57 |
S3 8y 84 S3 81 84 Sy Sy 84 Sy §1 84

Following Tanino’s equivalent multiplicative consistency concept for FPRs,
Gao et al. (2019b) further offered the following multiplicative consistency concept,
which is then used to calculate the priority weight vector.

Definition 2.6 (Gao et al., 2019b) Let B:(Lij(p))m be an NPLPR on the object set
X={x}, x5, ..., x,} for the ALS S={s1i=0, 1, ..., 2¢}. It is multiplicatively consist-
ent if.

Wi
E(Ly(p)) = 2tWi vy )
forall i, j=1, 2, ..., n, where w=(wy, w,, ..., w,) is the priority weight vector such

that Z?=1 w; = land w;>0forall i=1,2, ..., n.

Equation (8) is incorrect because E(Ly(p)) is a LV while ZZL is a numerical
value. Thus, it should be I(E(L;(p)))= ZI#

equivalent, namely, a PLPR is multiplicatively consistent following Definition 2.5 if
and only if it is multiplicatively consistent according to Definition 2.6. Therefore,
Definition 2.6 has the same issues as the above analysis. Furthermore, references
(Gao et al., 2019b; Song & Hu, 2019) both employ Eq. (8) to calculate the numerical
priority weight vector, which cannot show the qualitative judgments of the DMs.

witw;

. In this case, Definitions 2.5 and 2.6 are

3 Multiplicative consistency analysis of NPLPRs

Based on the analysis of previous multiplicative consistency concepts for NPLPRs,
one can find that they are insufficient to define multiplicatively consistent NPLPRs.
More reasonable and natural multiplicative consistency concept is needed. There-
fore, the section continues to discuss the multiplicative consistency of NPLPRs and
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offers a new multiplicative consistency concept based on CPLPRs, which fully con-
siders the NPLTSs offered by the DMs.

For any given NPLPR B= (L (p)) , its corresponding linguistic hesitant prefer-
ence relation (LHPR) (Zhu & Xu, 2014) is defined as L= (L ]) o’ , where Ly (p)={Ly,
(P Ly €8, py20.1=1,2, ... omy, X" p;,=1} and Ly={L, IL; € S, =1, 2,

mi,-} forall i, j=1, 2, ..., n. Followmg the work of Tang et al. (2020), any LPR
R = (r;),x, obtained from the LHPR L=(L; ),,,, can be expressed as:

nxn
m Xij.
o= [T ()™ ©
1 if the LV L, is chosen ;
where y;;, = { 0 otherwise o such that Zz = land ;) = K11

foralli,j=1,2,...,nandalll=1,2, ..., my.
When the LPR R = (r;),, is acceptably multiplicatively consistent, we have

2 )\ 1 (e 10, 10
gETTEn DY A <1<rj,) ) Th-2 (Zkzl-k#w’ (k’gA (lm,-)) +loes (1(»-,-0 >>)

where MCI" is the given multiplicative consistency threshold.
Put Eq. (9) into Eq. (10), we obtain

=mcr - (10)

my my
11 i 108 (I(Lg/.l)) - Z,=] Zjiny+1-1108a (I(er +1- 1))

2 n m ’ "
T 3u(m-1) z,'Fuq 1 n Z,:kl Ziea10ga (ILy)) = 21:: Kk, +1-1108 (I(Lkijn,‘i»l—/)) > MCT
- ZA ki )

n-2 m, m
+ 21;1 T loga (I ) = E,:, Kk, +1-11084 <I(L/A,:w,+|—1)

L=t a0 Koy =2=1L)

for all ij=1.2,...m; and all I=1.2,...m;
i
z 4aslog < I(Ly,) )
k.l A
2 n m, I(Ly,) 1 n =1 % 2t =1Ly
-2z ] N L > MCr*
Ty s | Lo 4 108 (2’—1(%4) 3| D | ORIRY | s
" ZH Fis 1088 <2f - I(Lm))
. Yaslog I(Lyp)
] KLy ! . e Ty /) 3n(n - 1)
a my il _ n(n _ .
= Do | L 4108 (Zt—uL,-,-.,)) rs DS | g A\|I|IF T2 M
+ 2/:1 Xkji 108a <2t71(Lk,-A,))
(11)
m; IL;) m;; 2=I(L;,;)
where A = max” Yoy —— A
ij= ll<j< =1 )(ljylzt_[(L[/,J)’ 1=1 Xijl ILy)

Now, we offer an acceptably multiplicative consistency based interactive algo-
rithm to derive all CPLPRs from the given PLPR B =(Lij(p))n><n'

3.1 Algorithm I. The procedure of deriving CPLPRs from NPLPRs

Step 1:Letg=1,and R¢ = (rg)m be the LPR derived from the LHPR L= (L )
for the NPLPR B=(Ly(p)), . where r% = [T,"} (L;,)™" for all i, j=1, 2,
and y;;, is a 0-1 indicator Varlable as shown in Eq. (9). Let

nxn
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S 1Ly
=1 28\ 3 T

1 n miy I(L,“) mi I(ij{,) 12
) <Zk:1.k;w (Z/— Ziei 102 <2z —I(Liky,)> + 20 titoga ( 57 “ 1Ly (2)

+ -
-5 48T =0
ij ij

for each pair of (i, j) such that i <j, where A as shown in Eq. (11), s *and e are
deviation values such that eg + ‘;’ =0and e , ;g, >0.

To estimate whether the LPR REis acceptably multiplicatively consistent, accord-
ing to Eqgs. (11) and (12) we build the following model:

¢ = min 6%

X (7 +e7) -0 = 2R

ij ij

oo ( L) )
_ Xkt 108\ 57— 7
E'”" o Iy N 2" =1 Zie1 1084 \ 577 I(Ly ) et e 0
1=1 Xiid 1084 2% — (L) n—2 k=1k#ij I(Lyy)) ij ij

21 llkjl N (21_1(ijl))

<A ij=1,2..mi<j

my I(Ly,) my 20— 1I(Lyy)
U gy <A, T
=4 I )

1 il
I=1

n-1 xan my I(Ly; ) -1 2t = I(Lyy)
A= Z, 1 Z, i+1 U(Z )(‘112;_1@ ,;)) Z,_ Z, i+1 U(ZI | Xii ILy)

Kjj =1or0, v.:l or 0,i,j=12,...,mi<j

n— n -1
;(v,
X0 X bt

1:”| Xt = 1, i,j=1,2,....mi#]j

Xig = lor0, [= 1,2,“4,m,~;i,j: L2,....mi#j
Eg'J'E’?'ff:O,e”J', &7 >0, Lj=12,....mi<j
[ i i

>0

(M-1)
where &% is the consistency deviation value, the first constraint is obtained from

Eq. (11), the second constraint is Eq. (12), and the third to eighth constraints ensure
m; 1Ly m; 2-I(L;))

ij=1,i<j =1 Xijlz;q([‘w)’ 1=1 il ILy)

Solving model (M-1), we get the optimal O-1 indicator variables ;(l;f , for all i,

A = max”

J=12,..,nandall/=1,2, ..., my. For each pair of (i, ), without loss of generality,
let ;= . Then, we obtain the LPR R¢ = (r)usn Where r = Ly, forall i, j=1,2,

1. When ¢*¢=0, we know that RS is acceptably multlphcatlvely consistent.

il

Step 2: Determine the common probability p® of R8, where

pS= min min {p,-j,lg} (13)

1<i<n—1i+1<j<n

namely, p® equals to the minimum value of the probabilities of all LVs Ll-j,,g in B.
According to the common probability p®, we derive the CPLPR R$(p8) = (r;(pg ))
nxXn
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Delete the CPLPR R#(p#) from the NPLPR B=(L;(p)),, and obtain the PLPR
BS = (Lig(p‘g)) , where
v nxn
Lo = { BONMEa i)Y O i g, =POh g > 2%
v Lij(p)\{Lij,lg(pij,lg)L Dij1, = Pt

foralli,j=1,2,...,n

Construct the corresponding LHPR L7¢ :(L;g) for the PLPR

nxn

B8 = ‘g(p—g)) , where
L IL =L, 1=1,2,. > 8
8= { ll it Ly Piy, pgforalli,j=l,2,...,n.
U] {LullLul Ly, l=12,. ml],laélg}, Piji, =P
Step 3: Let RSt = (ri“)nxn be the LPR derived from the LHPR L™¢=(L_*),,,
m; < )%;1
where rf“ = =LA v, for all i, j=1, 2, .., n, and
ij my; L i,
=11, ( 1]1)
m;j
o= 1
41 18 chosen such that Zz:np,,, >pe Xl

1 ifthelLV L.
)(Ul =

0 otherwise
)(Ul j&lﬂl +1- l’l - 1 2 y

lﬂi/- _ 1
21:1,1;&1 g =pe X
Xiji = Xjimgrr-p L= 1,2, omy, [ # 1,

With respect to the LPR R&*! = (rgH)
we can obtain the LPR Rngl (rg+1)

foralli,j=1,2,...,n

return to Step 1. Solving model (M-1),

nxn?

by the optlmal 0-1 indicator variables ;( i

X
1,2, Li=1.2,
for all or all . Similar to the analysis of the
l—12 [=1,2,. my,l;él
LPR R8, let Xul = 1 for each pair of (i, 1) with i <j. Then, we get rg ul ] for

alli,j=1,2, ...,

Step 4: Determine the common probability p¢ ™! of R¢*!, where

¢ . . . . . : g . —
= min min min . ol l } min min { oo =pS il =1 }
P {1Si§n—1i+15j5n {p’”ﬁ' o1 7l * 1ot i1 opn Pides TP fer1 T he
(15)

+1

namely, p*™ equals to the minimum value of the probabilities of all LVs L,

g+1

Uilgy

B78. By the common probability p we derive the CPLPR

g+1(pe+ly — +1og+l
R et = (i per))
Again deleting the CPLPR R#*!(p#*!) from the PLPR B~¢ = <L;g (p8 )) , and
h nxn
the PLPR B¢+ = (L;(g“)(p‘(g*”)) is obtained, where

nxn
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Lf(g+l)(p_(g+1)) — Li]zz(p_g)\{LijvlgH (I’l:f,]g+] )} {Lz/l +l(pij!lg+l - pg+1)}’ pi/"lgﬂ > pg-:—l
Y Llj (p_g)\{LijvlgH(pijvlgH)}’ pijvlgﬂ = pg+

foralli,j=1,2,...,n

Step 5: Repeat Steps 3 and 4 until we have p' + p? + ... + p” = 1, where p? is
the common probability of the LPR RS, g=1, 2, ..., z, and x is the number of
derived LPRs from the NPLPR B. Meanwhile, we obtain the CPLPRs R$(p?),
where g=1,2, ..., 7

Remark 3.1 Let R = (r;),x, be a LPR on the object set X={x;, x,, ..., x,} for the
ALS S={s1i=0, 1, ..., 2t}, and p be a probability such that 0 <p < 1. Then, the cor-
responding CPLPR R(p) = (r;;(p)),x, is defined as:

pl(r ) s I(r ) p><2t’ spl(r,»i) = Sp><t (17)

such that r,-j(p) = DTy = Spiery) foralli,j=1,2,...,n
Next, we offer the concept of multiplicatively consistent CPLPRs.

Definition 3.1 Let R = (r;),,x, be a LPR, and R(p) = (r;;(p)),, be its corresponding
CPLPR. R(p) is multiplicatively consistent if.

1) ® Spicry) B Spir) = Spir) @ Spicr) & Spicry) (18)

foralli, k,j = 1,2,...,n, where p is a probability such that 0<p < 1.

Property 3.1 Let R = (r),x, be a LPR and R(p) = (r;(p)),x, be its correspond-
ing CPLPR. R is multiplicatively consistent if and only if R(p) is multiplicatively
consistent.

Proof From Definitions 2.2 and 3.1, one can easily derive the conclusion.]

Remark 3.2 Similar to LPRs, let us further consider the acceptably multiplicative
consistency of CPLPRs. Let R = (r;),x, be a LPR and R(p) = (r;(p)),«, be its cor-
responding CPLPR. Similar to Eq. (4), the multiplicative consistency level of R(p)
is defined as:

MCI(R(p))

2 n
=]- — 1
3n(n—1) Zz,,:l,zq 0

2 n
=1-—— lo
3n(n—1) Zi.;:l.iq

pl(ry) 1 lo pl(ry) 1 plry)
g <p2t pl(r)) 2<2k '**'( o8 (P2f pl(n))+ o8 <p2tfpl(rk,-))>)

I(ry) I(ry) | I(ryy)
8 (2: 1tr, ) ( AH#J( (21 I(r,())+0gA(2t—I(r,q))>)

(19)

@ Springer



Common probability-based interactive algorithms for group... 111

Equation (19) shows that LPRs and their corresponding CPLPRs have the same
multiplicative consistency level. According to the above analysis, we offer the fol-
lowing acceptably multiplicative consistency concept for NPLPRs.

Definition 3.2 Let B=(L;(p)) , be an NPLPR on the object set X={x;, x, ..., x,}

for the ALS S={s1i=0, 1, ...r,lx2t}. It is acceptably multiplicatively consistent if all
CPLPRs R8(p8) = <r§(pg )> ,g=1,2, ..., m derived from Algorithm I are accept-
! nxn

ably multiplicatively consistent. Furthermore, when all CPLPRs for the NPLPR
B=(Ly(p)),,, derived from Algorithm I are multiplicatively consistent, then B is
multiplicatively consistent.

To show the concrete application of Algorithm I, let us consider the following
example.

Example 3.1 Let X={x,, x,, x;} be the object set and S={sli=0, 1, ..., 8} be the
ALS. The NPLPR B on X for the ALS S is defined as:

{s,(1)} {5,(0.3), 55(0.7)} {55(0.4), 5,(0.6)}
B =| {55(0.7),5,(0.3)} {5,(1)} {5,(0.4), 55(0.3), 5,(0.3)} [.
{54(0.6), 55(0.4)} {5,(0.3),55(0.3),5,(0.4)} {5,(1)}

Let MCI” =0.95. Following Algorithm I, we obtain the LPRs

. S4 3 84 5 Sy Sy Sy 3 S4 53 53
R = SS S4 SS N R = S6 S4 Sﬁ andR = SS S4 S4 .
Sy4 53 Sy4 Sq4 Sy Sy 55 S4 Sy

Furthermore, their corresponding common probabilities are pl = 0.3,p2 =0.3,
and p3 = 0.4. Therefore, the CPLPRs are

54(0.3) 53(0.3) 5,(0.3) 5,(0.3) 5,(0.3) 5,(0.3)
R' = 55(0.3) 5,(0.3) 55(0.3) |, R*(0.3) = 54(0.3) 5,(0.3) 56(0.3) | and
5,(0.3) 55(0.3) 5,(0.3) 5,(0.3) 5,(0.3) 5,(0.3)

54(0.4) 55(0.4) 55(0.4)
R*(0.4) = | 55(0.4) 5,(0.4) 5,(0.4) |.
55(0.4) 5,(0.4) 5,(0.4)

From ¢*¢=0, g=1, 2, 3, we know that these three CPLPRs are acceptably multi-
plicatively consistent. Thus, the NPLPR B is acceptably multiplicatively consistent.
In fact, these three CPLPRs are fully multiplicatively consistent following Eq. (18),
by which we conclude that the NPLPR B is multiplicatively consistent.

Remark 3.3 From Examples 2.1 and 3.1, one can find that Definitions 2.5 and 3.2

don’t contain each other. When an NPLPR is multiplicatively consistent following
Definition 2.5, it may be inconsistent according to Definition 3.2. On the other hand,
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when an NPLPR is multiplicatively consistent based on Definition 3.2, we cannot
conclude that it is multiplicatively consistent following Definition 2.5.

4 InNPLPRs

This section discusses INNPLPRs, namely, there are missing judgments. Consider-
ing the construction of PLPRs, the missing information can be classified into three
cases: (i) probability is missing, (ii) LV is missing and (iii) both of them are missing.

Let B=(L;(p)), , be an INNPLPR, where Ly(p)={Ly; (py)| L;; € S, p;; =0,
=1,2,..., mg, Z;’Z D= 1} foralli,j=1, 2, ..., n. Furthermore, let UP(i, j) = {{IThe
probability if Lij,l (pij,,) is missing, where [=1, 2, ..., mii}’ let US(i, j)={lIThe LV of
L, (p;;p) 1s missing, where [=1, 2, ..., m;}, and let UPS(i, j)= UP(, j)n US(, j). Let
S={sli=0, 1, ..., 2t} be the ALS.

Now, we offer a common probability and multiplicative consistency based inter-
active algorithm to estimate missing information in the InNNPLPR B =(Lii(p))n><n‘
4.1 Algorithm Il. The procedure of ascertaining missing judgments in INNPLPRs

Step 1: Construct LPRs from InNPLPRs.

Let g=1. With respect to the INNPLPR B=(L;(p)), ;x> let L=(L;),x, be the cor-
responding incomplete LHPR (InLHPR), which is defined as

{L;1=1,2,....m;}, Ale USGj) LUPSG.j))
Ly =9{Lj[=1,2,.... 1 & USGi.j) UUPS(i.j) } U{®(s)% : | € US(i.j) U UPS(i.j) } (20)

{@* (s, 1€ {0,1,...,2t}}, V€ US(i.j) U UPS(i,j)
and

{Lﬁ,,,w_,,l =1,2,.. ,mg/}, A 1€ USG.j) U UPS(,j)
L;= {Lj,._,w,,,l =1,2,..., | € US(i,j) UUPSG,j) } U{® (sy_ )i 1 Le USG.j) uUPSG) ) (21)

{®% ) (sy,_)%, 1€ {0,1,...,21}}, ¥ | € US(i. j) U UPS(, j)

is a 0-1 indicator variable such that 212;0 7., = land 7

where 7, i = Tijmg+1-La

il

forall 7=0, 1, ..., 2t and all | € US(,j) U UPS(,}j). Zio 7;,, = lensures only one
item in the ALS S={sli=0, 1, ..., 2¢t} to be chosen as the value of L,-j!,, and
Tijls = Tjigny+1-1, CNSUTES L0 L ® Lji,m,, +1-1 = 8y, for any [ € US(,j) U UPS(, )).

Remark 4.1 The first case in Eqgs. (20) and (21) means that all LVs in the PLTS L;(p)
are known. The second case in Eqgs. (20) and (21) indicates that there are known and
unknown LVs in the PLTS L;(p) simultaneously. The third case in Eqgs. (20) and

(21) shows that all LVs in the PLTS L, (p) are unknown. Because any LPR only
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takes one LV in each NPLTS, we use ®12; 0(sl)Tifv’v' to denote an unknown LV. Any
LPR R8 = (rg ), .., obtained from the InNLHPR L= (sz,' )5, Can be expressed as:

nxn nxn

®, (L; )1, Ale US(,j) uUPS(,))
8 _ m;; i, 2 00\ Vi
i = <®z—1 sgusii wopsiiy L) ’) ® (®rcusiy wupsiin (o)) ™)
Q2 (s, VI € US(, j) U UPS(. )
(22)

and r = S2-10y where y;;, = 1 or 0 such that Zl vy =1forall i, j=1,2,...,n

w1thz<] andalll—l 2,. my, T;, = =1 or Osuchthatz et Ty = = lforalli,j=1,2,
., nwithi<jandall t= 1, 2, ..., 2t, and other notations as shown in Eq. (20).

Step 2: Determine missing LVs based on the optimal model.

As we know, the values of missing judgments make the consistency of incom-
plete preference relations the higher the better. In view of the common probability
and multiplicative consistency analysis, we build the following optimal model for
the LPR R¢ = (rg )

nxn*
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n-1 n

. g+ g~

¢** = min E E . (s‘ + 5 )
i=1 hedjmit \" i i

105) 1 . 10%) 105)
1 — )= 1 — )4 — — 8t et =
oglo<21_1(r§)> n—2<Zk=1»k#i\/<0gm<2r—1(rfk) + ogm<2[_1(r:j) g+ 0

g -y PR PR
1) = [T 1y v, BI€ USGH VUPSG)) , Ly, # 5o and Ly, # sy,

16%) = 0011 x [0 1Ly o, A1E USG.)) WUPSG.J) » Ly, =so and Ly, # 53,

ij, |
my—1 . e L
165 = [T 1y, v x e = 0.01Y5%, A 1€ USG,j) UUPSG)) » Ly, # 5o and Ly, = sy,
10%) = 001 x [ ey 700 x 21— 0010, 1€ USG.j) UUPSG.)) . Ly, = sy and Ly, = 55,

. 2 ( 27 — 0.0z )””
[('i) - HI:IJ&US(L/) UUPS(ij) Ly, e x HIEUS(Lj) UUPS(iy) 00170 X H;:l 17X (20 = 0.01) ’
31€ USG,j) VUPSG.j), Ly, #sand Ly my # 8y,

1) =001 x [T

my

1=2,1¢US(ij) VUPS(iy)

21 Vit
Tij1o Tijda — i1
x H/eusu\/) UUPS(ij) (0'0] X I I,:l 1 X (2t = 0.01)7 ') s

31 € US(G,j) UUPS(G,j) and Ly, = sy and L, # sy,

Ly Yo I(Ly Yot

m;—1
= v Y Y, _ Yijm;
1% = Hl:l‘,mw) worsig 1L 0 I(L 7 X (21 = 0,015

S.t. 2—1 Vi
x H/eUS(zJ) VUPS(i) (0'01%'" x H,; 1 X = O'OI)TW> E
31€ USGi.j) VUPS(,j) and L; | # sy and L my =52
-1

1=2,I¢US(i,j) UUPS(i,j)

(0.01%“ x H:] [Tt X (2t — 0.01)is )y’/ '

1% =001 x [T I(Ly Y51 1Ly, )71 % (21 = 0.01)70s

X H[EUS(!,/) VUPS(ij)

31€ US(.j) UUPS(.j) and Ly, = sy and Ly, =55,
165) = 00170 x [ 17 x (2 = 0017, V I € US(i.j) U UPS(i.j)
1(if,) =2t— 1(";)
T e8>0
i
o vgr =Ly =1or 0, 1=1,2,...,m
ZZO T =1 for each / € US(i,j) U UPS(i,j), where 7;;;,, =1 or 0

il

2
=Ly, =10r0,=0,1,...,2— 1,2

ij=12...n

M-2)
where the first constraint is derived from Eq. (4) by taking the logarithm 10 and add-
ing the nonnegative deviation values ef}* and e‘;’_ for each pair of (i, j) such that i <j,
the second to fifth constraints are obtained from the first case in Eq. (22), the sixth to
ninth constraints are obtained from the second case in Eq. (22), the tenth constraint
is obtained from the third case in Eq. (22), the eleventh constraint is based on the
concept of LPRs on the ALS S={si=0, 1, ..., 2¢}, and other notations as shown in
Eq. (22).

Remark 4.2 In model (M-2), it adopts the logarithm 10. In fact, we can take any inte-
I(f’;)
2:—1(r§.)
meaningless, we replace I(r;) =0 with I(rg’.) = 0.01. On the other hand, when

ger bigger than one. To avoid the situation where log;, =log;, (0) is
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1075) . .
I(r*;) = 2t, then I(rfi) =2f— I(r*;) =0, and log,, <m> = log,, (0) is meaning-

less. In this case, we let [ (rg’.) = 2t — 0.01. For this purpose, we classify four cases
for the first and second cases in Eq. (22), respectively.

According to the relationship of LVs in LPRs, we have I (rf[.) =2t—1 (r‘;) for each
pair of (i, j) such that i <j. Thus,

" | Irf.‘}() : I("}z)
2k=l,k#i,}‘ 9210 2;_1(r§() +logio 2t—l(rg.)

o . %) 1)
(Zk Zk i+1 2k—f+l)<10g10<2t—112 k)> o g10<2t_1kj(r}fj)>>

=i—1 r—] 1
= 1+“k i+1

mi-1 i~1 21— I(ri.) I(rij)

=5 = 1 7N ! 20— 1)
k=1 Zk:l < 0210 < I(r‘,i.) 0% 2t - ](rf;)
1 ) | v

9 “k=i+1 Zk i+1 ( 0810 <2f - ](7‘5{)) " o810 <2t - I(ril) .
- 103) i
=il = Zk=j+l <10g10 <2 - 1("g)> o8 (Tﬁ;

Equation (23) shows that we can only employ the upper triangular LVs in the
InLHPR L=(L,-j) to derive the LPR R8 = (rg)m Thus, model (M-2) can be

equivalently converted to the following model:

—=n
T S

(23)
where
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o =min X3 (67 )

lo 71(’“) S (”‘ L +E L +E ) -+l =0
10 2[_1(&;) n—2 \Zk=1 _’L ,+| k—/+1 ij ij

10%) = Hf Iy i, BLEUSG) UUPSG)) , Ly, # 5o and Ly, # sy,
165 = 001 x [T 14y yor, BLE USGj) VUPSG)) » Ly, =so and Ly, # 53,
10%)= H[1 KLy, o x (20 = 001", B 1€ USG,j) UUPSG.)) » Ly g #so and Ly, = sy,

1(%) = 0.017 xH I(L, DX 2= 0.0, A 1€ USGi.j) UUPSG.j) . Ly, =sp and L

ij,my = Su

I(rg) H/ 1IZUS(ij) UUPS(i) I(L‘I RS Hzeusw) UUPS(i j) (0 0170 H 17 X (2 = 0.01) W')
31 € USG,j) UUPSG.)), Ly, # s and Ly, # sy,

1(r%) = 0.0171 <[1"

Yii

Vit [(L.. Yl
12 1gusiiy) wupsiy L 0 Ty )

x Hlsuw) oS (0,01 0 X H::l il X (2t — 0.01) m.)

31 € USG,j) VUPSG,j) and L; | =5, and L;; g # 5o,

Yij

S.1. 71
= i, )i — i
105 = H/ eusin wumsiy 1L Ly 75 X 21— 0.01)

7 2=l Tijla — Tijd 2
x H/eusw; UUPS(iy) (0‘01 e H;:] 170 X (20 = 0.01)"+ )
31 € USG,j) VUPSG,j) and Ly | # s and L;; my =S

1(%) = 001711 X H

Yij1

Vil [(L.. ) _ Timg
12 sgusiiy) wupsiy L 0 Ty, )7 X (21 = 0.01)

x Hleusu,/) worsin (0_01 10 X I_L:l 1fil X (2t — 0.01) u.l‘z:)

31 € USG.j) UUPSG.j) and Ly, =so and Ly, = sy,

it

165) = 0017 x [ 7 x 2~ 001y, VI € US(i.j) UUPS(i.j)
£§+,62 >0

Z/:". Yyu =L =1or 0, I=12 ..m

2
21;0 7;,, = 1 for each I € US(i,j) U UPS(i,j) such that i < j, where z;;, =1 or 0

22’ Ty, = 1,1‘]‘, =1or0,1=0,1,.,2t=1,2850,j=1,2,...,n,i <j
(M-3)
mi—1 -1 =n : :
where = B i and = By 88 shown in Eq. (23), and all other constraints as those
in model (M-2).
Solving model (M-3), according to the optimal values of 0—1 indicator variables,
we obtain the LPR R8 = (r‘;)m. Without loss of generality, let y.*f I, =17 =1land

ity

Tijz = lforalli,j=1, 2, ..., nsuch that i <J, all lgzl, 2, .. - My, and allr =0,1, 2,
2t From z; =1, we obtain that 5, is one LV in the PLTS L; whose all LVs are

unknown. Furthermore, if [ € US(i,j) U UPS(,j), from 77, = 1, we derive that the

lj,l,lg
unknown LV L, is 5, . Especially, when ri = 0.01, we get 75 = sy and 7, = s,,; When

ri = Sy_qo1» We derive 1 = 55 and 1 = 5.

Step 3: Determine missing probabilities based on LPRs.
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e determine the common probability p® of LVs

According to the LPR RS = (rfj)
in RS, which is defined as

m;

p.%’:min min Diil s min (l —E v 3 .AP1-1>
1<i<j<n,l, UP(i,j)UUPS(iyj) ] 1<i<j<n,l, €UP(i,))UUPS(iyj) I=1IUP(ij)UUPS(iyj) = Y-

(24)
where min Py, 1s the minimum value of the probabilities of the LVs
1<i<j<n.l, @UP(ij)UUPS(ij)” s
that construct the LPR RS, min (1 -y Ny D ) is the
1<i<j<n,l, €UP(i)UUPS(iy)) Zl:‘yléUP(WUUPS(’J) Piji

minimum value of the unknown probabilities of the LVs that construct the LPR Ré,
m;; eqe,e

and 1 — 21:1,1 eupijuupsi, Pt €nsures that the sum of the known probabilities and

p8 is no bigger than 1. In this way, we know that each LV with unknown probability

in R® has a probability that is no smaller than p#. Furthermore, we get the CPLPR
R = (Bp9)
nxn

Step 4: Construct InPLPRs by deleting CPLPRs.

Delete the CPLPR Ré(p?) = (rfj(pg)> from the INNPLPR B=(L;(p))
n

nxi

which we derive the corresponding InPLPR B8 = <L§(pg )> , where

nxn

by

nxn’

L0 = Lo\ Ly, (P, ) } U {Ls, (Pas, = 22) |
where p;, > p, and 21, € UP(i,j) U UPS(i. )

®

i) B0 = 1N Ly () -
ii ‘
where py;; = p, and 4 € UP(i,j) u UPS(i,))

0= 00\ {t, )} o {1, 0

d (i)}
where p, + Zl:l,lgUP(i,j)uUPS(i,j) s < 1, I, € UP(, j) U UPS(i. )

Li(p*) = Lij(p)\{Li,-,lg (p,-j,,g) }\{L,-j,, (pyjs)-1 € USGi.j) U UPSG, )\ {1, } }

h + Zm”
Where pg I=1,I¢UP(i,j))UUPS(i.j)

@iv)4
Py =1, I, € UP(i,j) U UPS(, )

) Li?;.(pg) = Lij(p)\{l‘ij,l,2 <pij,l,,> } u {Lij,lg (pij,lg —Pg) }
Vvl e UP(i,j) U UPS(,j)

(25)
for each pair of (i, j), the first two cases are for LVs with the known probabilities
in the LPR Rf. When p;, >p,, then we replace the item L, <pij’,g> with

Ly, (pij!,g — Dy ) Otherwise, we delete the item L;;; (pii,lg ) from L;(p). The third and
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fourth cases are for LVs with the unknown probabilities in the LPR RS. When

P + ZZ’] weuripoupsiy Pia < 1, the probability of the LV rl’; is no smaller than p%,
and  we replace Ly, pij’l§> with Ly, <p,-j!,g - pg>. However, if
pe + 21—1 IgupGjoupsiy P = 1. we know that the probability of the LV rg is p% and

all other unknown probabilities of LVs in the PLTS L;(p) equal to zero. In this case,
we delete them. In the fifth case, the item Lu,lg(pu,lg) belongs to the PLTS L;(p) such

that p;, >p*, where L;, =r.

Step 5: Process the InPLPR BS = (Lj;(pg)> in a similar way as the InPLPR
nxn
B = (Ly()) .y,

With respect to the InPLPR BS = (L‘?(pg)> , return to Step 1. Construct the

n)(n
LPR Rs*! = (r5+1),1Xn in a similar way as the LPR R¢ = (rg ),x,- Then, go to Step 2
Furthermore lety} il = =1

and use model (M 3) to obtain the LPR R&*! = (rfj“)
;l = land rl]l = 1 for each pair of (i, j) such that i <j, all l =1,2,. mlj, and
Uolo+

all rgzO, 1, 2, 2t According to Step 3 and the LPR Rs*! = (rﬁ“) ascertain

the common probability ¢+ of LVs in R%*!, where

nxn*
nxn*

[l

nxn?®

” . . ¢ . my
P&t = min min P min (l 2 . Z ) (26)
1<i<j<nly, EUPG/)UUPS()~ Vet 1<i<j<n,l, €UP(ij)UUPS(ij) I=1IgUP(i,j)OUPS(i.j) / K= l

where p*© is the probability of the CPLPR R*(p*) for all x=1, 2, ..., g,

{/ g . . g
1- I~ LIGUP( j)UUPS(i,) p” ; ZK=1 P, 1s the amount of uncertain probability, and all

other notations as shown in Eq. (24).

Step 6: Repeat Steps 4 and 5 until we have p'+p2+-+p"=1, where r is the
number of iterations. Furthermore, let RS = (rg)nxn be the derived LPR and

R8(p®) = (rligj(pg)) be the corresponding CPLPR, where g=1, 2, ..., 7. Fol-
nxn
lowing the CPLPRs, we derive the complete PLPR B = (Lij(p))m, where

LU(p):{ g=1 u(pf;)} { <2geﬂ1~ {hirh=rih=12,. >|g—1 2. r:andg&l'lg}
(27)
foralli,j=1,2,...,n

Remark 4.3 From the procedure of Algorithm II, one can check that its principle is
simple. Based on the LPRs derived from the corresponding InLHPRs and the mul-
tiplicative consistency, missing LVs are determined by solving model (M-3). Then,
missing probabilities of LVs are ascertained following the common probability and
the condition of normalized probability distributions on NPLTSs.

To illustrate the concrete application of Algorithm II, we offer the following
example.
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Example 4.1 Let X={x,, x,, x5, x4} be the object set, and let S={s/i=0, 1, 2,..., 8}
be the ALS. An InNPLPR B on X for the ALS S may be defined as:

{54(1)} {-52(0-4),53(1712‘2),5123([’12,3)} {54(0-6%5132(0-4)} Ly4(p)

B {SZI,]([’IZJ)’SS([7]2.2)"V6(0-4)} {5‘4(1)} Ly (p) {-‘3(04)’-V24.2(0-3)a324.3(0~3)} i
{531,1(0.4),5,(0.6)} Ly (p) {s,(1)} {55(0.4),55(0.6)}
Ly (p) {5421(0.3),545(0.3),5500.4)}  {5,(0.6),55(04)}  {s,(1)}

According to Algorithm II, the CPLPRs are derived as follows:

54(0.3) 54(0.3) 55(0.3) 54(0.3) 54(0.3) 5,(0.3) 55(0.3) 5,(0.3)

R03) = | 203 5103 503 5,03) | g2 | 56(03) 5,03) 5,0.3) 55(0.3)
7] 54(0.3) 56(0.3) 54(0.3) 54(0.3) [ 7] 56(0.3) 54(0.3) 54(0.3) 54(0.3) [

55(0.3) 5,(0.3) 5,(0.3) 5,(0.3) 54(0.3) 5,(0.3) 55(0.3) 5,(0.3)

54(0.3) 54(0.3) 5,(0.3) 55(0.3) 54(0.1) 5,(0.1) 55(0.1) 5,(0.1)

R0 = | 203 3103 503) 5503) | pao | 501 5,0.1) 550.1) 55(0.1)
2= 5,00.3) 5,(0.3) 5503) 55(0.3) [ P T 5400.1) 55(0.1) 5,(0.1) s5(0.1) |

53(0.3) 55(0.3) 53(0.3) 5,(0.3) 56(0.1) 55(0.1) 53(0.1) 5,(0.1)

Furthermore, based on Eq. (27) we derive the following complete NPLPR

{s,(D} {5,(0.4),56(0.6)} {5,(0.4),5,(0.6)} {5,(0.1),5,(0.3), 55(0.3),55(0.3)}
e {5,(0.6).56(0.4)} {s,(1)} {5,(0.6),55(0.1),5,(0.3)} {55(0.4),5,(0.3),5(0.3)}

{5,(0.6).56(0.4)} {54(0.4).55(0.1),55(0.6)} {s,(D)} {55(0.4),56(0.6)}

{52(0.3),55(0.3),5,(0.3), 55(0.1)}  {5,(0.3),5,(0.3).55(0.4)} {5,(0.6),55(0.4)} {s,(1}

5 Optimal models for reaching the multiplicative consistency
requirement

The section discusses another type of frequently encountered NPLPRs: unaccept-
ably multiplicatively consistent NPLPRs. The ranking of objects based on such
type of NPLPRs may be unreasonable. Therefore, the section studies how to derive
acceptably multiplicatively consistent NPLPRs.

Definition 5.1 Let B=(L;(p)),x, be an NPLPR on the object set X={x;, x5, ..., x,,}
for the ALS S={s1i=0, 1, ..., 2t}. It is unacceptably multiplicatively consistent if
there is unacceptably multiplicatively consistent CPLPR that is derived from Algo-
rithm L.

Equation (19) shows that when an NPLPR is unacceptably multiplicatively con-
sistent. Then, there is unacceptably multiplicatively consistent LPR derived from

Algorithm L Let R¢ = <r‘j) ,g=1,2, ..., 7, be the LPRs from Algorithm I for

nxn

the NPLPR BZ(Lij(P))an- Furthermore, let © = {RS|¢p>* #0,g=1,2,...,7}
where ¢%* is the objective function value of model (M-3). Then, ® is the set of unac-
ceptably multiplicatively consistent LPRs.
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According to Definition 3.2 and Eq. (19), we know that the corresponding accept-
ably multiplicatively consistent NPLPR B *=<L;.(p*)> for the NPLPR B can be

nxn

derived by adjusting unacceptably multiplicatively consistent LPRs in ©. With
respect to LPRs in ©, besides considering their consistency levels, the smaller the
adjustment, the better to retain the original information. Considering these two
aspects, inspired by Dong et al.’s methods (Dong et al., 2008, 2013) for deriving
additively consistent LPRs, we construct the following model to derive the accepta-

bly multiplicatively consistent LPR R*8 = (r;g ) from the LPR RS:

nxn
*g . n
¢~ =mmn Zi.jzl.iq ( ij + a )

S (e ) < Mu mcr)

I(r"’*’) 1(/*) 1)
1 —& )41 — — 8T ST =
0

I(r*g) - I(rq) - a’” + a
% 2r-1
I05%) = 0.001¢5 ) + z 7+ (21— 0.001)z8

il 7.2t

*g 7
I(rlj )* < 2t I*()U )
2t — I(r’.jg) I(ri/.g)

I(r *g) 1("*3)
st n-1 n-1
8- 30 S5 )+ 20 (T
K{’f =1or0, vg.z. =lor0,ij=12,...,mi<j

27_1 Z; :+1< i rz) 1

+ e
ST adT >0
i i

<A ij=12,...,mi<j

I 8t g8
Ej &y —0’8'7 i =0

2
Y=, 2 =1or01=0,1,...%

i i

i=12,...,n—=1j=i+1,...,n

(M-4)
where MCI" is the given multiplicative consistency threshold, the first two con-
straints are derived from Eq. (5) that ensure the LPR R*¢ = (r;g ),xn, tO satisfy the
consistency requirement, the third constraint reflects the deviation between LVs r*g
and rg the fourth constraint indicates that Ty “¢ belongs to the ALS S={s,1i=0, 1,
2t}. Furthermore, we replace rl.] =0or 2t with rjg 0.001 or 2t — 0.001 to make
the second constraint meaningful. The fifth to eighth constraints make A equal to
n I(r;.g) 2t—1(r’fg>
ij=Li<j 2t—1(r;.g> ’ 1( Ug)
takes one linguistic term in the ALS S.

Considering the fact that all variables in model (M-4) only relate to the LPR

R*¢ = r;g > , we can adjust all unacceptably multiplicatively consistent LPRs in
! nxn

O simultaneously. Thus, we further build the following model:

nxn

*8

max , and the eleventh constraint shows that rU only
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i, :
(ﬂ 2€0 r,/lz<j<lj l/ )

n 2 - 3n(n—1) N
Zi,j=1.i<f (£§+ +£;' ) < T(l - MCI )

1) ! . 10%) 105
lo, — - 1o ik + 1o, hs —8T 48T =0
g (2; —107% ) n=2 Dy | o2 22— 107 Sl 1675) i

I(r;‘g) - I(r‘.g].) - a§’+ + a§’7 =0

g 2t-1
1055 = 000175 + Y "7t +(2r =000z,
1) 210

, = <AL= 1,2,,mi <)
2t — I(r*g) l(r;é) J J

1r%) 21— 1(r®)
s.1. n—1 i n—1 n ¢ ij
A= + . v m
z,_ Z/ i+1 U < 2% — I(F;g) Z;:l Zj:l+l y I(rijg)

8 _ 8 P = o i
KU.—I or O,Vl,j =lor0,ij=12,..,mi<j

n-1 xan
8 8\ —
Zi:l Zj:m <Kij + Vij) =1

&t aT >0

i

T 57 >0£g+z€g =0

i ij
2 g .. . .

Z . =1, 7. =1or0,:1=0,1,...2850,j= 1,2, ...,mi < j
1=0 i it

g€en

(M-5)

where all constraints as those shown in model (M-4).
Solving model (M-4), we can derive all acceptably multiplicatively consistent
LPRs. According to Eq. (27), we obtain the corresponding acceptably multiplica-
tively consistent PLPR B* = (L:(p))

nxn

6 Group decision making with NPLPRs

This section discusses GDM with NPLPRs following the derived CPLPRs from
Algorithm I. Assume that there are ¢ DMs, denoted by E={1, 2, ..., ¢}. Let
0 = (LZ(PO))an be the individual NPLPR (I-NPLPR) offered by the DM ¢, 0 € E.

For GDM, we usually need to calculate comprehensive preference relations and
measure the consensus degree of individual opinions. Therefore, we next offer a
similarity measure based method for determining the weights of DMs.

Definition 6.1 Let R! (p') = (rilj(pl)) and R2(p?) = <r;.(p2)> be any two CPL-
nxn nxXn
PRs. Then, their similarity measure is defined as:
n—1 n
[oae, sEsL () ()

Sim(R'(p"), R*(p?)) = 2oy
VE B (1) V2 S (1020

(28)
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One can check that the similarity measure between the CPLPRs R!(p') and R*(p?)
have the following properties:

(i) 0<Sim(R'(p"),R(pH) < L;
(i) Singl(pl),RZ(p%; = Sim(R*(p*), R'(ph));
(iii) Sim(R'(p"), R*(p?)) = 1if and only if R'(p') = R?(p?), namely,p' = p? and
rl.; = rizjfor alli,j=1,2,....,n

Based on Definition 6.1, we further offer the similarity measure between CPLPRs
and NPLPRs as follows:

Definition 6.2 Let R(p) = (r;(p)),,, be a CPLPR, and let B = (L;(p))  be an
NPLPR. Furthermore, let Q(B)= {Rl(pl) = (ri ;D) Ro2) = (rz,[j(pz)yjnm,..
R.(p,) = (r n,u(pzr,u))m} be the set of CPLPRs obtained from B. Then, the similar-
ity measure between R(p) and B is defined as:

.9

Sim(R(p), B) = max Slm(R(p) R,(p,)) (29)

Based on the properties of Definition 6.1, one can verify that Sim(R(p), B) = 1 if
and only if R(p) € Q(B).

Following Definition 6.2, we further define the similarity measure between NPL-
PRs as follows:

Definition 6.3 Let B! = (L}j(p‘)> and B? = (ij(p2)) be any two NPLPRs.
nxn ? nxn
Furthermore, —let Q)= (R = (11,9) RwD = (15,09)
> nxn > nxn

R° <p” > = (r" <p2 )) } be the set of CPLPRs obtained from B°, where 0=1,
o ¢ o nxn

I, b4 7yl

2. Then, the similarity measure from B! to B? is defined as:

g=

vt 1 T [
: 1 p2\ _ ! . L1y p20,2
Sin (B %) = - > <m_a]xSlm<Rh(ph),Rg(pg)>> (30)
and the similarity measure from B to B! is defined as:
o (D2 1\ _ 1 153 2
Sim (B, B') = - > r?axszm@ D). R\ )) 31
Furthermore, the similarity measure between B' and B? is defined as:

Sim(B', B?) + Sim (B, B")
2

Sim(B', B*) = (32)
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According to Eq. (32), it is easy to verify that the above three properties for
Eq. (28) are still true for Eq. (32). It should be noted that the similarity measure
between NPLPRs is based on their CPLPRs obtained from Algorithm L.

Based on the similarity measure between NPLPRs, we provide the following for-
mula to determine the weights of the DMs:

9 ; 0 RU
o lv;é()Slm(B ,BY)

w, = 33
¢ Sim(B?, B®) (33)

p=1 v=1,0#0

where 0 € E.

Equation (33) shows that the higher the similarity measure between one DM’s
CPLPRs and all other DMs’, the bigger the weight of the DM.

Based on the weights of the DMs, we next discuss how to measure the consensus
of individual opinions. First, let us consider expect LPRs of NPLPRs.

Definition 6.4 Let = (Lij(P))ysen be an NPLPR, and let

QB)={R,(p)) = (r1;(py) )an Rz(l’z = (rz,g,‘(l)z))nxnvwa R.(p,) = (”n,g,‘(l)n))nxn}
be the set of corresponding CPLPRs obtained from Algorithm I. Then,
EB) = (E(Lij(p)))m is called the expect LPR of the NPLPR B, where.

E(Lu(p)) =S 211_[,”:1 1("/‘,‘,')/7’

T 21011+ 2

(34)
foralli,j=1,2,...,n

One can check that the expect LPR defined by Eq. (34) is also a LPR defined on
the ALS S={s1i=0, 1, ..., 2¢t}. Based on the concept of expect LPRs, we further
offer the concept of comprehensively expect LPRs.

Definition 6.5 Let B° = (L5(P"))yxn be the I-NPLPR offered by the DM e,, and
E(B°) = (E(L”(p”))) be its expect LPR as shown in Definition 6.4, where o=1,
2, ..., ¢. Then, E(B) = (E(L,](P))) is called the comprehensively expect LPR,

Where.

E(L,J(p)) =S u[IE, I(E(L”(p")))w‘o

T, HECG oM™ +H” IELG o) o

(35)

for all i, j=1,2, ..., n, @, is the weight of the DM e, such that Yo
w, >20forallo=1,2,...,¢

= 1and

e{)

According to the comprehensively expect LPR, we offer the following consensus
measure of [-INPLPRs:

Definition 6.6 Let B’ = (L;;.(p”))m be the I-NPLPR offered by the DM e,, where
0=1,2, ..., ¢c. The consensus degree of B’ is defined as:
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Table 1 I-InNPLPR B! offered by the first expert team

X1 X, X3 Xy
X {s5(1)} LLpl) {56(0.6), 5,(0.4)} [53(0.3), 5,(0.7)}
X L) {s5(1)} L) {540.5), 55(0.5)}
X {53(0.4), 5,(0.6)} L) {s5(1)} L))

X, {56(0.7), 5,(0.3)} {55(0.5), 55(0.5)} LLpl) {s5(1)}

Table 2 I-InNPLPR B offered by the second expert team

X1 X X3 Xy
X {ss(D} {55(0.4), 5,(0.3), 55(0.3)} L%(p%) Lﬂ(pﬁ)
X {55(0.3), 55(0.3),  {s5(1)} {5,(0.4), 54(0.6)} L2,3)
57(0.4)}

3 L3, (3) {52(0.6), 53(0.4)} {ss(1)} {5,(0.2),
5,(0.5),
55(0.3)}

Xy L2,(P%) L2,(p2,) {5,(0.3), 55(0.5), 54(0.2)} {s5(D}

oy 1 T, ., n—1 n 0
COIB) =1 = o T 1] Xy Do 107~ TEL D] 36)

where R = (7,00) Ko = (1,09) o and
R <p” ) = (r" <p7”r )) are the CPLPRs obtained from Algorithm I for the
ANE o) ) nen

Lz Toolj
NPLPR B, and E(B) = ( E(Lij(p)))m is the comprehensively expect LPR as defined
by Eq. (35).

Similar to the similarity measure between NPLPRs, the consensus measure of the
DMs is also based on the CPLPRs obtained from Algorithm I for I-NPLPRs.
If the I-NPLPR B° = (Ll‘.’j(p"))m does not satisfy the consensus requirement, we

know that there is LPR R; = <r” ) obtained from Algorithm I for the I-NPLPR

8 nxn
B’ whose consensus level is smaller than the given consensus threshold COI”,

namely,
COI(RZ) =1- —n(nl_ o Z: Z::m ’I(rzi].) — IELy(p))| < COI* (37)

To make the ranking of objects representatively, we need to improve the consen-
sus level of such LPRs. On the other hand, we only adjust one LPR with the lowest
consensus level at one time to retain more original information. Without loss of
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generality, let COI (R;) min;* COI(R}) < COI*. To make the LPR

R = (r” ) reach the consensus requirement, we build the following model:
nxn

8
%0 _ o n=1 n S0+ 1)(])
Y, =mmn Z::l 2j=1+] ( &0 +6 )

n=1 n o+ (m(l)—) _ _ "
2, 1 2] 1+1< i i < n(n =Dl = cor

I(ro(])> E(L”(p))) u(])++Ev(])— 0

o(1) o,(1)+ o(])—
1(53) = 1(02) - il + ey =0 The
l(r;f/”) ( 0(1)) — o consensus

o) u() 21 oqh) oy | TEQuirement
I(rgjl. ) 0.00120 + 3™ 122D 1 20 — 0,001y,

6;"“”' 6"“)' >0,i,j=1,2,..mi<j

g2+ ,g“‘”‘ >0, ””*E”“" 0,ij=1,2,.mi<j
&Y 8y &Y 8 -

n oD+ |, _o(l)— 3n(n—-1) .
B () 5 20 e

&y &if

o(1) o(1) o,(1)
' lo 7( ) - z" lo, i) + o, o)
2a 2 — 1) n—2 k=i | 084 — 10 4;(1)) 2a 2 — 16D
&ij 2

o,()+ o,(1)— =0

g i
10949) 20— 10°D) Th
g, g, . . e
il < & <A iLj=12,.,mi<j
=107y G e
&ij & multiplicative
r)(l) 0(1) H
2t — (r requirement
i e w ) LN )
A= 2, 1 Z] i1 Ko 0(1) Z, 1 Zj i1 Ve u(l)
=10 1(ry;")

;',(jl) 1oro0, V“;l)—l()I'OI,‘]—lz i < j

n=1 n o) 4 Lo 2
lezjm(w Veii =1

oD+ o(1)— (()(l)+ o,(1)— L
> - - .
i Xgii 0, i Xey =0,i,j=12,...mi<j

(M-6)
where the first two constraints are derived from Eq. (36) for the adjusted LPR

&ij
COI", the third constraint and the objective function make the adjusted LPR RV to
have the smallest total adjustment, the fourth and fifth constraints ensure that R;’“) is
still a LPR on the ALS S={s,1i=0, 1, 2,..., 2¢}, and the constraints for the multipli-
cative requirement are the same as those listed in model (M-4).

Solving model (M-6), we can obtain the adjusted LPR Rg’(l) = (r"’sl)) , which
nxn

B

RZ*(” = < ”(1)> whose consensus level is no smaller than the given threshold
nxn

satisfies the multiplicative consistency and consensus requirements. Furthermore,
according to R;’(l) _ ( o(1)

Tg.i nxn
0,(1) (170 — o(D)¢ o
R0 = (1500),
In view of the multiplicative consistency and consensus analysis, we offer the fol-
lowing algorithm for GDM with NPLPRs:

, we can obtain the corresponding CPLPR
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Table 4 I-NPLPR B' offered by the first expert team

X1

X2

X3

Xy

X1
X2
X3

X4

{s5()
{55(0.2), 56(0.8)}
{55(0.4), 5,(0.6))

54(0.8), 55(0.2)}
55(1)}

{56(0.6), 57(0.4)}
{560.1), 55(0.9)}
{s5(1)}

{53(0.3), 5,(0.7)}
{540.5), 55(0.5)}
{5,(0.4), 55(0.6)}

{
{
{53(0.9), 5,(0.1)}
{

{56(0.7), 5,(0.3)} 55(0.5), 56(0.5)} {57(0.6), 53(0.4)} {ss(1)}

6.1 Algorithm ll. A procedure for GDM with NPLPRs

Step 1: Let B = (L;(p(’)) 0o=1,2, ..., ¢, be the given I-NPLPRs. If all of them
are complete, go to Step 2. Otherwise, we adopt Algorithm II to derive the com-
plete I-NPLPR for each incomplete one;

Step 2: With respect to each complete I-NPLPR B° = (Lg.(p”))m, we employ
Algorithm I to obtain the LPRs

{R‘l’ = <rf ) RS = (r‘z’ ) ,..., R = (r" ) } and their corresponding
y nxn Y/ nxn o 7ol /) pxn

C L P R S
[r0n - (n,00), 00 - (300) = (2,00).
If each I-NPLPR is acceptably multiplicatively consistent, go to Step 4. Other-
wise, turn to the next step;

Step 3: With respect to each unacceptably multiplicatively consistent I-NPLPR,
we use model (M-5) to adjust all corresponding unacceptably multiplicatively
consistent LPRs;

Step 4: According to acceptably multiplicatively consistent CPLPRs, we calcu-
late the expect LPR E(B°) = <E<LZ.(p”)>) by Eq. (34), where 0=1,2, ...

Furthermore, we determine the weights of the DMs by Eq. (33), where

nxn?®

associated

a)={a)e],a)g2,...,a)eg 5

Step 5: Using Eq. (35) to calculate the comprehensively expect LPR
EB) = (E(Ly(p))) . Then, we measure the consensus degree of each [-NPLPR
by Eq. (36). If all I NPLPRs satisfy the consensus requirement, skip to Step 7.

Otherwise, go to Step 6;
Step 6: Let COI(B’) = minS,_, COI(B”) and let COI(R? ) = minf?, COI(R). For
the LPR R® = (r>

g i),

adjusted LPR R;‘)" =>( “;”) . Then, we further calculate the expect LPR
nxn

E(B"?) = (E (ijl)”(p“)”)»nxn of the adjusted I-NPLPR B0 = (Ll_(/.l)”(p(l)o))m
and return to Step 5;

Step 7: With respect to each LPR R" = < ;f”.) , we calculate the priority lin-
nxn

guistic value of each object x; by the followmg formula:

, we adopt model (M-6) to adjust it and obtain the
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Table 6 I-NPLPR B’ offered by the third expert team

X1 X2 X3 Xy
X {s5(1)} {55(0.6), 54(0.4)}  {55(0.6), 5,(0.4)} {53(0.4), 54(0.3), 55(0.3)}
Xy {54(0.4), 55(0.6)} {s5(1)} {5,(0.4), 55(0.6)} {55(0.5), 55(0.5)}
X3 {56(0.4), 57(0.6)} {57(0.6), s3(0.4)} {s5(1)} {5,(0.4), 55(0.2), 5,(0.4)}

X, (5503), 550.3), 5,04)}  {s50.5), 5,(0.5)} {55(0.4), 55(0.2), 550.4)} {s5(1)}

9 =g 1

sig
()4 (38)
&Y

wherei=1,2,...,n,g=1,2,...,7,ando=1,2,...,¢.
Step 8: From the priority linguistic value of each object x; for each LPR
R; =(r. , we calculate the expect priority linguistic value vector

8Y ) uxn

= (89,59, ....5%), where s% = s

0

s and P, is the common probability of

I 5
=, H;'i . l(.vig 78
the LPR RZ foralli=1,2,...,n,andallo=1,2, ..., g;

Step 9: Based on the expect priority linguistic value vectors s°, 0=1, 2, ..., g, we

further calculate the comprehensively expect priority linguistic value vector

s = (sl,sz, ...,sn), where 5; = s IS, 1600 for all i=1, 2, ..., n. Meanwhile, we
B Ty 1™

derive the ranking of objects x|, x,, ..., x, based on s = (sl 3805 eens sn).

From the above procedure, one can find that Algorithm III is based on the
acceptably multiplicative consistency and consensus analysis. Furthermore, this
algorithm can deal with incompletely and unacceptably multiplicatively consistent
NPLPRs that only uses and fully considers the information offered by the DMs.

7 Anillustrative example

Nowadays, people pay more and more attention to environmental pollution and
energy consumption caused by economic activities. Green supply chain is developed
in this back ground, which is an important component of strategies for achieving
sustainable development. To achieve this goal, enterprises have been committed to
the development of new technologies, which determines their survival and devel-
opments. Vehicles are a representative industry. More and more car companies are
developing new technologies. Recently, new energy vehicles enter the people’s hori-
zon, which gathers almost all the latest advanced technologies in the automotive
field. Due to the merits of new energy vehicles, it has become the future develop-
ment direction of automobile companies. There is a new energy vehicle company
who wants to update its production process to meet its development needs in the
next 5 years. It is a very complex decision-making problem that needs to consider
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various criteria such as cost, feasibility, reliability and maintainability. Based on the
market research and the enterprise status, four production processes are selected as
the preliminary options, denoted by x;,X,,X5 andX,. To select the most suitable
one, this company founds three expert teams, namely, e|, e ,, and e ;. Each expert
team contains 8—10 experts that are formed by engineers, technical R & D person-
nel, department managers, and front-line production workers. Now, each expert team
is required to independently offer the judgments by using LVs in S= {s,: extreme
bad; s,: quite bad; s,: very bad; s;: bad; s,: slight bad; ss: fair; s¢: slight good; s4:
good; sg: very good; sy: quite good; s;,: extreme good}. Consider the heterogeneity
between experts, when they cannot reach agreement for some judgment, more than
one LV is permitted. Besides, when there is more than one LV for some judgment,
they need to further offer the probabilities of these LVs to discriminate them. How-
ever, when their divergences are too big or they are unwilling or unable to give some
judgments, missing information is permitted. To compare these four production pro-
cesses pairwise, INNPLPRs are efficient that can cope with all above analyzed situ-
ations. Assume that the individual InNPLPRs (I-InNPLPRs) offered by these three
expert teams are listed in Tables 1, 2, and 3:

To rank these four production processes from the above I-InNPLPRs, the follow-
ing procedure is needed:

Step 1: With respect to each I-InNPLPR, according to Algorithm II, we derive
complete [-NPLPRs as shown in Tables 4, 5, and 6:

Step 2: Let MCI" =0.95. With respect to each I-NPLPR, following Algorithm I,
the associated LPRs can be obtained. Taking the first -NPLPR B! for example,
the associated LPRs are listed as follows:

S S5 S, S S Ss 84 S S S5 8, 8
Ri=5574’Ré=6574’R;=6575’
S3 83 S5 Sy Sy 83 S5 Sy 54 83 S5 S3
Se¢ S6 Sg S5 S¢ S6 S8 S5 Se¢ S5 87 S5
Rl = | 56 55 56 Sa | pt _| S6 55 57 55
4 (]
S4 S4 S5 83 §3 S3 S5 83
S7 S¢ S7 S5 S7 85 7 85

Furthermore, their associated CPLPRs are
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55(0.2) 55(0.2) 57(0.2) 5,(0.2) 55(0.2) 54(0.2) 54(0.2) 54(0.2)
R{(O.Z) _ 55(0.2) 55(0.2) 57(0.2) 54(0.2) ,R;(O.Z) _ 56(0.2) 55(0.2) 57(0.2) 54(0.2) ’
53(0.2) 55(0.2) 55(0.2) 5,(0.2) 54(0.2) 55(0.2) 55(0.2) 5,(0.2)
56(0.2) 54(0.2) 54(0.2) 55(0.2) 56(0.2) 54(0.2) 54(0.2) 55(0.2)
55(0.3) 5,(0.3) 54(0.3) 5,(0.3) 55(0.1) 5,(0.1) 56(0.1) 55(0.1)
R%(O.3) _ 56(0.3) 55(0.3) 57(0.3) 55(0.3) RUO.1) = 56(0.1) 55(0.1) 56(0.1) 54(0.1) ,
: 54(0.3) 55(0.3) 55(0.3) 55(0.3) 54(0.1) 54(0.1) 55(0.1) 55(0.1)
56(0.3) 55(0.3) 57(0.3) 55(0.3) 57(0.1) 54(0.1) 57(0.1) s5(0.1)
55(0.2) 5,(0.2) 5,(0.2) 55(0.2)
RI(02) = 56(0.2) 55(0.2) 57(0.2) 55(0.2)
SET T 55(0.2) 55(0.2) 55(0.2) 55(0.2) [
57(0.2) 55(0.2) 5,(0.2) 55(0.2)

Step 3: With the obtained LPRs for each I-NPLPR, we can judge whether their
consistency is acceptable from the objective function value of model (M-1).
When the objective function value of model (M-1) for some LPR is not equal
to zero, we can employ model (M-5) to derive its associated acceptably multi-
plicatively consistent LPR. Taking the LPRs obtained from the I-NPLPR B! for
example, because the objective function values of model (M-1) for the LPRs Ri
and R; are not equal to zero, these two LPRs are unacceptably consistent. In this
situation, we adopt model (M-5) to adjust them and derive the following accept-
ably multiplicatively consistent LPRs:

S¢ Sz S¢S S¢e S 57 8
R}x — | %6 55 56 S | ang R; —| %65 5155 |

S5 S4 S5 S5 54 83 S5 83

§7 8¢ S7 S5 S¢ S5 87 S5

Furthermore, the corresponding CPLPRs are

55(0.1) 54(0.1) 55(0.1) 55(0.1)
56(0.1) 55(0.1) 5¢(0.1) 5,(0.1)
55(0.1) 5,(0.1) 55(0.1) 55(0.1)
5,(0.1) 54(0.1) 57(0.1) 55(0.1)

55(0.2) 54(0.2) 54(0.2) 54(0.2)
56(0.2) 55(0.2) 57(0.2) 55(0.2)
54(0.2) 55(0.2) 55(0.2) 55(0.2) |
56(0.2) 55(0.2) 57(0.2) 55(0.2)

R(0.1) = and

RL02) =

Step 4: Based on the acceptably multiplicatively consistent LPRs for I-NPLPRs,
the expect LPRs are derived as follows:
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S5 S42 Se.11 53.89 S5 8374 Se.84 $3.49
s Ss Seoq S S Ss S7e3 S
EB" =| %58 55 Soo1 Saso | pgry | Se26 S5 5763 Sass |04
$389 $300 S5 S257 $3.16 5237 S5 S1.91
S6.11 S5.51 $7.43 S5 S6.51 $5.42 $8.09 S5

S5 S5.4 S326 5349
R R S S
EBY) =| 46 55 283 285 |
S6.74 5717 S5 S401
S6.51 57.15 S5.09 S5

Furthermore, according to Eq. (33), the weights of the DMs are

w, =, =034,w, =032

€
Step 5: Following Eq. (35), the comprehensively expect LPR is

S5 S455 S527 $377
E(B) = Ssas S5 Ssea S4 |

S473 S436 S5 5328

S623 S6 Se72 S5

Let COI'=0.95. Based on the acceptably multiplicatively consistent CPLPRs
obtained from Steps 1 and 2, the consensus levels of I-NPLPRs are COI(B') = 0.96
,COI(B*) = 0.93 and COI(B") = 0.91.

Step 6: Because COI(B?) = minzz1 COI(B?) and
COI(R}) = min®_ COI (R}) = 0.89, we increase the consensus level of the LPR
R? by model (M-6) and get the following adjusted LPR

R _ | 54 55 54 53
1 S5 Se S5 84
S¢ S7 S¢ S5

Furthermore, the corresponding CPLPR is
55(0.3) 54(0.3) 55(0.3) 54(0.3)
54(0.3) 55(0.3) 54(0.3) 55(0.3)
55(0.3) 54(0.3) 55(0.3) 54(0.3)
56(0.3) 57(0.3) 54(0.3) 55(0.3)

Ri”(l)(O.3) = . With respect to the adjusted CPLPR

S5 S54 385 S322
3,(1) : : 30\ — | Sa6 S5 S346 S285
R77(0.3), the corresponding expect LPR is E(B*(1) = .

S6.15 S6.54 S5 5398

S6.78 $7.15 S6.02 S5
Again  using Eq. (35), the comprehensively expect LPR is

S5 S455 S5.47 S3.68

EBY) = Ss45 S5 S587 4
S453 S4.13 S5 S3.02

S632 S6 S698 S5
COI(B") = 0.97,COI(B*) = 0.94 and COI (B*(1) = 0.93.

. Moreover, the consensus levels of I-NPLPRs are

@ Springer



Common probability-based interactive algorithms for group... 133

Repeat this process six times, we obtain the expect LPR
S5 853 S47 S3.22

E(B>©) = S47 S5 S439 5294
S53 Ss61 S5 S322

S6.78 $7.06 S6.78 S5

and the comprehensive expect LPR

S5 S455 S5.75 S3.68

s Ss Sei4 S .
E(B®) =| >4 75 7614 7401 | Meanwhile, the consensus levels of I-NPLPRs are
S4025 5386 S5 528

S6.32 599 S72 S5
COI(BY) = 0.97,COI(B*) = 0.95 and COI(B>©) = 0.95.

Step 7: With respect to each LPR, we calculate the priority linguistic value of
each object. Taking the LPRs obtained from Steps 1 and 2 for the I-NPLPR B!
for example, the priority linguistic value vectors are

1 _ 1 _ 1 _

1= (52.55’52455’51.03’53.87)"92 = (32.16’52.80’51.14’53.90)’53 = (52.14753.23’31440’S3.23)a
1
4

_ 1 _
S4 = (S1.71’s2461’s1A71’S3.96)’S5 = (32.14’53.23’51.407S3.23)~
Furthermore, the expect priority linguistic value vec-
1 _ 2 _
tors are s = (52.18»52.95s51.30’s3<37)»5 = (Sz.oms3.24sso.93’s3‘83) and

3 _
7= (S1.97’S1.73’Sz‘07a54.23)-

Step 8: Based on the expect priority linguistic value vectors, the comprehensively
expect priority linguistic value vector is s = (5,05, 5,57, 5135 53.86)- Thus, the
ranking is x, > x, > x; > x3, namely, the fourth production process is the most suit-
able choice.

Remark 7.1 There are only two methods (Gao et al., 2019b; Song & Hu, 2019) for
decision making with PLPRs in view of the multiplicative consistency. However,
neither of them studies GDM with PLPRs. Furthermore, neither of them discussed
InPLPRs. Therefore, none of previous research can be used in this example and the
numerical comparison is omitted.

To indicate the differences between the new method and two previous multiplica-
tive consistency based methods (Gao et al., 2019b; Song & Hu, 2019), we further
analyze them in view of principle.

(1) Gao et al. (2019b) give a decision-making method with PLPRs that uses the
score-based multiplicative consistency concept. The main issue of such type
of consistency concepts is to cause information loss. It should be noted that the
score-based LPR may not be any possible LPR constructed by LVs in PLPRs.
Therefore, it is unreasonable to employ this LPR to define the consistency of
PLPRs. Just like random variables, their expects cannot reflect the random-
ness, the score-based multiplicative consistency concept cannot indicate the
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hesitancy of the DMs. For a given PLPR, Gao et al.’s method only obtains
one exact numerical priority weight vector, which is also unreasonable. This
numerical weight vector neither reflects the qualitative recognitions nor the
hesitancy of the DMs. Furthermore, Gao et al.’s method for improving the
consistency level needs to adjust all LVs in one PLTS with the same propor-
tion. However, according to model (22) in the literature (Gao et al., 2019b), we
cannot determine which LV causes the inconsistency. Neither decision making
with InPLPRs nor GDM with PLPRs is studied in Gao et al.’s method (Gao
et al., 2019b).

(i) Song and Hu (2019) also research decision making with PLPRs following the
multiplicative consistency discussion. It is noted that the multiplicative con-
sistency concept and method for improving the consistency level are the same
as those offered by Gao et al. (2019b). Thus, Song and Hu’s method has the
same issues as those in Gao et al.’s method (Gao et al., 2019b). Furthermore,
Gao et al. (2019b) restrict to study decision making with complete PLPRs and
disregard decision making with InPLPRs and GDM with PLPRs.

It should be noted that the multiplicative consistency concepts for PLPRs
in the references (Gao et al., 2019b; Song & Hu, 2019) are based on NPLPRs.
Therefore, we directly reviewed them on NPLPRs as listed in Definitions 2.5
and 2.6.

(iii) The new method avoids the issues of previous multiplicative consistency
concepts and previous methods for improving the consistency level. Further-
more, the new method discusses the determination of missing information in
InNPLPRs and GDM with NPLPRs that follows the acceptably multiplicative
consistency and consensus analysis.

8 Conclusion

Since Pang et al. (2016) first introduced PLTSs, decision making with probability
linguistic information has been received many attentions of scholars. However, most
research focuses on decision making with probability linguistic matrices. The stud-
ies about decision making with PLPRs are relatively fewer. At present, we only find
two references (Gao et al., 2019b; Song & Hu, 2019) about decision making with
NPLPRs based on the multiplicative consistency. However, these two methods are
insufficient to cope with NPLPRs. Especially, they are inefficient for unacceptably
multiplicatively consistent NPLPRs and InNPLPRs. Considering this case, this
paper further introduces a new interactive algorithm for GDM with NPLPRs that is
based on the acceptably multiplicative consistency and consensus analysis. The new
method fully considers the NPLTSs offered by the DMs. To show the application
of the new algorithm, we employ it to evaluate production processes of new energy
vehicles. When the consensus requirement is not reached, we adopt the built model
to adjust one LPR with the lowest consensus level at a time. Although this procedure
can retain more original information offered by the DMs, it increases the interactive
times. Similar to models for improving the consistency level, we can simultaneously
adjust all LPRs whose consensus levels are smaller than the given threshold. All
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main procedures of the new method are based on the built optimal models which
needs the help of computers and associated software.

Due to the powerful information expression of PLTSs, the new method can cope
with more complex decision-making problems than previous preference relation
based linguistic decision-making methods. It should be noted that we can extend the
new method to other types of preference relations such as probability hesitant fuzzy
preference relations, probability multiplicative hesitant fuzzy preference relations,
and probability multiplicative linguistic preference relations. In addition, we can
similarly study the application of the new method in some other fields including the
selection of PPP models, the evaluation of project managements and the assessment
closed-loop supply chain recovery models.
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