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Abstract
Probabilistic linguistic variable is a kind of powerful qualitative fuzzy sets, which 
permits the decision makers (DMs) to apply several linguistic variables with proba-
bilities to denote a judgment. This paper studies group decision making (GDM) with 
normalized probability linguistic preference relations (NPLPRs). To achieve this 
goal, an acceptably multiplicative consistency based interactive algorithm is pro-
vided to derive common probability linguistic preference relations (CPLPRs) from 
PLPRs, by which a new acceptably multiplicative consistency concept for NPLPRs 
is defined. When the multiplicative consistency of NPLPRs is unacceptable, models 
for deriving acceptably multiplicatively consistent NPLPRs are constructed. Then, 
it studies incomplete NPLPRs (InNPLPRs) and offers a common probability and 
acceptably multiplicative consistency based interactive algorithm to determine miss-
ing judgments. Furthermore, a correlation coefficient between CPLPRs is provided, 
by which the weights of the DMs are ascertained. Meanwhile, a consensus index 
based on CPLPRs is defined. When the consensus does not reach the requirement, a 
model to increase the level of consensus is built that can ensure the adjusted LPRs to 
meet the multiplicative consistency and consensus requirement. Moreover, an inter-
active algorithm for GDM with NPLPRs is provided, which can address unaccept-
ably multiplicatively consistent InNPLPRs. Finally, an example about the evaluation 
of green design schemes for new energy vehicles is provided to indicate the applica-
tion of the new algorithm and comparative analysis is conducted.
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1 Introduction

Due to various subjective and objective reasons, it becomes more and more diffi-
cult to demand the DMs to offer exact or fuzzy numerical judgments. In view of 
this situation, linguistic variables (LVs) proposed by Zadeh (1975) are powerful as 
a tool to express the subjective recognitions of DMs such as “very good”, “very 
bad”, and “fair”. After the original work of Zadeh (1975), various decision-making 
methods with linguistic information are proposed. Taking the merits of LVs and 
preference relations (PRs), Herrera and Herrera-Viedma (2000) introduced LVs to 
PRs and presented linguistic preference relations (LPRs). Then, the authors studied 
the application of LPRs in decision making by the linguistic choice function and 
mechanism. Xu (2004a) first noted the consistency of LPRs and introduced an addi-
tive consistency concept for LPRs, which are defined on the additive linguistic scale 
(ALS) T = {sα|α = − t, − t + 1, …, t − 1, t}. Alonso et al. (2008) offered an additive 
consistency concept for LPRs defined on the ALS S = {sα|α = 0, 1, …, 2t}. Then, the 
authors offered an interactive algorithm to determine missing LVs in unacceptable 
InLPRs and defined a distance measure based consensus index. Different from the 
additive consistency concepts for LPRs (Alonso et al., 2008; Xu, 2004a), Xia et al. 
(2014) proposed a multiplicative consistency concept for LPRs defined on the ALS 
S = {sα|α = 0, 1, …, 2t}. In a similar way as Alonso et al. (2008), Xia et al. (2014) 
offered an interactive algorithm to ascertain missing LVs in InLPRs. Furthermore, 
Alonso et al. (2009) researched GDM with InLPRs that follows the additive consist-
ency concept in the literature (Alonso et al., 2008). Different from the above consist-
ency-based research, Herrera et al. (1996) first studied the consensus of GDM with 
LPRs by the linguistic quantifier function, which ensures the ranking results with 
the given agreement level. To measure the consensus level and to detect the non-
consensus judgments, the authors defined three consensus measures. Considering 
the situation where different DMs may use different linguistic granularities to better 
express their quality judgments, Herrera-Viedma et al. (2005) discussed the consen-
sus of GDM with multigranular LPRs using the proximity measure and guidance 
advice system. To achieve these goals, the authors defined three similarity based 
consensus levels and offered a non-consensus judgment identification rule. Mean-
while, Herrera-Viedma et al. (2005) gave four adjustment direction rules.

With the development of decision making with linguistic information, some 
researchers noted that LVs still have some limitations of denoting the judgments 
of DMs. Considering the issue, many extension forms of LVs are proposed (Meng 
et  al., 2019; Rodriguez et  al., 2011; Xu, 2004b). They are defined to denote dif-
ferent kinds of qualitative judgments such as uncertain qualitative judgments, pre-
ferred and non-preferred qualitative judgments, and hesitant qualitative judgments. 
With respect to hesitant fuzzy linguistic variables (Rodriguez et  al., 2011), Pang 
et al. (2016) noted that this type of linguistic fuzzy sets can only express the hesitant 
qualitative judgments, but cannot discriminate their probabilities. Thus, Pang et al. 
(2016) introduced the concept of probabilistic linguistic term sets (PLTSs), which 
are composed by several LVs with each one having a probability to show the differ-
ence of corresponding judgments. Then, the authors offered a probabilistic linguistic 
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TOPSIS method based on the defined aggregation operator. Following the original 
work of Pang et al. (2016), some probabilistic linguistic matrix based decision-mak-
ing methods are proposed such as probabilistic linguistic ORESTE method (Wu & 
Liao, 2018), probabilistic linguistic MULTIMOORA method (Liu & Li, 2019), and 
probabilistic linguistic ELECTRE III method (Liao et al., 2019).

In contrast to the above methods, Zhang et al. (2016) developed the first decision-
making method with probabilistic linguistic preference relations (PLPRs), which is 
based on the additive consistency analysis. To deal with incomplete PLPRs (InPL-
PRs), where the probabilities of some LVs in PLTSs are missing, Gao et al. (2019a) 
developed an expected additive consistency based decision-making method. Dif-
ferent from InPLPRs discussed by Gao et  al. (2019a), Tang et  al. (2020) studied 
decision making with InPLPRs whose LVs in PLTSs are incompletely known. To 
do this, the authors considered any unknown LV as an interval LV [s−t, st] for the 
ALS T = {sα|α = − t, − t + 1, …, t − 1, t}. Then, they transformed InPLPRs to inter-
val fuzzy preference relations (IFPRs) and developed an additive consistency based 
decision-making method with InPLPRs. Besides the above additive consistency 
based decision-making methods, Gao et al. (2019b) proposed a multiplicative con-
sistency concept for PLPRs, which is based on the score of PLTSs. According to the 
relationship between interval judgments and priority weights (Tanino, 1984), Gao 
et  al. (2019b) built a model for calculating the priority weight vector from score 
based acceptably multiplicatively consistent PLPRs. It should be noted that this con-
cept is a direct utilization of Xia et al.’s concept for LPRs (Xia et al., 2014). There 
are some drawbacks: (i) it causes information loss because this concept only uses 
one LPR; (ii) it cannot reflect the qualitative hesitancy of the DMs; (iii) none of 
LPRs constructed by LVs in PLPRs is multiplicatively consistent, while it is score 
based multiplicatively consistent; (iv) the numerical priority weight vector cannot 
indicate the qualitative information. Song and Hu (2019) also researched decision 
making with PLPRs based on the multiplicative consistency analysis, which is simi-
lar to Gao et  al.’s method (Gao et  al., 2019b). After reviewing previous research 
about decision making with PLPRs, we find that there are some limitations: (i) all 
previous consistency concepts cause information loss; (ii) none of them is sufficient 
to cope with InPLPRs. Besides these two issues, multiplicative consistency based 
methods (Gao et  al., 2019b; Song & Hu, 2019) have more drawbacks such as (i) 
neither of them studies InPLPRs; (ii) interactive methods for improving the multi-
plicative consistency level cannot ensure the minimum total adjustments; (iii) they 
cannot ascertain which LVs case the inconsistency; (iv) neither of them considers 
GDM with PLPRs.

Since any PLPR can be easily converted into NPLPRs by normalizing the prob-
ability distribution on PLTSs, the paper further studies GDM with NPLPRs and 
offers a new method. The main contributions include: (i) a new acceptably multi-
plicative consistency based interactive algorithm is provided to derive CPLPRs, and 
then a new acceptably multiplicative consistency concept for NPLPRs is defined; 
(ii) models for deriving acceptably multiplicatively consistent NPLPRs from unac-
ceptable ones are constructed; (iii) a common probability and acceptably multipli-
cative consistency based interactive algorithm to determine missing judgments is 
offered, which can fully cope with InNPLPRs; (iv) a correlation coefficient between 
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CPLPRs is provided to obtain the weights of the DMs; (v) a distance measure based 
consensus index to measure the agreement degrees of individual opinions is given; 
(vi) a model is established to improve the level of consensus, which makes the 
adjusted LPRs meet the requirements of multiplicative consistency and consensus; 
(vii) an interactive algorithm for GDM with NPLPRs is provided that can address 
unacceptably multiplicatively consistent InNPPRs; (viii) numerical example and 
comparative analysis are offered. The originalities of this paper include: (i) this is 
the first (acceptably) multiplicative consistency concept for NPLPRs that fully con-
siders PLTSs offered by the DMs; (ii) this is the first multiplicative consistency 
based method that can cope with InNPLPRs; (iii) this is the first method for increas-
ing the multiplicative consistency (and consensus) level of NPLPRs in view of the 
minimum total adjustment; (iv) this is the first method for GDM with InNPLPRs 
that follows the multiplicative consistency and consensus analysis.

The rest of this paper is organized as follows: Sect. 2 offers some basic knowledge 
about LPRs and NPLTRs. Section 3 gives an interactive algorithm to derive CPL-
PRs in view of the multiplicative consistency of LPRs. Then, an acceptably multi-
plicative consistency concept for NPLPRs based on CPLPRs is defined. Section 4 
discusses InNPLPRs and offers a common probability and acceptably multiplicative 
consistency based interactive algorithm to determine missing judgments. Section 5 
constructs models for getting acceptably multiplicatively consistent NPLPRs from 
unacceptable ones. Section 6 studies GDM with NPLPRs. First, a similarity measure 
between individual NPLPRs is defined, which is used to determine the weights of the 
DMs. Based on the comprehensive expect LPR, a new consensus index is defined. 
When the consensus level is lower than the given threshold, a model for improving 
the consensus degree is built that can ensure the acceptably multiplicative consist-
ency of the adjusted LPRs. Then, an interactive algorithm for GDM with NPLPRs 
is provided. Section 7 selects the evaluation of green design schemes for new energy 
vehicles to show the application of the new method. Conclusion is offered in Sect. 8.

2  Basic concepts

To show the pairwise qualitative judgments, Herrera and Herrera-Viedma (2000) 
introduced LPRs as follows:

Definition 2.1 (Herrera & Herrera-Viedma, 2000) The matrix R = (rij)n×n on the 
finite object set X = {xi| i = 1, 2, …, n} for the ALS S = {sα| α = 0, 1, …, 2t} is called 
a LPR if.

where rij ∈ S is the qualitative preferred degree of the object xi over xj for all i, j = 1, 
2, …, n.

Remark 2.1 Let s� and s� be any two LVs in the ALS S = {sα| α = 0, 1, …, 2t}. Then, 
their operational laws are defined as (Xu, 2004a):

(1)rij ⊕ rji = s2t, rii = st
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 (i) s𝛼 ⊗ s𝛽 = s𝛼𝛽;
 (ii) s𝛼⊘s𝛽 = s𝛼∕𝛽;
 (iii) �s� = s�� and 

(
s�
)�

= s�� , � ∈ [0, 1].

For the convenience of following discussion, let I be a function defined on the 
ALS S = {sα|α = 0, 1, …, 2t}, where I: S →{0, 1, …, 2t}, namely, I(sα) = α for any sα 
∈ S.

Similar to the multiplicative consistency concept for fuzzy preference relations 
(FPRs) (Tanino, 1984), Xia et al. (2014) offered the following multiplicative consist-
ency concept:

Definition 2.2 (Xia et  al., 2014) Let R = (rij)n×n be a LPR on the finite object set 
X = {xi| i = 1, 2, …, n} for the ALS S = {si|i = 0, 1, 2, …, 2t}. R is multiplicatively 
consistent if.

for all i, k, j = 1, 2, ..., n.
According to Definition 2.2, Xia et al. (2014) offered another equivalent condi-

tion to judge the multiplicative consistency of LPRs.

Property 2.1 (Xia et  al., 2014) Let R = (rij)n×n be a LPR on the finite object set 
X = {xi|i = 1, 2, …, n} for the ALS S = {si|i = 0, 1, 2, …, 2t}. It is multiplicatively con-
sistent if and only if the following condition is true, where

for all i, j = 1, 2, …, n such that i < j.

For each triple of (i, k, j), by Eq. (3) we have

where Δ = maxn
i,j=1,i<j

(
I(rij)

2t−I(rij)
,
2t−I(rij)

I(rij)

)
.

To make I(rij)

2t−I(rij)
 and 2t−I(rij)

I(rij)
 meaningfully on the ALS S = {si|i = 0, 1, 2, …, 2t}, we 

let I(rij) = 0.001 or 2t − 0.001 when I(rij) = 0 or 2t , namely, we replace 
rij = s0 or s2t with rij = s0.001 or s2t−0.001 , where i, j = 1, 2, …, n such that i < j.

To measure the multiplicative consistency of LPRs, we define the following for-
mula for any LPR R = (rij)n×n on the ALS S = {sα| α = 0, 1, …, 2t}:

(2)rij ⊗ rjk ⊗ rki = rji ⊗ rik ⊗ rkj

(3)
(
I(rij)

I(rji)

)n−2

=
∏n

k=1,k≠i,j

I(rik)

I(rki)

I(rkj)

I(rjk)

(4)

(n − 2) logΔ

(
I(rij)

2t − I(rij)

)
=
∑n

k=1,k≠i,j

(
logΔ

(
I(rik)

2t − I(rik)

)
+ logΔ

(
I(rkj)

2t − I(rkj)

))

⇒ logΔ

(
I(rij)

2t − I(rij)

)
=

1

n − 2

∑n

k=1,k≠i,j

(
logΔ

(
I(rik)

2t − I(rik)

)
+ logΔ

(
I(rkj)

2t − I(rkj)

))
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From the definition of Δ, we know that 1
Δ
≤

I(rij)

2t−I(rij)
,
2t−I(rij)

I(rij)
≤ Δ for all i, j = 1, 2, 

…, n such that i < j . Therefore, −1 ≤ logΔ

(
I(rij)

2t−I(rij)

)
, logΔ

(
2t−I(rij)

I(rij)

)
≤ 1 for all i, 

j = 1, 2, …, n such that i < j.
B e c a u s e 

−3 ≤ logΔ

�
I(rij)

2t−I(rij)

�
− 1

n−2

�∑n

k=1,k≠i,j

�
logΔ

�
I(rik)

2t−I(rik)

�
+ logΔ

�
I(rkj)

2t−I(rkj)

���
≤ 3 , and 

there are n(n−1)
2

 items in Eq.  (5), we know that 0 ≤ MCI(R) ≤ 1 . Furthermore, the 
bigger the value of Eq. (3) is, the higher the multiplicative consistency level will be. 
Especially, when MCI(R) = 1 , we have

for each pair of (i, j) such that i < j , by which one can conclude that this LPR R is 
completely multiplicatively consistent.

Different from LPRs that can only denote the exact qualitative recognitions of the 
DMs, Pang et al. (2016) presented PLTSs to express the qualitative hesitant judg-
ment and endow each LV with a probability to discriminate the difference.

Definition 2.3 (Pang et al., 2016) Let S = {si|i = 0, 1, …, 2t} be an ALS. A PLTS 
Lp is denoted as: L(p) = {Ll(pl)| Ll ∈ S, pl ≥ 0, l = 1, 2, …, m, 

∑m

l=1
pl ≤ 1}, where Ll 

(pl) is the LV Ll with the probability pl, and m is the number of LVs in L(p). When ∑m

l=1
pl = 1, then L(p) is called a normalized PLTS (NPLTS).

Based on the concept of PLTSs, Zhang et al. (2016) introduced them to prefer-
ence relations and defined PLPRs.

Definition 2.4 (Zhang et al., 2016) A PLPR B on the object set X = {x1, x2, …, xn} 
for the ALS S = {si|i = 0, 1, …, 2t} is denoted as: B = 

(
Lij(p)

)
n×n

 , where Lij(p) = {Lij,l
(pij,l)|Lij,l ∈ S, pij,l ≥ 0, l = 1, 2, …, mij , 

∑mij

l=1
pij,l ≤ 1} is a PLTS denoting the prefer-

ence judgment of the object xi over xj, and mij is the number of LVs in Lij(p). Ele-
ments in B have the following properties:

where l = 1, 2, …, mij for all i, j = 1, 2, …, n with i ≤ j.

Because any PLTS L(p) = {Ll(pl)| Ll ∈ S, pl ≥ 0, l = 1, 2, …, m, 
∑m

l=1
pl ≤ 1} can 

be easily derived its NPLTS by normalizing the probability distribution, namely, 
L(p) = {Ll(pl/

∑m

l=1
pl )| Ll ∈ S, pl/

∑m

l=1
pl ≥ 0, l = 1, 2, …, m}. Therefore, this paper 

restricts to normalized PLPRs (NPLPRs) whose elements are NPLTSs. Notably, 

(5)
MCI(R) = 1 −

2

3n(n − 1)

∑n

i,j=1,i<j

|||||
logΔ

(
I(rij)

2t − I(rij)

)
−

1

n − 2

(∑n

k=1,k≠i,j

(
logΔ

(
I(rik)

2t − I(rik)

)
+ logΔ

(
I(rkj)

2t − I(rkj)

)))|||||

logΔ

(
I(rij)

2t − I(rij)

)
=

1

n − 2

(∑n

k=1,k≠i,j

(
logΔ

(
I(rik)

2t − I(rik)

)
+ logΔ

(
I(rkj)

2t − I(rkj)

)))

(6)
pij,l = pji,mji+1−l

, Lij,l + Lji,mji+1−l
= s2t, Lii(p) =

{
st(1)

}
,mij = mji, Lij,l < Lij,l+1
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NPLPRs are equivalent to distribution linguistic preference relations, which was first 
introduced by Zhang et al. (2014).

Considering the multiplicative consistency of NPLPRs, Gao et al. (2019b) intro-
duced the following score based multiplicative consistency concept:

Definition 2.5 (Gao et al., 2019b) Let B = 
(
Lij(p)

)
n×n

 be an NPLPR on the object set 
X = {x1, x2, …, xn} for the ALS S = {si|i = 0, 1, …, 2t}. It is multiplicatively consistent if

for all i, k, j = 1, 2, …, n such that i ≠ k ≠ j, where E(Lij(p)) = 
∑mij

l=1
Lij,lpij,l is the score 

of the PLTS Lij(p) for all i, j = 1, 2, …, n.

Remark 2.2 From Definition 2.5, one can find that E(Lij(p)) is a LV for all i, j = 1, 
2, …, n. This means that Definition 2.5 analyzes the multiplicative consistency of 
PLPRs based on LPRs. This process cannot reflect the hesitancy of the DMs and 
will ineluctably lead to information loss. Let us consider the following NPLPR

which is defined on the object set X = {x1, x2, x3} for the ALS S = {si|i = 0, 1, …, 8}.

According to Eq.  (7), we derive the score based LPR E(R) =
⎛⎜⎜⎝

s4 s4 s2
s4 s4 s2
s6 s6 s4

⎞⎟⎟⎠
 . One 

can check that each LV in E(R) is derived from one LV in the corresponding NPLTS. 
According to Definition 2.5, we conclude that this NPLPR B is multiplicatively con-
sistent from the multiplicative consistency of E(R). However, this concept neither 
considers the LVs in the sets {s3, s5} and {s1, s4} derived from the NPLTSs L12(p) 
and L13(p) nor considers any probability information. Especially, it cannot show the 
qualitative hesitancy of the DMs. On the other hand, an NPLPR may be score based 
multiplicatively consistent while none of LPRs derived from the NPLPR is multipli-
catively consistent. This further shows that Definition 2.5 is unsuitable to define the 
multiplicative consistency of NPLPRs.

Example 2.1 Let X = {x1, x2, x3} be the object set and S = {si| i = 0, 1, …, 8} be the 
ALS. The NPLPR B on X for the ALS S is defined as:

(7)E
(
Lij(p)

)
⊗ E

(
Ljk(p)

)
⊗ E

(
Lki(p)

)
= E

(
Lji(p)

)
⊗ E

(
Lik(p)

)
⊗ E

(
Lkj(p)

)

B =
⎛⎜⎜⎝

{s4(1)} {s3(1∕4), s4(1∕2), s5(1∕4)} {s1(1∕3), s2(1∕2), s4(1∕6)}
{s3(1∕4), s4(1∕2), s5(1∕4)} {s4(1)} {s2(1)}
{s4(1∕6), s6(1∕2), s7(1∕3)} {s6(1)} {s4(1)}

⎞⎟⎟⎠

B =
⎛⎜⎜⎝

�
s4(1)

� �
s2(1∕3), s3(2∕3)

� �
s5(2∕3), s6(1∕3)

�
�
s5(2∕3), s6(1∕3)

� �
s4(1)

� �
s6(3∕5), s7(2∕5)

�
�
s2(1∕3), s3(2∕3)

� �
s1(2∕5), s2(3∕5)

� �
s4(1)

�
⎞⎟⎟⎠
.
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According to Eq. (7), we derive the score based LPR E(R) =
⎛
⎜⎜⎝

s4 s8∕3 s16∕3
s16∕3 s4 s32∕5
s8∕3 s8∕5 s4

⎞
⎟⎟⎠
 , 

which is multiplicatively consistent according to Definition 2.2. Following Defini-
tion 2.5, we conclude that the NPLPR B is multiplicatively consistent. However, one 
can check that none of LPRs directly obtained from the LVs in the NPLPR B is mul-
tiplicatively consistent, where

Following Tanino’s equivalent multiplicative consistency concept for FPRs, 
Gao et al. (2019b) further offered the following multiplicative consistency concept, 
which is then used to calculate the priority weight vector.

Definition 2.6 (Gao et al., 2019b) Let B = 
(
Lij(p)

)
n×n

 be an NPLPR on the object set 
X = {x1, x2, …, xn} for the ALS S = {si|i = 0, 1, …, 2t}. It is multiplicatively consist-
ent if.

for all i, j = 1, 2, …, n, where w = (w1, w2, …, wn) is the priority weight vector such 
that 

∑n

i=1
wi = 1 and wi ≥ 0 for all i = 1, 2, …, n.

Equation  (8) is incorrect because E(Lij(p)) is a LV while 2t wi

wi+wj

 is a numerical 
value. Thus, it should be I(E(Lij(p))) = 2t wi

wi+wj

 . In this case, Definitions 2.5 and 2.6 are 
equivalent, namely, a PLPR is multiplicatively consistent following Definition 2.5 if 
and only if it is multiplicatively consistent according to Definition 2.6. Therefore, 
Definition 2.6 has the same issues as the above analysis. Furthermore, references 
(Gao et al., 2019b; Song & Hu, 2019) both employ Eq. (8) to calculate the numerical 
priority weight vector, which cannot show the qualitative judgments of the DMs.

3  Multiplicative consistency analysis of NPLPRs

Based on the analysis of previous multiplicative consistency concepts for NPLPRs, 
one can find that they are insufficient to define multiplicatively consistent NPLPRs. 
More reasonable and natural multiplicative consistency concept is needed. There-
fore, the section continues to discuss the multiplicative consistency of NPLPRs and 

R1 =
⎛
⎜⎜⎝

s4 s2 s5
s6 s4 s6
s3 s2 s4

⎞
⎟⎟⎠
,R2 =

⎛
⎜⎜⎝

s4 s2 s5
s6 s4 s7
s3 s1 s4

⎞
⎟⎟⎠
,R3 =

⎛
⎜⎜⎝

s4 s2 s6
s6 s4 s6
s2 s2 s4

⎞
⎟⎟⎠
,R4 =

⎛
⎜⎜⎝

s4 s2 s6
s6 s4 s7
s2 s1 s4

⎞
⎟⎟⎠
,

R5 =
⎛
⎜⎜⎝

s4 s3 s5
s5 s4 s6
s3 s2 s4

⎞
⎟⎟⎠
,R6 =

⎛
⎜⎜⎝

s4 s3 s5
s5 s4 s7
s3 s1 s4

⎞
⎟⎟⎠
,R7 =

⎛
⎜⎜⎝

s4 s3 s6
s5 s4 s6
s2 s2 s4

⎞
⎟⎟⎠
,R8 =

⎛
⎜⎜⎝

s4 s3 s6
s5 s4 s7
s2 s1 s4

⎞
⎟⎟⎠
.

(8)E
(
Lij(p)

)
= 2t

wi

wi + wj
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offers a new multiplicative consistency concept based on CPLPRs, which fully con-
siders the NPLTSs offered by the DMs.

For any given NPLPR B = 
(
Lij(p)

)
n×n

 , its corresponding linguistic hesitant prefer-
ence relation (LHPR) (Zhu & Xu, 2014) is defined as L = 

(
Lij
)
n×n

 , where Lij(p) = {Lij,l
(pij,l )| Lij,l ∈ S, pij,l ≥ 0, l = 1, 2, …, mij , 

∑mij

l=1
pij,l = 1} and Lij = {Lij,l|Lij,l ∈ S, l = 1, 2, 

…,mij } for all i, j = 1, 2, …, n. Following the work of Tang et al. (2020), any LPR 
R = (rij)n×n obtained from the LHPR L = (Lij )n×n can be expressed as:

where �ij,l =

{
1 if the LV Lij,l is chosen

0 otherwise
 such that 

∑mij

l=1
�ij,l = 1 and �ij,l = �ij,mij+1−l

 

for all i, j = 1, 2, …, n and all l = 1, 2, …, mij.
When the LPR R = (rij)n×n is acceptably multiplicatively consistent, we have

where MCI* is the given multiplicative consistency threshold.
Put Eq. (9) into Eq. (10), we obtain

where Δ = maxn
i,j=1,i<j

�∑mij

l=1
𝜒ij,l

I(Lij,l)

2t−I(Lij,l)
,
∑mij

l=1
𝜒ij,l

2t−I(Lij,l)

I(Lij,l)

�
.

Now, we offer an acceptably multiplicative consistency based interactive algo-
rithm to derive all CPLPRs from the given PLPR B = 

(
Lij(p)

)
n×n

.

3.1  Algorithm I. The procedure of deriving CPLPRs from NPLPRs

Step 1: Let g = 1, and Rg = (r
g

ij
)n×n be the LPR derived from the LHPR L = 

(
Lij
)
n×n

 
for the NPLPR B = 

(
Lij(p)

)
n×n

 , where rg
ij
=
∏mij

l=1

�
Lij,l

��ij,l for all i, j = 1, 2, …, n 
and �ij,l is a 0–1 indicator variable as shown in Eq. (9). Let

(9)rij =
∏mij

l=1

(
Lij,l

)�ij,l

(10)1 −
2

3n(n − 1)

∑n

i,j=1,i<j

|||||
logΔ

(
I(rij)

I(rji)

)
−

1

n − 2

(∑n

k=1,k≠i,j

(
logΔ

(
I(rik)

I(rki)

)
+ logΔ

(
I(rkj)

I(rjk)

)))|||||
≥ MCI∗

(11)

1 −
2

3n(n − 1)

�n

i,j=1,i<j

������������

�mij

l=1
𝜒ij,l logΔ

�
I(Lij,l)

�
−
�mij

l=1
𝜒ji,mij+1−l

logΔ

�
I(Lji,mij+1−l

)
�

−
1

n − 2

⎛⎜⎜⎜⎝

�n

k=1,k≠i,j

⎛⎜⎜⎜⎝

�mik

l=1
𝜒ik,l logΔ

�
I(Lik,l)

�
−
�mik

l=1
𝜒ki,mik+1−l

logΔ
�
I(Lki,mik+1−l

)
�

+
�mkj

l=1
𝜒kj,l logΔ

�
I(Lkj,l)

�
−
�mkj

l=1
𝜒jk,mkj+1−l

logΔ

�
I(Ljk,mkj+1−l

)
�
⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

������������

≥ MCI∗

𝜒ij,l=𝜒ji,mij+1−l
and I(Lji,mij+1−l )=2t−I(Lij,l )

for all i,j=1,2,…,mij and all l=1,2,…,mij

⟶

1 −
2

3n(n − 1)

�n

i,j=1,i<j

����������

�mij

l=1
𝜒ij,l logΔ

�
I(Lij,l)

2t − I(Lij,l)

�
−

1

n − 2

⎛⎜⎜⎜⎜⎝

�n

k=1,k≠i,j

⎛⎜⎜⎜⎜⎝

�mik

l=1
𝜒ik,l logΔ

�
I(Lik,l)

2t − I(Lik,l)

�

+
�mkj

l=1
𝜒kj,l logΔ

�
I(Lkj,l)

2t − I(Lkj,l)

�
⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠

����������

≥ MCI∗

→

�n

i,j=1,i<j

����������

�mij

l=1
𝜒ij,l logΔ

�
I(Lij,l)

2t − I(Lij,l)

�
−

1

n − 2

⎛⎜⎜⎜⎜⎝

�n

k=1,k≠i,j

⎛⎜⎜⎜⎜⎝

�mik

l=1
𝜒ik,l logΔ

�
I(Lik,l)

2t − I(Lik,l)

�

+
�mkj

l=1
𝜒kj,l logΔ

�
I(Lkj,l)

2t − I(Lkj,l)

�
⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠

����������

≤
3n(n − 1)

2
(1 −MCI∗)
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for each pair of (i, j) such that i < j, where Δ as shown in Eq. (11), �g,+
ij

 and �g,−
ij

 are 
deviation values such that �g,+

ij
�
g,−

ij
 = 0 and �g,+

ij
,�g,−

ij
 ≥ 0.

To estimate whether the LPR Rg is acceptably multiplicatively consistent, accord-
ing to Eqs. (11) and (12) we build the following model:

where δg is the consistency deviation value, the first constraint is obtained from 
Eq. (11), the second constraint is Eq. (12), and the third to eighth constraints ensure 
Δ = maxn

i,j=1,i<j

�∑mij

l=1
𝜒ij,l

I(Lij,l)

2t−I(Lij,l)
,
∑mij

l=1
𝜒ij,l

2t−I(Lij,l)

I(Lij,l)

�
.

Solving model (M-1), we get the optimal 0–1 indicator variables �∗
ij,l

 for all i, 
j = 1, 2, …, n and all l = 1, 2, …, mij. For each pair of (i, j), without loss of generality, 
let �∗

ij,lg
= 1 . Then, we obtain the LPR Rg = (r

g

ij
)n×n , where rg

ij
= Lij,lg for all i, j = 1, 2, 

…, n. When �∗g = 0, we know that Rg is acceptably multiplicatively consistent.

Step 2: Determine the common probability pg of Rg , where

namely, pg equals to the minimum value of the probabilities of all LVs Lij,lg in B. 
According to the common probability pg, we derive the CPLPR Rg(pg) =

(
r
g

ij
(pg)

)
n×n

.

(12)

∑mij

l=1
�ij,l logΔ

(
I(Lij,l)

2t − I(Lij,l)

)

−
1

n − 2

(∑n

k=1,k≠i,j

(∑mik

l=1
�ik,l logΔ

(
I(Lik,l)

2t − I(Lik,l)

)
+
∑mkj

l=1
�kj,l logΔ

(
I(Lkj,l)

2t − I(Lkj,l)

)))

− �
g,+

ij
+ �

g,−

ij
= 0

(M-1)

𝜙∗g = min 𝛿g

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�n

i,j=1,i<j

�
𝜀
g,+

ij
+ 𝜀

g,−

ij

�
− 𝛿g ≤

3n(n − 1)

2
(1 −MCI∗)

�mij

l=1
𝜒ij,l logΔ

�
I(Lij,l)

2t − I(Lij,l)

�
−

1

n − 2

⎛
⎜⎜⎜⎜⎝

�n

k=1,k≠i,j

⎛
⎜⎜⎜⎜⎝

�mik

l=1
𝜒ik,l logΔ

�
I(Lik,l)

2t − I(Lik,l)

�

+
�mkj

l=1
𝜒kj,l logΔ

�
I(Lkj,l)

2t − I(Lkj,l)

�
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠
− 𝜀

g,+

ij
+ 𝜀

g,−

ij
= 0

�mij

l=1
𝜒ij,l

I(Lij,l)

2t − I(Lij,l)
≤ Δ,

�mij

l=1
𝜒ij,l

2t − I(Lij,l)

I(Lij,l)
≤ Δ, i, j = 1, 2,… , n;i < j

Δ =
�n−1

i=1

�n

j=i+1
𝜅ij

��mij

l=1
𝜒ij,l

I(Lij,l)

2t − I(Lij,l)

�
+
�n−1

i=1

�n

j=i+1
𝜈ij

��mij

l=1
𝜒ij,l

2t − I(Lij,l)

I(Lij,l)

�

𝜅ij = 1 or 0 , 𝜈ij = 1 or 0 , i, j = 1, 2,… , n;i < j

�n−1

i=1

�n

j=i+1

�
𝜅ij + 𝜈ij

�
= 1

�mij

l=1
𝜒ij,l = 1, i, j = 1, 2,… , n;i ≠ j

𝜒ij,l = 1 or 0, l = 1, 2,… ,mij;i, j = 1, 2,… , n;i ≠ j

𝜀
g,+

ij
𝜀
g,−

ij
= 0, 𝜀

g,+

ij
, 𝜀

g,−

ij
≥ 0, i, j = 1, 2,… , n;i < j

𝛿g ≥ 0

(13)pg = min
1≤i≤n−1

min
i+1≤j≤n

{
pij,lg

}
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Delete the CPLPR Rg(pg) from the NPLPR B = (Lij(p))n×n and obtain the PLPR 
Bg =

(
L
−g

ij
(p−g)

)
n×n

 , where

for all i, j = 1, 2, …, n.
Construct the corresponding LHPR L−g = (L−g

ij
)n×n for the PLPR 

B−g =
(
L
−g

ij
(p−g)

)
n×n

 , where 

L
−g

ij
=

{
{L

ij,l
|L

ij,l
= Lij,l, l = 1, 2, ...,mij}, pij,lg > pg

{L
ij,l
|L

ij,l
= Lij,l, l = 1, 2, ...,mij, l ≠ lg}, pij,lg = pg

 for all i, j = 1, 2, …, n.

Step 3: Let Rg+1 = (r
g+1

ij
)n×n be the LPR derived from the LHPR L−g = (L−g

ij
)n×n , 

where r
g+1

ij
=

⎧
⎪⎨⎪⎩

∏mij

l=1

�
L
ij,l

��ij,l

∏mij

l=1,l≠lg

�
L
ij,l

��ij,l
 for all i, j = 1, 2, …, n, and 

�ij,l =

{
1 if the LV Lij,l is chosen

0 otherwise
 such that 

⎧⎪⎨⎪⎩

�mij

l=1∶pij,lg>p
g
𝜒ij,l = 1

𝜒ij,l = 𝜒ji,mij+1−l
, l = 1, 2,… ,mij

 

or 

⎧⎪⎨⎪⎩

�mij

l=1,l≠lg∶pij,lg=p
g
�ij,l = 1

�ij,l = �ji,mij+1−l
, l = 1, 2,… ,mij, l ≠ lg

 for all i, j = 1, 2, …, n.

With respect to the LPR Rg+1 = (r
g+1

ij
)n×n , return to Step 1. Solving model (M-1), 

we can obtain the LPR Rg+1 = (r
g+1

ij
)n×n by the optimal 0–1 indicator variables �∗

ij,l
 

for all 
{

i, j = 1, 2, … , n

l = 1, 2, ...,mij

 or all 
{

i, j = 1, 2, … , n

l = 1, 2, ...,mij, l ≠ lg
 . Similar to the analysis of the 

LPR Rg , let �∗
ij,lg+1

= 1 for each pair of (i, j) with i < j. Then, we get rg+1
ij

= L
ij,lg+1

 for 
all i, j = 1, 2, …, n;

Step 4: Determine the common probability pg +1 of Rg+1 , where

namely, pg+1 equals to the minimum value of the probabilities of all LVs Lij,lg+1 in 
B−g . By the common probability pg+1, we derive the CPLPR 
Rg+1(pg+1) =

(
r
g+1

ij
(pg+1)

)
n×n

.

Again deleting the CPLPR Rg+1(pg+1) from the PLPR B−g =
(
L
−g

ij
(p−g)

)
n×n

 , and 

the PLPR B−(g+1) =
(
L
−(g+1)

ij
(p−(g+1))

)
n×n

 is obtained, where

(14)L
−g

ij
(p−g) =

{
Lij(p)�{Lij,lg (pij,lg )} ∪ {Lij,lg (pij,lg − pg)}, pij,lg > pg

Lij(p)�{Lij,lg (pij,lg )}, pij,lg = pg

(15)

pg = min

{
min

1≤i≤n−1
min

i+1≤j≤n

{
pij,lg+1 ∶ lg+1 ≠ lg

}
, min
1≤i≤n−1

min
i+1≤j≤n

{
pij,lg+1 − pg ∶ lg+1 = lg

}}
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for all i, j = 1, 2, …, n.

Step 5: Repeat Steps 3 and 4 until we have p1 + p2 + ... + p� = 1 , where pg is 
the common probability of the LPR Rg , g = 1, 2, …, π, and π is the number of 
derived LPRs from the NPLPR B. Meanwhile, we obtain the CPLPRs Rg(pg) , 
where g = 1, 2, …, π.

Remark 3.1 Let R = (rij)n×n be a LPR on the object set X = {x1, x2, …, xn} for the 
ALS S = {si| i = 0, 1, …, 2t}, and p be a probability such that 0 < p < 1. Then, the cor-
responding CPLPR R(p) = (rij(p))n×n is defined as:

such that rij(p) = prij = spI(rij) for all i, j = 1, 2, ..., n.

Next, we offer the concept of multiplicatively consistent CPLPRs.

Definition 3.1 Let R = (rij)n×n be a LPR, and R(p) = (rij(p))n×n be its corresponding 
CPLPR. R(p) is multiplicatively consistent if.

for all i, k, j = 1, 2, ..., n , where p is a probability such that 0 < p < 1.

Property 3.1 Let R = (rij)n×n be a LPR and R(p) = (rij(p))n×n be its correspond-
ing CPLPR. R is multiplicatively consistent if and only if R(p) is multiplicatively 
consistent.

Proof From Definitions 2.2 and 3.1, one can easily derive the conclusion.□

Remark 3.2 Similar to LPRs, let us further consider the acceptably multiplicative 
consistency of CPLPRs. Let R = (rij)n×n be a LPR and R(p) = (rij(p))n×n be its cor-
responding CPLPR. Similar to Eq. (4), the multiplicative consistency level of R(p) 
is defined as:

(16)

L
−(g+1)

ij
(p−(g+1)) =

{
L
−g

ij
(p−g)�{Lij,lg+1 (pij,lg+1 )} ∪ {Lij,lg+1 (pij,lg+1 − pg+1)}, pij,lg+1 > pg+1

L
−g

ij
(p−g)�{Lij,lg+1 (pij,lg+1 )}, pij,lg+1 = pg+1

(17)spI(rij) ⊕ spI(rji) = sp×2t, spI(rii) = sp×t

(18)spI(rij) ⊗ spI(rjk) ⊗ spI(rki) = spI(rji) ⊗ spI(rik) ⊗ spI(rkj)

(19)

MCI(R(p))

= 1 −
2

3n(n − 1)

∑n

i,j=1,i<j

|||||
logΔ

(
pI(rij)

p2t − pI(rij)

)
−

1

n − 2

(∑n

k=1,k≠i,j

(
logΔ

(
pI(rik)

p2t − pI(rik)

)
+ logΔ

(
pI(rkj)

p2t − pI(rkj)

)))|||||
= 1 −

2

3n(n − 1)

∑n

i,j=1,i<j

|||||
logΔ

(
I(rij)

2t − I(rij)

)
−

1

n − 2

(∑n

k=1,k≠i,j

(
logΔ

(
I(rik)

2t − I(rik)

)
+ logΔ

(
I(rkj)

2t − I(rkj)

)))|||||
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Equation (19) shows that LPRs and their corresponding CPLPRs have the same 
multiplicative consistency level. According to the above analysis, we offer the fol-
lowing acceptably multiplicative consistency concept for NPLPRs.

Definition 3.2 Let B = 
(
Lij(p)

)
n×n

 be an NPLPR on the object set X = {x1, x2, …, xn} 
for the ALS S = {si|i = 0, 1, …, 2t}. It is acceptably multiplicatively consistent if all 
CPLPRs Rg(pg) =

(
r
g

ij
(pg)

)
n×n

 , g = 1, 2, …, π, derived from Algorithm I are accept-
ably multiplicatively consistent. Furthermore, when all CPLPRs for the NPLPR 
B = 

(
Lij(p)

)
n×n

 derived from Algorithm I are multiplicatively consistent, then B is 
multiplicatively consistent.

To show the concrete application of Algorithm I, let us consider the following 
example.

Example 3.1 Let X = {x1, x2, x3} be the object set and S = {si|i = 0, 1, …, 8} be the 
ALS. The NPLPR B on X for the ALS S is defined as:

Let MCI* = 0.95. Following Algorithm I, we obtain the LPRs

Furthermore, their corresponding common probabilities are p1 = 0.3,p2 = 0.3 , 
and p3 = 0.4 . Therefore, the CPLPRs are

From �∗g = 0, g = 1, 2, 3, we know that these three CPLPRs are acceptably multi-
plicatively consistent. Thus, the NPLPR B is acceptably multiplicatively consistent. 
In fact, these three CPLPRs are fully multiplicatively consistent following Eq. (18), 
by which we conclude that the NPLPR B is multiplicatively consistent.

Remark 3.3 From Examples 2.1 and 3.1, one can find that Definitions 2.5 and 3.2 
don’t contain each other. When an NPLPR is multiplicatively consistent following 
Definition 2.5, it may be inconsistent according to Definition 3.2. On the other hand, 

B =
⎛⎜⎜⎝

{s4(1)} {s2(0.3), s3(0.7)} {s3(0.4), s4(0.6)}
{s5(0.7), s6(0.3)} {s4(1)} {s4(0.4), s5(0.3), s6(0.3)}
{s4(0.6), s5(0.4)} {s2(0.3), s3(0.3), s4(0.4)} {s4(1)}

⎞⎟⎟⎠
.

R1 =
⎛⎜⎜⎝

s4 s3 s4
s5 s4 s5
s4 s3 s4

⎞⎟⎟⎠
, R2 =

⎛⎜⎜⎝

s4 s2 s4
s6 s4 s6
s4 s2 s4

⎞⎟⎟⎠
and R3 =

⎛⎜⎜⎝

s4 s3 s3
s5 s4 s4
s5 s4 s4

⎞⎟⎟⎠
.

R1 =
⎛
⎜⎜⎝

s4(0.3) s3(0.3) s4(0.3)
s5(0.3) s4(0.3) s5(0.3)
s4(0.3) s3(0.3) s4(0.3)

⎞
⎟⎟⎠
,R2(0.3) =

⎛
⎜⎜⎝

s4(0.3) s2(0.3) s4(0.3)
s6(0.3) s4(0.3) s6(0.3)
s4(0.3) s2(0.3) s4(0.3)

⎞
⎟⎟⎠
and

R3(0.4) =
⎛⎜⎜⎝

s4(0.4) s3(0.4) s3(0.4)
s5(0.4) s4(0.4) s4(0.4)
s5(0.4) s4(0.4) s4(0.4)

⎞⎟⎟⎠
.
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when an NPLPR is multiplicatively consistent based on Definition 3.2, we cannot 
conclude that it is multiplicatively consistent following Definition 2.5.

4  InNPLPRs

This section discusses InNPLPRs, namely, there are missing judgments. Consider-
ing the construction of PLPRs, the missing information can be classified into three 
cases: (i) probability is missing, (ii) LV is missing and (iii) both of them are missing.

Let B = 
(
Lij(p)

)
n×n

 be an InNPLPR, where Lij(p) = {Lij,l ( pij,l )| Lij,l ∈ S, pij,l ≥ 0, 
l = 1, 2, …, mij , 

∑mij

l=1
pij,l = 1} for all i, j = 1, 2, …, n. Furthermore, let UP(i, j) = {l|The 

probability if Lij,l (pij,l) is missing, where l = 1, 2, …, mij}, let US(i, j) = {l|The LV of 
Lij,l (pij,l) is missing, where l = 1, 2, …, mij}, and let UPS(i, j) = UP(i, j)∩ US(i, j). Let 
S = {si|i = 0, 1, …, 2t} be the ALS.

Now, we offer a common probability and multiplicative consistency based inter-
active algorithm to estimate missing information in the InNPLPR B = 

(
Lij(p)

)
n×n

.

4.1  Algorithm II. The procedure of ascertaining missing judgments in InNPLPRs

Step 1: Construct LPRs from InNPLPRs.

Let g = 1. With respect to the InNPLPR B = (Lij(p))n×n , let L = (Lij)n×n be the cor-
responding incomplete LHPR (InLHPR), which is defined as

and

where �ij,l,� is a 0–1 indicator variable such that 
∑2t

�=0
�ij,l,� = 1 and �ij,l,� = �ij,mij+1−l,�

 

for all τ = 0, 1, …, 2t and all l ∈ US(i, j) ∪ UPS(i, j) . 
∑2t

�=0
�ij,l,� = 1 ensures only one 

item in the ALS S = {si|i = 0, 1, …, 2t} to be chosen as the value of Lij,l, and 
�ij,l,� = �ji,mij+1−l,�

 ensures to Lij,l ⊕ Lji,mij+1−l
= s2t for any l ∈ US(i, j) ∪ UPS(i, j).

Remark 4.1 The first case in Eqs. (20) and (21) means that all LVs in the PLTS Lij(p) 
are known. The second case in Eqs. (20) and (21) indicates that there are known and 
unknown LVs in the PLTS Lij(p) simultaneously. The third case in Eqs. (20) and 
(21) shows that all LVs in the PLTS Lij(p) are unknown. Because any LPR only 

(20)Lij =

⎧⎪⎪⎨⎪⎪⎩

�
Lij, l , l = 1, 2,… ,mij

�
, ∄ l ∈ US(i, j) ∪ UPS(i, j)

�
Lij, l , l = 1, 2,… , l ∉ US(i, j) ∪ UPS(i, j)

�
∪
�
⊗2t

𝜄=0
(s𝜄)

𝜏ij,l,𝜄 ∶ l ∈ US(i, j) ∪ UPS(i, j)
�

�
⊗2t

𝜄=0
(s𝜄)

𝜏ij,l,𝜄 , l ∈ {0, 1,… , 2t}
�
, ∀ l ∈ US(i, j) ∪ UPS(i, j)

(21)Lji =

⎧⎪⎪⎨⎪⎪⎩

�
Lji,mij+1−l

, l = 1, 2,… ,mij

�
, ∄ l ∈ US(i, j) ∪ UPS(i, j)

�
Lji,mij+1−l

, l = 1, 2,… , l ∉ US(i, j) ∪ UPS(i, j)
�
∪
�
⊗2t

𝜄=0
(s2t−𝜄)

𝜏ji,mij+1−l,𝜄 ∶ l ∈ US(i, j) ∪ UPS(i, j)
�

�
⊗2t

𝜄=0
(s2t−𝜄)

𝜏ji, l,𝜄 , l ∈ {0, 1,… , 2t}
�
, ∀ l ∈ US(i, j) ∪ UPS(i, j)
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takes one LV in each NPLTS, we use ⊗2t
𝜄=0

(s𝜄)
𝜏ij,l,𝜄 to denote an unknown LV. Any 

LPR Rg = (r
g

ij
)n×n obtained from the InLHPR L = (Lij )n×n can be expressed as:

and rg
ji
= s2t−I(rg

ij
) , where �ij,l = 1 or 0 such that 

∑mij

l=1
�ij,l = 1 for all i, j = 1, 2, …, n 

with i < j and all l = 1, 2, …, mij, �ij,� = 1 or 0 such that 
∑2t

�=1
�ij,� = 1 for all i, j = 1, 2, 

…, n with i < j and all τ = 1, 2, …, 2t, and other notations as shown in Eq. (20).

Step 2: Determine missing LVs based on the optimal model.

As we know, the values of missing judgments make the consistency of incom-
plete preference relations the higher the better. In view of the common probability 
and multiplicative consistency analysis, we build the following optimal model for 
the LPR Rg = (r

g

ij
)n×n:

(22)

r
g

ij
=

⎧
⎪⎪⎨⎪⎪⎩

⊗
mij

l=1
(Lij, l)

𝛾ij, l , ∄ l ∈ US(i, j) ∪ UPS(i, j)�
⊗

mij

l=1 ,l∉US(i,j) ∪UPS(i,j)
(Lij, l)

𝛾ij, l

�
⊗

�
⊗l∈US(i,j) ∪UPS(i,j)

�
⊗2t

𝜄=0
(s𝜄)

𝜏ij,l,𝜄
�𝛾ij, l�

⊗2t
𝜄=0

(s𝜄)
𝜏ij,𝜄 ,∀l ∈ US(i, j) ∪ UPS(i, j)
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where the first constraint is derived from Eq. (4) by taking the logarithm 10 and add-
ing the nonnegative deviation values �g,+

ij
 and �g,−

ij
 for each pair of (i, j) such that i < j, 

the second to fifth constraints are obtained from the first case in Eq. (22), the sixth to 
ninth constraints are obtained from the second case in Eq. (22), the tenth constraint 
is obtained from the third case in Eq. (22), the eleventh constraint is based on the 
concept of LPRs on the ALS S = {si|i = 0, 1, …, 2t}, and other notations as shown in 
Eq. (22).

Remark 4.2 In model (M-2), it adopts the logarithm 10. In fact, we can take any inte-

ger bigger than one. To avoid the situation where log10

(
I(r

g

ij
)

2t−I(r
g

ij
)

)
= log10 (0) is 

meaningless, we replace I(rg
ij
) = 0 with I(rg

ij
) = 0.01 . On the other hand, when 

(M-2)

�g,∗ = min
�n−1

i=1

�n

j=i+1

�
�
g,+

ij
+ �

g,−

ij

�

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log10

�
I(r

g

ij
)

2t − I(r
g

ij
)

�
−

1

n − 2

��n

k=1,k≠i,j

�
log10

�
I(r

g

ik
)

2t − I(r
g

ik
)

�
+ log10

�
I(r

g

kj
)

2t − I(r
g

kj
)

���
− �

g,+

ij
+ �

g,−

ij
= 0

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

I(r
g

ij
) =

�mij

l=1
I(Lij, l)

�ij, l , ∄ l ∈ US(i, j) ∪ UPS(i, j) , Lij, 1 ≠ s0 and Lij, mij
≠ s2t

I(r
g

ij
) = 0.01�ij, 1 ×

�mij

l=2
I(Lij, l)

�ij, l , ∄ l ∈ US(i, j) ∪ UPS(i, j) , Lij, 1 = s0 and Lij, mij
≠ s2t

I(r
g

ij
) =

�mij−1

l=1
I(Lij, l)

�ij, l × (2t − 0.01)
�ij,mij , ∄ l ∈ US(i, j) ∪ UPS(i, j) , Lij, 1 ≠ s0 and Lij, mij

= s2t

I(r
g

ij
) = 0.01�ij, 1 ×

�mij−1

l=2
I(Lij, l)

�ij, l × (2t − 0.01)
�ij,mij , ∄ l ∈ US(i, j) ∪ UPS(i, j) , Lij, 1 = s0 and Lij, mij

= s2t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(r
g

ij
) =

�mij

l=1,l∉US(i,j) ∪UPS(i,j)
I(Lij, l)

�ij, l ×
�

l∈US(i,j) ∪UPS(i,j)

�
0.01�ij,l,0 ×

�2t−1

�=1
��ij,l,� × (2t − 0.01)�ij,l,2t

��ij, l
,

∃ l ∈ US(i, j) ∪ UPS(i, j) , Lij, 1 ≠ s0 and Lij, mij
≠ s2t

I(r
g

ij
) = 0.01�ij, 1 ×

�mij

l=2,l∉US(i,j) ∪UPS(i,j)
I(Lij, l)

�ij, l I(Lij, l)
�ij, l

×
�

l∈US(i,j) ∪UPS(i,j)

�
0.01�ij,l,0 ×

�2t−1

�=1
��ij,l,� × (2t − 0.01)�ij,l,2t

��ij, l
,

∃ l ∈ US(i, j) ∪ UPS(i, j) and Lij, 1 = s0 and Lij, mij
≠ s2t

I(r
g

ij
) =

�mij−1

l=1,l∉US(i,j) ∪UPS(i,j)
I(Lij, l)

�ij, l I(Lij, l)
�ij, l × (2t − 0.01)

�ij,mij

×
�

l∈US(i,j) ∪UPS(i,j)

�
0.01�ij,l,0 ×

�2t−1

�=1
��ij,l,� × (2t − 0.01)�ij,l,2t

��ij, l
,

∃ l ∈ US(i, j) ∪ UPS(i, j) and Lij, 1 ≠ s0 and Lij, mij
= s2t

I(r
g

ij
) = 0.01�ij, 1 ×

�mij−1

l=2,l∉US(i,j) ∪UPS(i,j)
I(Lij, l)

�ij, l I(Lij, l)
�ij, l × (2t − 0.01)

�ij,mij

×
�

l∈US(i,j) ∪UPS(i,j)

�
0.01�ij,l,0 ×

�2t−1

�=1
��ij,l,� × (2t − 0.01)�ij,l,2t

��ij, l
,

∃ l ∈ US(i, j) ∪ UPS(i, j) and Lij, 1 = s0 and Lij, mij
= s2t

I(r
g

ij
) = 0.01�ij,0 ×

�2t−1

�=1
��ij,� × (2t − 0.01)�ij,2t , ∀ l ∈ US(i, j) ∪ UPS(i, j)

I(r
g

ji
) = 2t − I(r

g

ij
)

�
g,+

ij
, �

g,−

ij
≥ 0

�mij

l=1
�ij,l = 1, �ij,l = 1 or 0, l = 1, 2,… ,mij

�2t

�=0
�ij,l,� = 1 for each l ∈ US(i, j) ∪ UPS(i, j), where �ij,l,� = 1 or 0

�2t

�=0
�ij,� = 1, �ij,� = 1 or 0, � = 0, 1,… , 2t − 1, 2t

i, j = 1, 2,… , n
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I(r
g

ij
) = 2t , then I(rg

ji
) = 2t − I(r

g

ij
) = 0 , and log10

(
I(r

g

ji
)

2t−I(r
g

ji
)

)
= log10 (0) is meaning-

less. In this case, we let I(rg
ij
) = 2t − 0.01 . For this purpose, we classify four cases 

for the first and second cases in Eq. (22), respectively.

According to the relationship of LVs in LPRs, we have I(rg
ji
) = 2t − I(r

g

ij
) for each 

pair of (i, j) such that i < j. Thus,

where

Equation  (23) shows that we can only employ the upper triangular LVs in the 
InLHPR L = 

(
Lij
)
n×n

 to derive the LPR Rg = (r
g

ij
)n×n . Thus, model (M-2) can be 

equivalently converted to the following model:

(23)

∑n

k=1,k≠i,j

(
log10

(
I(r

g

ik
)

2t − I(r
g

ik
)

)
+ log10

(
I(r

g

kj
)

2t − I(r
g

kj
)

))

=
(∑i−1

k=1
+
∑j−1

k=i+1
+
∑n

k=j+1

)(
log10

(
I(r

g

ik
)

2t − I(r
g

ik
)

)
+ log10

(
I(r

g

kj
)

2t − I(r
g

kj
)

))

= Ξi−1
k=1

+ Ξ
j−1

k=i+1
+ Ξn

k=j+1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ξi−1
k=1

=
�i−1

k=1

�
log10

�
2t − I(r

g

ki
)

I(r
g

ki
)

�
+ log10

�
I(r

g

kj
)

2t − I(r
g

kj
)

��

Ξ
j−1

k=i+1
=
�j−1

k=i+1

�
log10

�
I(r

g

ik
)

2t − I(r
g

ik
)

�
+ log10

�
I(r

g

kj
)

2t − I(r
g

kj
)

��

Ξn
k=j+1

=
�n

k=j+1

�
log10

�
I(r

g

ik
)

2t − I(r
g

ik
)

�
+ log10

�
2t − I(r

g

jk
)

I(r
g

jk
)

��
.
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where Ξi−1
k=1

,Ξj−1

k=i+1
 and Ξn

k=j+1
 as shown in Eq. (23), and all other constraints as those 

in model (M-2).
Solving model (M-3), according to the optimal values of 0–1 indicator variables, 

we obtain the LPR Rg = (r
g

ij
)n×n . Without loss of generality, let �∗

ij,lg
= 1,�∗

ij,�g
= 1 and 

�∗
ij,l,�g

= 1 for all i, j = 1, 2, …, n such that i < j, all lg = 1, 2, …, mij, and all τg = 0, 1, 2, 
…, 2t. From �∗

ij,�g
= 1 , we obtain that s�g is one LV in the PLTS Lij whose all LVs are 

unknown. Furthermore, if l ∈ US(i, j) ∪ UPS(i, j) , from �∗
ij,l,�g

= 1 , we derive that the 
unknown LV Lij,l is s�g . Especially, when rg

ij
= 0.01 , we get rg

ij
= s0 and rg

ji
= s2t ; When 

r
g

ij
= s2t−0.01 , we derive rg

ij
= s2t and rg

ji
= s0.

Step 3: Determine missing probabilities based on LPRs.

(M-3)

𝜙g,∗ = min
�n−1

i=1

�n

j=i+1

�
𝜀
g,+

ij
+ 𝜀

g,−

ij

�

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log10

�
I(r

g

ij
)

2t − I(r
g

ij
)

�
−

1

n − 2

�
Ξi−1
k=1 + Ξ

j−1

k=i+1
+ Ξn

k=j+1

�
− 𝜀

g,+

ij
+ 𝜀

g,−

ij
= 0

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

I(r
g

ij
) =

�mij

l=1
I(Lij, l)

𝛾ij, l , ∄ l ∈ US(i, j) ∪ UPS(i, j) , Lij, 1 ≠ s0 and Lij, mij
≠ s2t

I(r
g

ij
) = 0.01𝛾ij, 1 ×

�mij

l=2
I(Lij, l)

𝛾ij, l , ∄ l ∈ US(i, j) ∪ UPS(i, j) , Lij, 1 = s0 and Lij, mij
≠ s2t

I(r
g

ij
) =

�mij−1

l=1
I(Lij, l)

𝛾ij, l × (2t − 0.01)
𝛾ij,mij , ∄ l ∈ US(i, j) ∪ UPS(i, j) , Lij, 1 ≠ s0 and Lij, mij

= s2t

I(r
g

ij
) = 0.01𝛾ij, 1 ×

�mij−1

l=2
I(Lij, l)

𝛾ij, l × (2t − 0.01)
𝛾ij,mij , ∄ l ∈ US(i, j) ∪ UPS(i, j) , Lij, 1 = s0 and Lij, mij

= s2t

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(r
g

ij
) =

�mij

l=1,l∉US(i,j) ∪UPS(i,j)
I(Lij, l)

𝛾ij, l ×
�

l∈US(i,j) ∪UPS(i,j)

�
0.01𝜏ij,l,0 ×

�2t−1

𝜄=1
𝜄𝜏ij,l,𝜄 × (2t − 0.01)𝜏ij,l,2t

�𝛾ij, l
,

∃ l ∈ US(i, j) ∪ UPS(i, j) , Lij, 1 ≠ s0 and Lij, mij
≠ s2t

I(r
g

ij
) = 0.01𝛾ij, 1 ×

�mij

l=2,l∉US(i,j) ∪UPS(i,j)
I(Lij, l)

𝛾ij, l I(Lij, l)
𝛾ij, l

×
�

l∈US(i,j) ∪UPS(i,j)

�
0.01𝜏ij,l,0 ×

�2t−1

𝜄=1
𝜄𝜏ij,l,𝜄 × (2t − 0.01)𝜏ij,l,2t

�𝛾ij, l
,

∃ l ∈ US(i, j) ∪ UPS(i, j) and Lij, 1 = s0 and Lij, mij
≠ s2t

I(r
g

ij
) =

�mij−1

l=1,l∉US(i,j) ∪UPS(i,j)
I(Lij, l)

𝛾ij, l I(Lij, l)
𝛾ij, l × (2t − 0.01)

𝛾ij,mij

×
�

l∈US(i,j) ∪UPS(i,j)

�
0.01𝜏ij,l,0 ×

�2t−1

𝜄=1
𝜄𝜏ij,l,𝜄 × (2t − 0.01)𝜏ij,l,2t

�𝛾ij, l
,

∃ l ∈ US(i, j) ∪ UPS(i, j) and Lij, 1 ≠ s0 and Lij, mij
= s2t

I(r
g

ij
) = 0.01𝛾ij, 1 ×

�mij−1

l=2,l∉US(i,j) ∪UPS(i,j)
I(Lij, l)

𝛾ij, l I(Lij, l)
𝛾ij, l × (2t − 0.01)

𝛾ij,mij

×
�

l∈US(i,j) ∪UPS(i,j)

�
0.01𝜏ij,l,0 ×

�2t−1

𝜄=1
𝜄𝜏ij,l,𝜄 × (2t − 0.01)𝜏ij,l,2t

�𝛾ij, l
,

∃ l ∈ US(i, j) ∪ UPS(i, j) and Lij, 1 = s0 and Lij, mij
= s2t

I(r
g

ij
) = 0.01𝜏ij,0 ×

�2t−1

𝜄=1
𝜄𝜏ij,𝜄 × (2t − 0.01)𝜏ij,2t , ∀l ∈ US(i, j) ∪ UPS(i, j)

𝜀
g,+

ij
, 𝜀

g,−

ij
≥ 0

�mij

l=1
𝛾ij,l = 1, 𝛾ij,l = 1 or 0, l = 1, 2, ...,mij

�2t

𝜄=0
𝜏ij,l,𝜄 = 1 for each l ∈ US(i, j) ∪ UPS(i, j) such that i < j, where 𝜏ij,l,𝜄 = 1 or 0

�2t

𝜄=0
𝜏ij,𝜄 = 1, 𝜏ij,𝜄 = 1 or 0, 𝜄 = 0, 1, ..., 2t − 1, 2t;i, j = 1, 2, ..., n, i < j
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According to the LPR Rg = (r
g

ij
)n×n , determine the common probability pg of LVs 

in Rg , which is defined as

where min
1≤i<j≤n,lg∉UP(i,j)∪UPS(i,j)

pij,lg is the minimum value of the probabilities of the LVs 

that construct the LPR Rg, min
1≤i<j≤n,lg∈UP(i,j)∪UPS(i,j)

�
1 −

∑mij

l=1,l∉UP(i,j)∪UPS(i,j)
pij,l

�
 is the 

minimum value of the unknown probabilities of the LVs that construct the LPR Rg , 
and 1 −

∑mij

l=1,l∉UP(i,j)∪UPS(i,j)
pij,l ensures that the sum of the known probabilities and 

pg is no bigger than 1. In this way, we know that each LV with unknown probability 
in Rg has a probability that is no smaller than pg . Furthermore, we get the CPLPR 
Rg(pg) =

(
r
g

ij
(pg)

)
n×n

.

Step 4: Construct InPLPRs by deleting CPLPRs.

Delete the CPLPR Rg(pg) =
(
r
g

ij
(pg)

)
n×n

 from the InNPLPR B = 
(
Lij(p)

)
n×n

 , by 

which we derive the corresponding InPLPR Bg =
(
L
g

ij
(pg)

)
n×n

 , where

for each pair of (i, j), the first two cases are for LVs with the known probabilities 
in the LPR Rg . When pij,lg > pg , then we replace the item Lij,lg

(
pij,lg

)
 with 

Lij,lg

(
pij,lg − pg

)
 . Otherwise, we delete the item Lij,lg

(
pij,lg

)
 from Lij(p). The third and 

(24)

pg = min

{
min

1≤i<j≤n,lg∉UP(i,j)∪UPS(i,j)
pij,lg , min

1≤i<j≤n,lg∈UP(i,j)∪UPS(i,j)

(
1 −

∑mij

l=1,l∉UP(i,j)∪UPS(i,j)
pij,l

)}

(25)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i)

⎧
⎪⎨⎪⎩

L
g

ij
(pg) = Lij(p)�

�
Lij,lg

�
pij,lg

��
∪
�
Lij,lg

�
pij,lg − pg

��
,

where pij,lg > pg and ∄lg ∈ UP(i, j) ∪ UPS(i, j)

(ii)

⎧⎪⎨⎪⎩

L
g

ij
(pg) = Lij(p)�

�
Lij,lg

�
pij,lg

��
,

where pij,lg = pg and ∄ ∈ UP(i, j) ∪ UPS(i, j)

(iii)

⎧⎪⎨⎪⎩

L
g

ij
(pg) = Lij(p)�

�
Lij,lg

�
pij,lg

��
∪
�
Lij,lg

�
pij,lg − pg

��

where pg +
�mij

l=1,l∉UP(i,j)∪UPS(i,j)
pij,l < 1, lg ∈ UP(i, j) ∪ UPS(i, j)

(iv)

⎧
⎪⎨⎪⎩

L
g

ij
(pg) = Lij(p)�

�
Lij,lg

�
pij,lg

��
�
�
Lij,l

�
pij,l

�
, l ∈ US(i, j) ∪ UPS(i, j)�{lg}

�

where pg +
�mij

l=1,l∉UP(i,j)∪UPS(i,j)
pij,l = 1, lg ∈ UP(i, j) ∪ UPS(i, j)

(v)

⎧
⎪⎨⎪⎩

L
g

ij
(pg) = Lij(p)�

�
Lij,lg

�
pij,lg

��
∪
�
Lij,lg

�
pij,lg − pg

��

∀ l ∈ UP(i, j) ∪ UPS(i, j)
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fourth cases are for LVs with the unknown probabilities in the LPR Rg . When 
pg +

∑mij

l=1,l∉UP(i,j)∪UPS(i,j)
pij,l < 1 , the probability of the LV rg

ij
 is no smaller than pg, 

and we replace Lij,lg

(
pij,lg

)
 with Lij,lg

(
pij,lg − pg

)
 . However, if 

pg +
∑mij

l=1,l∉UP(i,j)∪UPS(i,j)
pij,l = 1 , we know that the probability of the LV rg

ij
 is pg and 

all other unknown probabilities of LVs in the PLTS Lij(p) equal to zero. In this case, 
we delete them. In the fifth case, the item Lij,lg (pij,lg ) belongs to the PLTS Lij(p) such 
that pij,lg ≥ pg, where Lij,lg = r

g

ij
.

Step 5: Process the InPLPR Bg =
(
L
g

ij
(pg)

)
n×n

 in a similar way as the InPLPR 
B =

(
Lij(p)

)
n×n

.

With respect to the InPLPR Bg =
(
L
g

ij
(pg)

)
n×n

 , return to Step 1. Construct the 
LPR Rg+1 = (r

g+1

ij
)n×n in a similar way as the LPR Rg = (r

g

ij
)n×n . Then, go to Step 2 

and use model (M-3) to obtain the LPR Rg+1 = (r
g+1

ij
)n×n . Furthermore, let �∗

ij,lg+1
= 1

,�∗
ij,�g+1

= 1 and �∗
ij,l,�g+1

= 1 for each pair of (i, j) such that i < j, all lg = 1, 2, …, mij, and 
all τg = 0, 1, 2, …, 2t. According to Step 3 and the LPR Rg+1 = (r

g+1

ij
)n×n , ascertain 

the common probability pg +1 of LVs in Rg+1 , where

where p� is the probability of the CPLPR R�(p�) for all κ = 1, 2, …, g, 
1 −

∑mij

l=1,l∉UP(i,j)∪UPS(i,j)
p
g

ij,l
−
∑g

�=1
p� is the amount of uncertain probability, and all 

other notations as shown in Eq. (24).

Step 6: Repeat Steps 4 and 5 until we have p1 + p2 + ⋯ + pπ = 1, where π is the 
number of iterations. Furthermore, let Rg = (r

g

ij
)n×n be the derived LPR and 

Rg(pg) =
(
r
g

ij
(pg)

)
n×n

 be the corresponding CPLPR, where g = 1, 2, …, π. Fol-
lowing the CPLPRs, we derive the complete PLPR B =

(
Lij(p)

)
n×n

 , where

for all i, j = 1, 2, …, n.

Remark 4.3 From the procedure of Algorithm II, one can check that its principle is 
simple. Based on the LPRs derived from the corresponding InLHPRs and the mul-
tiplicative consistency, missing LVs are determined by solving model (M-3). Then, 
missing probabilities of LVs are ascertained following the common probability and 
the condition of normalized probability distributions on NPLTSs.

To illustrate the concrete application of Algorithm II, we offer the following 
example.

(26)pg+1 = min

{
min

1≤i<j≤n,lg+1∉UP(i,j)∪UPS(i,j)
p
g

ij,lg+1
, min
1≤i<j≤n,lg∈UP(i,j)∪UPS(i,j)

(
1 −

∑mij

l=1,l∉UP(i,j)∪UPS(i,j)
p
g

ij,l
−
∑g

𝜅=1
p𝜅
)}

(27)

Lij(p) =
{
∪�
g=1

r
g

ij
(pg)

}
=

{
r
g

ij

(∑
g∈Πg={h∶rh

ij
=r

g

ij
,h=1,2,…,�},

pg
)
|g = 1, 2,… ,� and g ∉ Πg

}
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Example 4.1 Let X = {x1, x2, x3, x4} be the object set, and let S = {si|i = 0, 1, 2,…, 8} 
be the ALS. An InNPLPR B on X for the ALS S may be defined as:

According to Algorithm II, the CPLPRs are derived as follows:

Furthermore, based on Eq. (27) we derive the following complete NPLPR

5  Optimal models for reaching the multiplicative consistency 
requirement

The section discusses another type of frequently encountered NPLPRs: unaccept-
ably multiplicatively consistent NPLPRs. The ranking of objects based on such 
type of NPLPRs may be unreasonable. Therefore, the section studies how to derive 
acceptably multiplicatively consistent NPLPRs.

Definition 5.1 Let B = (Lij(p))n×n be an NPLPR on the object set X = {x1, x2, …, xn} 
for the ALS S = {si|i = 0, 1, …, 2t}. It is unacceptably multiplicatively consistent if 
there is unacceptably multiplicatively consistent CPLPR that is derived from Algo-
rithm I.

Equation (19) shows that when an NPLPR is unacceptably multiplicatively con-
sistent. Then, there is unacceptably multiplicatively consistent LPR derived from 
Algorithm I. Let Rg =

(
r
g

ij

)
n×n

 , g = 1, 2, …, π, be the LPRs from Algorithm I for 
the NPLPR B = (Lij(p))n×n . Furthermore, let Θ = {Rg|�g,∗ ≠ 0, g = 1, 2,… ,�} 
where �g,∗ is the objective function value of model (M-3). Then, Θ is the set of unac-
ceptably multiplicatively consistent LPRs.

B =

⎛⎜⎜⎜⎜⎜⎜⎝

�
s4(1)

� �
s2(0.4), s3(p12,2), s12,3(p12,3)

� �
s4(0.6), s13,2(0.4)

�
L14(p)�

s21,1(p12,3), s5(p12,2), s6(0.4)
� �

s4(1)
�

L23(p)
�
s3(0.4), s24,2(0.3), s24,3(0.3)

�
�
s31,1(0.4), s4(0.6)

�
L32(p)

�
s4(1)

� �
s5(0.4), s6(0.6)

�

L41(p)
�
s42,1(0.3), s42,2(0.3), s5(0.4)

� �
s2(0.6), s3(0.4)

� �
s4(1)

�

⎞⎟⎟⎟⎟⎟⎟⎠

.

R1(0.3) =

⎛
⎜⎜⎜⎝

s4(0.3) s6(0.3) s4(0.3) s6(0.3)
s2(0.3) s4(0.3) s2(0.3) s4(0.3)
s4(0.3) s6(0.3) s4(0.3) s6(0.3)
s2(0.3) s4(0.3) s2(0.3) s4(0.3)

⎞
⎟⎟⎟⎠
,R2(0.3) =

⎛
⎜⎜⎜⎝

s4(0.3) s2(0.3) s2(0.3) s4(0.3)
s6(0.3) s4(0.3) s4(0.3) s6(0.3)
s6(0.3) s4(0.3) s4(0.3) s6(0.3)
s4(0.3) s2(0.3) s2(0.3) s4(0.3)

⎞
⎟⎟⎟⎠
,

R3(0.3) =

⎛
⎜⎜⎜⎝

s4(0.3) s6(0.3) s4(0.3) s5(0.3)
s2(0.3) s4(0.3) s2(0.3) s3(0.3)
s4(0.3) s6(0.3) s4(0.3) s5(0.3)
s3(0.3) s5(0.3) s3(0.3) s4(0.3)

⎞⎟⎟⎟⎠
,R4(0.1) =

⎛
⎜⎜⎜⎝

s4(0.1) s2(0.1) s2(0.1) s2(0.1)
s6(0.1) s4(0.1) s3(0.1) s3(0.1)
s6(0.1) s5(0.1) s4(0.1) s5(0.1)
s6(0.1) s5(0.1) s3(0.1) s4(0.1)

⎞⎟⎟⎟⎠
.

B=

⎛⎜⎜⎜⎜⎜⎜⎝

�
s4(1)

� �
s2(0.4), s6(0.6)

� �
s2(0.4), s4(0.6)

� �
s2(0.1), s4(0.3), s5(0.3), s6(0.3)

�
�
s2(0.6), s6(0.4)

� �
s4(1)

� �
s2(0.6), s3(0.1), s4(0.3)

� �
s3(0.4), s4(0.3), s6(0.3)

�
�
s4(0.6), s6(0.4)

� �
s4(0.4), s5(0.1), s6(0.6)

� �
s4(1)

� �
s5(0.4), s6(0.6)

�
�
s2(0.3), s3(0.3), s4(0.3), s6(0.1)

� �
s2(0.3), s4(0.3), s5(0.4)

� �
s2(0.6), s3(0.4)

� �
s4(1)

�

⎞⎟⎟⎟⎟⎟⎟⎠

.
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According to Definition 3.2 and Eq. (19), we know that the corresponding accept-
ably multiplicatively consistent NPLPR B * = 

(
L∗
ij
(p∗)

)
n×n

 for the NPLPR B can be 
derived by adjusting unacceptably multiplicatively consistent LPRs in Θ . With 
respect to LPRs in Θ , besides considering their consistency levels, the smaller the 
adjustment, the better to retain the original information. Considering these two 
aspects, inspired by Dong et  al.’s methods (Dong et  al., 2008, 2013) for deriving 
additively consistent LPRs, we construct the following model to derive the accepta-
bly multiplicatively consistent LPR R∗g =

(
r
∗g

ij

)
n×n

 from the LPR Rg:

where MCI* is the given multiplicative consistency threshold, the first two con-
straints are derived from Eq.  (5) that ensure the LPR R∗g = (r

∗g

ij
)n×n to satisfy the 

consistency requirement, the third constraint reflects the deviation between LVs r∗g
ij

 
and rg

ij
 , the fourth constraint indicates that r∗g

ij
 belongs to the ALS S = {si| i = 0, 1, …, 

2t}. Furthermore, we replace r∗g
ij

= 0 or 2t with r∗g
ij

= 0.001 or 2t − 0.001 to make 
the second constraint meaningful. The fifth to eighth constraints make Δ equal to 

maxn
i,j=1,i<j

(
I
(
r
∗g
ij

)

2t−I
(
r
∗g
ij

) ,
2t−I

(
r
∗g
ij

)

I
(
r
∗g
ij

)
)

 , and the eleventh constraint shows that r∗g
ij

 only 

takes one linguistic term in the ALS S.
Considering the fact that all variables in model (M-4) only relate to the LPR 

R∗g =
(
r
∗g

ij

)
n×n

 , we can adjust all unacceptably multiplicatively consistent LPRs in 
Θ simultaneously. Thus, we further build the following model:

(M-4)

𝜑∗g = min
�n

i,j=1,i<j

�
𝛼
g,+
ij

+ 𝛼
g,−
ij

�

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�n

i,j=1,i<j

�
𝜀
g,+
ij

+ 𝜀
g−
ij

�
≤

3n(n − 1)

2

�
1 −MCI∗

�

logΔ

�
I(r

∗g
ij
)

2t − I(r
∗g

ij
)

�
−

1

n − 2

��n

k=1,k≠i,j

�
logΔ

�
I(r

∗g
ik
)

2t − I(r
∗g

ik
)

�
+ logΔ

�
I(r

∗g
kj
)

2t − I(r
∗g

kj
)

���
− 𝜀

g,+
ij

+ 𝜀
g,−
ij

= 0

I(r
∗g
ij
) − I(r

g

ij
) − 𝛼

g,+
ij

+ 𝛼
g,−
ij

= 0

I(r
∗g
ij
) = 0.001𝜏

g

ij,0
+
�2t−1

𝜄=1
𝜏
g

ij,𝜄
+ (2t − 0.001)𝜏

g

ij,2t

I(r
∗g
ij
)

2t − I(r
∗g
ij
)
≤ Δ,

2t − I(r
∗g
ij
)

I(r
∗g
ij
)

≤ Δ, i, j = 1, 2,… , n;i < j

Δ =
�n−1

i=1

�n

j=i+1
𝜅
g

ij

�
I(r

∗g

ij
)

2t − I(r
∗g

ij
)

�
+
�n−1

i=1

�n

j=i+1
𝜈
g

ij

�
2t − I(r

∗g

ij
)

I(r
∗g

ij
)

�

𝜅
g

ij
= 1 or 0 , 𝜈

g

ij
= 1 or 0 , i, j = 1, 2,… , n;i < j

�n−1

i=1

�n

j=i+1

�
𝜅
g

ij
+ 𝜈

g

ij

�
= 1

𝛼
g,+
ij

, 𝛼
g,−
ij

≥ 0

𝜀
g,+

ij
, 𝜀

g,−

ij
≥ 0, 𝜀

g,+

ij
𝜀
g,−

ij
= 0

�2t

𝜄=0
𝜏
g

ij,𝜄
= 1 , 𝜏

g

ij,𝜄
= 1 or 0, 𝜄 = 0, 1,… , 2t

i = 1, 2,… , n − 1;j = i + 1,… , n
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where all constraints as those shown in model (M-4).
Solving model (M-4), we can derive all acceptably multiplicatively consistent 

LPRs. According to Eq.  (27), we obtain the corresponding acceptably multiplica-
tively consistent PLPR B∗ =

(
L∗

ij
(p)

)
n×n

.

6  Group decision making with NPLPRs

This section discusses GDM with NPLPRs following the derived CPLPRs from 
Algorithm I. Assume that there are ς DMs, denoted by E = {1, 2, …, ς}. Let 
Bo = (Lo

ij
(po))n×n be the individual NPLPR (I-NPLPR) offered by the DM eο, ο ∈ E.

For GDM, we usually need to calculate comprehensive preference relations and 
measure the consensus degree of individual opinions. Therefore, we next offer a 
similarity measure based method for determining the weights of DMs.

Definition 6.1 Let R1(p1) =
(
r1
ij
(p1)

)
n×n

 and R2(p2) =
(
r2
ij
(p2)

)
n×n

 be any two CPL-
PRs. Then, their similarity measure is defined as:

(M-5)

𝜑∗ = min
�

g∈Θ

�n

i,j=1,i<j

�
𝛼
g,+
ij

+ 𝛼
g,−
ij

�

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�n

i,j=1,i<j

�
𝜀
g,+
ij

+ 𝜀
g−
ij

�
≤

3n(n − 1)

2

�
1 −MCI∗

�

logΔ

�
I(r

∗g
ij
)

2t − I(r
∗g

ij
)

�
−

1

n − 2

��n

k=1,k≠i,j

�
logΔ

�
I(r

∗g
ik
)

2t − I(r
∗g

ik
)

�
+ logΔ

�
I(r

∗g
kj
)

2t − I(r
∗g

kj
)

���
− 𝜀

g,+
ij

+ 𝜀
g,−
ij

= 0

I(r
∗g
ij
) − I(r

g

ij
) − 𝛼

g,+
ij

+ 𝛼
g,−
ij

= 0

I(r
∗g
ij
) = 0.001𝜏

g

ij,0
+
�2t−1

𝜄=1
𝜏
g

ij,𝜄
+ (2t − 0.001)𝜏

g

ij,2t

I(r
∗g
ij
)

2t − I(r
∗g
ij
)
≤ Δ,

2t − I(r
∗g
ij
)

I(r
∗g
ij
)

≤ Δ, i, j = 1, 2, ..., n;i < j

Δ =
�n−1

i=1

�n

j=i+1
𝜅
g

ij

�
I(r

∗g

ij
)

2t − I(r
∗g

ij
)

�
+
�n−1

i=1

�n

j=i+1
𝜈
g

ij

�
2t − I(r

∗g

ij
)

I(r
∗g

ij
)

�

𝜅
g

ij
= 1 or 0 , 𝜈

g

ij
= 1 or 0 , i, j = 1, 2, ..., n;i < j

�n−1

i=1

�n

j=i+1

�
𝜅
g

ij
+ 𝜈

g

ij

�
= 1

𝛼
g,+
ij

, 𝛼
g,−
ij

≥ 0

𝜀
g,+

ij
, 𝜀

g,−

ij
≥ 0, 𝜀

g,+

ij
𝜀
g,−

ij
= 0

�2t

𝜄=0
𝜏
g

ij,𝜄
= 1 , 𝜏

g

ij,𝜄
= 1 or 0, 𝜄 = 0, 1, ..., 2t;i, j = 1, 2, ..., n;i < j

g ∈ Θ

(28)

Sim
�
R1(p1),R2(p2)

�
=

1

2

⎛
⎜⎜⎜⎜⎝

p1 ∧ p2

p1 ∨ p2
+

∑n−1
i=1

∑n

j=i+1

��
I(r1

ij
)
��

I(r2
ij
)
��

�∑n−1
i=1

∑n

j=i+1

�
I(r1

ij
)
�2

�∑n−1
i=1

∑n

j=i+1

�
I(r2

ij
)
�2

⎞⎟⎟⎟⎟⎠
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One can check that the similarity measure between the CPLPRs R1(p1) and R2(p2) 
have the following properties:

 (i) 0 < Sim
(
R1(p1),R2(p2)

)
≤ 1;

 (ii) Sim
(
R1(p1),R2(p2)

)
= Sim

(
R2(p2),R1(p1)

)
;

 (iii) Sim
(
R1(p1),R2(p2)

)
= 1 if and only if R1(p1) = R2(p2) , namely,p1 = p2 and 

r1
ij
= r2

ij
 for all i, j = 1, 2, …, n.

Based on Definition 6.1, we further offer the similarity measure between CPLPRs 
and NPLPRs as follows:

Definition 6.2 Let R(p) =
(
rij(p)

)
n×n

 be a CPLPR, and let B =
(
Lij(p)

)
n×n

 be an 
NPLPR. Furthermore, let Ω(B) = {R1(p1) =

(
r1,ij(p1)

)
n×n

,R2(p2) =
(
r2,ij(p2)

)
n×n

,…, 
R�(p�) =

(
r�,ij(p�,ij)

)
n×n

 } be the set of CPLPRs obtained from B. Then, the similar-
ity measure between R(p) and B is defined as:

Based on the properties of Definition 6.1, one can verify that Sim(R(p),B) = 1 if 
and only if R(p) ∈ Ω(B).

Following Definition 6.2, we further define the similarity measure between NPL-
PRs as follows:

Definition 6.3 Let B1 =
(
L1
ij
(p1)

)
n×n

 and B2 =
(
L2
ij
(p2)

)
n×n

 be any two NPLPRs. 

Furthermore, let Ω(Bo) = {Ro
1
(po

1
) =

(
ro
1,ij
(po

1
)
)
n×n

,Ro
2
(po

2
) =

(
ro
2,ij
(po

2
)
)
n×n

,…, 

Ro
�o

(
po
�o

)
=
(
ro
�o,ij

(
po
�o

))
n×n

 } be the set of CPLPRs obtained from Bo, where o = 1, 
2. Then, the similarity measure from B1 to B2 is defined as:

and the similarity measure from B2 to B1 is defined as:

Furthermore, the similarity measure between B1 and B2 is defined as:

(29)Sim(R(p),B) =
�

max
g=1

Sim
(
R(p),Rg(pg)

)

(30)�����⃗Sim
(
B1,B2

)
=

1

𝜋1

∑𝜋1

h=1

(
𝜋2

max
g=1

Sim
(
R1
h
(p1

h
),R2

g
(p2

g
)
))

(31)�����⃗Sim
(
B2,B1

)
=

1

𝜋2

∑𝜋2

h=1

(
𝜋1

max
g=1

Sim
(
R2
h
(p2

h
),R1

g
(p1

g
)
))

(32)Sim
(
B1,B2

)
=

�����⃗Sim
(
B1,B2

)
+ �����⃗Sim

(
B2,B1

)
2
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According to Eq.  (32), it is easy to verify that the above three properties for 
Eq.  (28) are still true for Eq.  (32). It should be noted that the similarity measure 
between NPLPRs is based on their CPLPRs obtained from Algorithm I.

Based on the similarity measure between NPLPRs, we provide the following for-
mula to determine the weights of the DMs:

where ο ∈ E.
Equation  (33) shows that the higher the similarity measure between one DM’s 

CPLPRs and all other DMs’, the bigger the weight of the DM.
Based on the weights of the DMs, we next discuss how to measure the consensus 

of individual opinions. First, let us consider expect LPRs of NPLPRs.

Definition 6.4 Let B = (Lij(p))n×n be an NPLPR, and let 
Ω(B) = {R1(p1) =

(
r1,ij(p1)

)
n×n

,R2(p2) =
(
r2,ij(p2)

)
n×n

,…, R�(p�) =
(
r�,ij(p�)

)
n×n

 } 
be the set of corresponding CPLPRs obtained from Algorithm I. Then, 
E(B) =

(
E(Lij(p))

)
n×n

 is called the expect LPR of the NPLPR B, where.

for all i, j = 1, 2, …, n.

One can check that the expect LPR defined by Eq. (34) is also a LPR defined on 
the ALS S = {si|i = 0, 1, …, 2t}. Based on the concept of expect LPRs, we further 
offer the concept of comprehensively expect LPRs.

Definition 6.5 Let Bo = (Lo
ij
(po))n×n be the I-NPLPR offered by the DM eo, and 

E(Bo) =
(
E(Lo

ij
(po))

)
n×n

 be its expect LPR as shown in Definition 6.4, where o = 1, 
2, …, ς. Then, E(B) =

(
E(Lij(p))

)
n×n

 is called the comprehensively expect LPR, 
where.

for all i, j = 1, 2, …, n, �eo
 is the weight of the DM eo such that 

∑�

o=1
�eo

= 1 and 
�eo

≥ 0 for all o = 1, 2, …, ς.

According to the comprehensively expect LPR, we offer the following consensus 
measure of I-NPLPRs:

Definition 6.6 Let Bo = (Lo
ij
(po))n×n be the I-NPLPR offered by the DM eo, where 

o = 1, 2, …, ς. The consensus degree of Bο is defined as:

(33)�eo
=

∑�

�=1,�≠o
Sim(Bo,B�)

∑�

�=1

∑�

�=1,�≠o
Sim(B�,B�)

(34)E(Lij(p)) = s 2t
∏�

l=1
I(rl,ij )

pl

∏�
l=1

I(rl,ij )
pl+

∏�
l=1

I(rl,ji )
pl

(35)
E(Lij(p)) = s 2t

∏�
l=1

I(E(Lo
ij
(po)))

�eo

∏�
l=1

I(E(Lo
ij
(po)))

�eo +
∏�

l=1
I(E(Lo

ji
(po)))

�eo
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where Ro
1
(po

1
) =

(
ro
1,ij
(po

1
)
)
n×n

,Ro
2
(po

2
) =

(
ro
2,ij
(po

2
)
)
n×n

,…, and 

Ro
�o

(
po
�o

)
=
(
ro
�o,ij

(
po
�o

))
n×n

 are the CPLPRs obtained from Algorithm I for the 
NPLPR Bo, and E(B) =

(
E(Lij(p))

)
n×n

 is the comprehensively expect LPR as defined 
by Eq. (35).

Similar to the similarity measure between NPLPRs, the consensus measure of the 
DMs is also based on the CPLPRs obtained from Algorithm I for I-NPLPRs.

If the I-NPLPR Bo = (Lo
ij
(po))n×n does not satisfy the consensus requirement, we 

know that there is LPR Ro
g
=
(
ro
g,ij

)
n×n

 obtained from Algorithm I for the I-NPLPR 
Bo whose consensus level is smaller than the given consensus threshold COI*, 
namely,

To make the ranking of objects representatively, we need to improve the consen-
sus level of such LPRs. On the other hand, we only adjust one LPR with the lowest 
consensus level at one time to retain more original information. Without loss of 

(36)COI(Bo) = 1 −
1

n(n − 1)t

∑�q

l=1
po
l

∑n−1

i=1

∑n

j=i+1

|||I(r
o
l,ij
) − I(E(Lij(p)))

|||

(37)COI
(
Ro
g

)
= 1 −

1

n(n − 1)t

∑n−1

i=1

∑n

j=i+1

|||I(r
o
l,ij
) − I(E(Lij(p)))

||| < COI∗

Table 1  I-InNPLPR B1 offered by the first expert team

x1 x2 x3 x4

x1 {s5(1)} L1
12
(p1

12
) {s6(0.6), s7(0.4)} {s3(0.3), s4(0.7)}

x2 L1
21
(p1

21
) {s5(1)} L1

23
(p1

23
) {s4(0.5), s5(0.5)}

x3 {s3(0.4), s4(0.6)} L1
32
(p1

32
) {s5(1)} L1

34
(p1

34
)

x4 {s6(0.7), s7(0.3)} {s5(0.5), s6(0.5)} L1
43
(p1

43
) {s5(1)}

Table 2  I-InNPLPR B2 offered by the second expert team

x1 x2 x3 x4

x1 {s5(1)} {s3(0.4), s4(0.3), s5(0.3)} L2
13
(p2

13
) L2

14
(p2

14
)

x2 {s5(0.3), s6(0.3), 
s7(0.4)}

{s5(1)} {s7(0.4), s8(0.6)} L2
24
(p2

24
)

x3 L2
31
(p2

31
) {s2(0.6), s3(0.4)} {s5(1)} {s1(0.2), 

s2(0.5), 
s3(0.3)}

x4 L2
41
(p2

41
) L2

42
(p2

42
) {s7(0.3), s8(0.5), s9(0.2)} {s5(1)}
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generality, let COI
(
Ro
g

)
= min

𝜋o
h=1

COI
(
Ro
h

)
< COI∗ . To make the LPR 

Ro
g
=
(
ro
g,ij

)
n×n

 reach the consensus requirement, we build the following model:

where the first two constraints are derived from Eq.  (36) for the adjusted LPR 
Ro,(1)
g

=
(
r
o,(1)
g,ij

)
n×n

 whose consensus level is no smaller than the given threshold 
COI*, the third constraint and the objective function make the adjusted LPR R(1)o

g
 to 

have the smallest total adjustment, the fourth and fifth constraints ensure that Ro,(1)
g

 is 
still a LPR on the ALS S = {si| i = 0, 1, 2,…, 2t}, and the constraints for the multipli-
cative requirement are the same as those listed in model (M-4).

Solving model (M-6), we can obtain the adjusted LPR Ro,(1)
g

=
(
r
o,(1)
g,ij

)
n×n

 , which 
satisfies the multiplicative consistency and consensus requirements. Furthermore, 
according to Ro,(1)

g
=
(
r
o,(1)
g,ij

)
n×n

 , we can obtain the corresponding CPLPR 

Ro,(1)
g

(po
g
) =

(
r
o,(1)
g,ij

(po
g
)
)
n×n

.
In view of the multiplicative consistency and consensus analysis, we offer the fol-

lowing algorithm for GDM with NPLPRs:

(M-6)

𝜓∗o
g

= min
�n−1

i=1

�n

j=i+1

�
𝛿
o,(1)+
g,ij

+ 𝛿
o,(1)−
g,ij

�

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�n−1

i=1

�n

j=i+1

�
𝜀
o,(1)+
g,ij

+ 𝜀
(o,(1)−
g,ij

�
≤ n(n − 1)t(1 − COI∗)

I
�
r
o,(1)
g,ij

�
− I

�
E(Lij(p))

�
− 𝜀

o,(1)+
g,ij

+ 𝜀
o,(1)−
g,ij

= 0

I
�
r
o,(1)
g,ij

�
− I

�
ro
g,ij

�
− 𝛿

o,(1)+
g,ij

+ 𝛿
o,(1)−
g,ij

= 0

I
�
r
o,(1)
g,ij

�
+ I

�
r
o,(1)
g,ji

�
= 2t

I
�
r
o,(1)
g,ij

�
= 0.001𝜏

o,(1)
g,ij,0

+
�2t−1

𝜄=1
𝜏
o,(1)
g,ij,𝜄

+ (2t − 0.001)𝜏o,(1)
g,ij,2t

𝛿
o,(1)+
g,ij

, 𝛿
o,(1)−
g,ij

≥ 0, i, j = 1, 2, ..., n;i < j

𝜀
o,(1)+
g,ij

, 𝜀
o,(1)−
g,ij

≥ 0, 𝜀
o,(1)+
g,ij

𝜀
o,(1)−
g,ij

= 0, i, j = 1, 2, ..., n;i < j

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

The

consensus

requirement

�n

i,j=1,i<j

�
𝜒
o,(1)+
g,ij

+ 𝜒
o,(1)−
g,ij

�
≤

3n(n − 1)

2
(1 −MCI∗)

logΔ

⎛
⎜⎜⎝

I(ro,(1)
g,ij

)

2t − I(ro,(1)
g,ij

)

⎞
⎟⎟⎠
−

1

n − 2

⎛
⎜⎜⎝
�n

k=1,k≠i,j

⎛
⎜⎜⎝
logΔ

⎛
⎜⎜⎝

I(ro,(1)
g,ik

)

2t − I(ro,(1)
g,ik

)

⎞
⎟⎟⎠
+ logΔ

⎛
⎜⎜⎝

I(ro,(1)
g,kj

)

2t − I(ro,(1)
g,kj

)

⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎞
⎟⎟⎠

−𝜒o,(1)+
g,ij

+ 𝜒
o,(1)−
g,ij

= 0

I(ro,(1)
g,ij

)

2t − I(ro,(1)
g,ij

)
≤ Δ,

2t − I(ro,(1)
g,ij

)

I(ro,(1)
g,ij

)
≤ Δ, i, j = 1, 2, ..., n;i < j

Δ =
�n−1

i=1

�n

j=i+1
𝜅
o,(1)
g,ij

⎛⎜⎜⎝
I(ro,(1)

g,ij
)

2t − I(ro,(1)
g,ij

)

⎞⎟⎟⎠
+
�n−1

i=1

�n

j=i+1
𝜈
o,(1)
g,ij

⎛⎜⎜⎝
2t − I(ro,(1)

g,ij
)

I(ro,(1)
g,ij

)

⎞⎟⎟⎠
𝜅
o,(1)
g,ij

= 1 or 0 , 𝜈
o,(1)
g,ij

= 1 or 0 , i, j = 1, 2, ..., n;i < j

�n−1

i=1

�n

j=i+1

�
𝜅
o,(1)
g,ij

+ 𝜈
o,(1)
g,ij

�
= 1

𝜒
o,(1)+
g,ij

,𝜒
o,(1)−
g,ij

≥ 0, 𝜒
(o,(1)+
g,ij

𝜒
o,(1)−
g,ij

= 0, i, j = 1, 2, ..., n;i < j

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The

multiplicative

requirement
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6.1  Algorithm III. A procedure for GDM with NPLPRs

Step 1: Let Bo = (Lo
ij
(po))n×n , o = 1, 2, …, ς, be the given I-NPLPRs. If all of them 

are complete, go to Step 2. Otherwise, we adopt Algorithm II to derive the com-
plete I-NPLPR for each incomplete one;
Step 2: With respect to each complete I-NPLPR Bo = (Lo

ij
(po))n×n , we employ 

Algorithm I to obtain the associated LPRs {
Ro
1
=
(
ro
1,ij

)
n×n

,Ro
2
=
(
ro
2,ij

)
n×n

,… , Ro
�o

=
(
ro
�o,ij

)
n×n

}
 and their corresponding 

C P L P R s {
Ro
1
(po

1
) =

(
ro
1,ij
(po

1
)
)
n×n

,Ro
2

(
po
2

)
=
(
ro
2,ij
(po

2
)
)
n×n

,… ,Ro
�o
(po

�o
) =

(
ro
�o,ij

(po
�o
)
)
n×n

}
 . 

If each I-NPLPR is acceptably multiplicatively consistent, go to Step 4. Other-
wise, turn to the next step;
Step 3: With respect to each unacceptably multiplicatively consistent I-NPLPR, 
we use model (M-5) to adjust all corresponding unacceptably multiplicatively 
consistent LPRs;
Step 4: According to acceptably multiplicatively consistent CPLPRs, we calcu-
late the expect LPR E(Bo) =

(
E
(
Lo
ij
(po)

))
n×n

 by Eq. (34), where o = 1, 2, …, ς. 
Furthermore, we determine the weights of the DMs by Eq.  (33), where 
� =

{
�e1

,�e2
,… ,�e�

}
;

Step 5: Using Eq.  (35) to calculate the comprehensively expect LPR 
E(B) =

(
E(Lij(p))

)
n×n

 . Then, we measure the consensus degree of each I-NPLPR 
by Eq. (36). If all I-NPLPRs satisfy the consensus requirement, skip to Step 7. 
Otherwise, go to Step 6;
Step 6: Let COI(Bo) = min

�

�=1
COI(B�) and let COI

(
Ro
g

)
= min

�o
h=1

COI
(
Ro
h

)
 . For 

the LPR Ro
g
=
(
ro
g,ij

)
n×n

 , we adopt model (M-6) to adjust it and obtain the 

adjusted LPR R(1)o
g

=
(
r
(1)o
g,ij

)
n×n

 . Then, we further calculate the expect LPR 

E(B(1)o) =
(
E
(
L
(1)o
ij

(p(1)o)
))

n×n
 of the adjusted I-NPLPR B(1)o = (L(1)o

ij
(p(1)o))n×n 

and return to Step 5;
Step 7: With respect to each LPR Ro

g
=
(
ro
g,ij

)
n×n

 , we calculate the priority lin-
guistic value of each object xi by the following formula:

Table 4  I-NPLPR B1 offered by the first expert team

x1 x2 x3 x4

x1 {s5(1)} {s4(0.8), s5(0.2)} {s6(0.6), s7(0.4)} {s3(0.3), s4(0.7)}
x2 {s5(0.2), s6(0.8)} {s5(1)} {s6(0.1), s7(0.9)} {s4(0.5), s5(0.5)}
x3 {s3(0.4), s4(0.6)} {s3(0.9), s4(0.1)} {s5(1)} {s2(0.4), s3(0.6)}
x4 {s6(0.7), s7(0.3)} {s5(0.5), s6(0.5)} {s7(0.6), s8(0.4)} {s5(1)}
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where i = 1, 2, …, n, g = 1, 2, …, πo, and o = 1, 2, …, ς.
Step 8: From the priority linguistic value of each object xi for each LPR 
Ro
g
=
(
ro
g,ij

)
n×n

 , we calculate the expect priority linguistic value vector 
so =

(
so
1
, so

2
, ..., so

n

)
 , where so

i
= s

2t
∏�o

g=1
I(so

i,g
)
pog

∑n
i=1

∏�o
g=1

I(so
i,g

)
pog

 , and po
g
 is the common probability of 

the LPR Ro
g
 for all i = 1, 2, …, n, and all o = 1, 2, …, ς;

Step 9: Based on the expect priority linguistic value vectors so , o = 1, 2, …, ς, we 
further calculate the comprehensively expect priority linguistic value vector 
s =

(
s1, s2, ..., sn

)
 , where si = s 2t

∏�
o=1

I(so
i
)
�eo

∑n
i=1

∏�
o=1

I(so
i
)
�eo

 for all i = 1, 2, …, n. Meanwhile, we 

derive the ranking of objects x1, x2, …, xn based on s =
(
s1, s2, ..., sn

)
.

From the above procedure, one can find that Algorithm III is based on the 
acceptably multiplicative consistency and consensus analysis. Furthermore, this 
algorithm can deal with incompletely and unacceptably multiplicatively consistent 
NPLPRs that only uses and fully considers the information offered by the DMs.

7  An illustrative example

Nowadays, people pay more and more attention to environmental pollution and 
energy consumption caused by economic activities. Green supply chain is developed 
in this back ground, which is an important component of strategies for achieving 
sustainable development. To achieve this goal, enterprises have been committed to 
the development of new technologies, which determines their survival and devel-
opments. Vehicles are a representative industry. More and more car companies are 
developing new technologies. Recently, new energy vehicles enter the people’s hori-
zon, which gathers almost all the latest advanced technologies in the automotive 
field. Due to the merits of new energy vehicles, it has become the future develop-
ment direction of automobile companies. There is a new energy vehicle company 
who wants to update its production process to meet its development needs in the 
next 5 years. It is a very complex decision-making problem that needs to consider 

(38)
so
i,g

= s 1

∑n
j=1

I

�
1

ro
g,ij

�
− n
2t

Table 6  I-NPLPR B3 offered by the third expert team

x1 x2 x3 x4

x1 {s5(1)} {s5(0.6), s6(0.4)} {s3(0.6), s4(0.4)} {s3(0.4), s4(0.3), s5(0.3)}
x2 {s4(0.4), s5(0.6)} {s5(1)} {s2(0.4), s3(0.6)} {s3(0.5), s5(0.5)}
x3 {s6(0.4), s7(0.6)} {s7(0.6), s8(0.4)} {s5(1)} {s2(0.4), s5(0.2), s7(0.4)}
x4 {s5(0.3), s6(0.3), s7(0.4)} {s5(0.5), s7(0.5)} {s3(0.4), s5(0.2), s8(0.4)} {s5(1)}
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various criteria such as cost, feasibility, reliability and maintainability. Based on the 
market research and the enterprise status, four production processes are selected as 
the preliminary options, denoted by x1, × 2, × 3 and × 4. To select the most suitable 
one, this company founds three expert teams, namely, e1, e 2, and e 3. Each expert 
team contains 8–10 experts that are formed by engineers, technical R & D person-
nel, department managers, and front-line production workers. Now, each expert team 
is required to independently offer the judgments by using LVs in S = {s0: extreme 
bad; s1: quite bad; s2: very bad; s3: bad; s4: slight bad; s5: fair; s6: slight good; s7: 
good; s8: very good; s9: quite good; s10: extreme good}. Consider the heterogeneity 
between experts, when they cannot reach agreement for some judgment, more than 
one LV is permitted. Besides, when there is more than one LV for some judgment, 
they need to further offer the probabilities of these LVs to discriminate them. How-
ever, when their divergences are too big or they are unwilling or unable to give some 
judgments, missing information is permitted. To compare these four production pro-
cesses pairwise, InNPLPRs are efficient that can cope with all above analyzed situ-
ations. Assume that the individual InNPLPRs (I-InNPLPRs) offered by these three 
expert teams are listed in Tables 1, 2, and 3:

To rank these four production processes from the above I-InNPLPRs, the follow-
ing procedure is needed:

Step 1: With respect to each I-InNPLPR, according to Algorithm II, we derive 
complete I-NPLPRs as shown in Tables 4, 5, and 6:
Step 2: Let MCI* = 0.95. With respect to each I-NPLPR, following Algorithm I, 
the associated LPRs can be obtained. Taking the first I-NPLPR B1 for example, 
the associated LPRs are listed as follows:

Furthermore, their associated CPLPRs are

R1
1
=

⎛
⎜⎜⎜⎝

s5 s5 s7 s4
s5 s5 s7 s4
s3 s3 s5 s2
s6 s6 s8 s5

⎞
⎟⎟⎟⎠
,R1

2
=

⎛
⎜⎜⎜⎝

s5 s4 s6 s4
s6 s5 s7 s4
s4 s3 s5 s2
s6 s6 s8 s5

⎞
⎟⎟⎟⎠
,R1

3
=

⎛
⎜⎜⎜⎝

s5 s4 s6 s4
s6 s5 s7 s5
s4 s3 s5 s3
s6 s5 s7 s5

⎞
⎟⎟⎟⎠
,

R1
4
=

⎛
⎜⎜⎜⎝

s5 s4 s6 s3
s6 s5 s6 s4
s4 s4 s5 s3
s7 s6 s7 s5

⎞
⎟⎟⎟⎠
,R1

5
=

⎛
⎜⎜⎜⎝

s5 s4 s7 s3
s6 s5 s7 s5
s3 s3 s5 s3
s7 s5 s7 s5

⎞
⎟⎟⎟⎠
.
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Step 3: With the obtained LPRs for each I-NPLPR, we can judge whether their 
consistency is acceptable from the objective function value of model (M-1). 
When the objective function value of model (M-1) for some LPR is not equal 
to zero, we can employ model (M-5) to derive its associated acceptably multi-
plicatively consistent LPR. Taking the LPRs obtained from the I-NPLPR B1 for 
example, because the objective function values of model (M-1) for the LPRs R1

4
 

and R1
5
 are not equal to zero, these two LPRs are unacceptably consistent. In this 

situation, we adopt model (M-5) to adjust them and derive the following accept-
ably multiplicatively consistent LPRs:

Furthermore, the corresponding CPLPRs are

Step 4: Based on the acceptably multiplicatively consistent LPRs for I-NPLPRs, 
the expect LPRs are derived as follows:

R1
1
(0.2) =

⎛
⎜⎜⎜⎝

s5(0.2) s5(0.2) s7(0.2) s4(0.2)
s5(0.2) s5(0.2) s7(0.2) s4(0.2)
s3(0.2) s3(0.2) s5(0.2) s2(0.2)
s6(0.2) s6(0.2) s8(0.2) s5(0.2)

⎞
⎟⎟⎟⎠
,R1

2
(0.2) =

⎛
⎜⎜⎜⎝

s5(0.2) s4(0.2) s6(0.2) s4(0.2)
s6(0.2) s5(0.2) s7(0.2) s4(0.2)
s4(0.2) s3(0.2) s5(0.2) s2(0.2)
s6(0.2) s6(0.2) s8(0.2) s5(0.2)

⎞
⎟⎟⎟⎠
,

R1
3
(0.3) =

⎛⎜⎜⎜⎝

s5(0.3) s4(0.3) s6(0.3) s4(0.3)
s6(0.3) s5(0.3) s7(0.3) s5(0.3)
s4(0.3) s3(0.3) s5(0.3) s3(0.3)
s6(0.3) s5(0.3) s7(0.3) s5(0.3)

⎞⎟⎟⎟⎠
,R1

4
(0.1) =

⎛⎜⎜⎜⎝

s5(0.1) s4(0.1) s6(0.1) s3(0.1)
s6(0.1) s5(0.1) s6(0.1) s4(0.1)
s4(0.1) s4(0.1) s5(0.1) s3(0.1)
s7(0.1) s6(0.1) s7(0.1) s5(0.1)

⎞⎟⎟⎟⎠
,

R1
5
(0.2) =

⎛
⎜⎜⎜⎝

s5(0.2) s4(0.2) s7(0.2) s3(0.2)
s6(0.2) s5(0.2) s7(0.2) s5(0.2)
s3(0.2) s3(0.2) s5(0.2) s3(0.2)
s7(0.2) s5(0.2) s7(0.2) s5(0.2)

⎞⎟⎟⎟⎠
.

R1
4
=

⎛⎜⎜⎜⎝

s5 s4 s5 s3
s6 s5 s6 s4
s5 s4 s5 s3
s7 s6 s7 s5

⎞⎟⎟⎟⎠
and R1

5
=

⎛⎜⎜⎜⎝

s5 s4 s6 s4
s6 s5 s7 s5
s4 s3 s5 s3
s6 s5 s7 s5

⎞⎟⎟⎟⎠
.

R1
4
(0.1) =

⎛
⎜⎜⎜⎝

s5(0.1) s4(0.1) s5(0.1) s3(0.1)
s6(0.1) s5(0.1) s6(0.1) s4(0.1)
s5(0.1) s4(0.1) s5(0.1) s3(0.1)
s7(0.1) s6(0.1) s7(0.1) s5(0.1)

⎞
⎟⎟⎟⎠
and

R1
5
(0.2) =

⎛
⎜⎜⎜⎝

s5(0.2) s4(0.2) s6(0.2) s4(0.2)
s6(0.2) s5(0.2) s7(0.2) s5(0.2)
s4(0.2) s3(0.2) s5(0.2) s3(0.2)
s6(0.2) s5(0.2) s7(0.2) s5(0.2)

⎞⎟⎟⎟⎠
.
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Furthermore, according to Eq.  (33), the weights of the DMs are 
�e1

= �e2
= 0.34,�e3

= 0.32.

Step 5: Following Eq. (35), the comprehensively expect LPR is

Let COI* = 0.95. Based on the acceptably multiplicatively consistent CPLPRs 
obtained from Steps 1 and 2, the consensus levels of I-NPLPRs are COI(B1) = 0.96

,COI(B2) = 0.93 and COI(B1) = 0.91.

Step 6: Because COI(B3) = min3
�=1

COI(B�) and 
COI

(
R3
1

)
= min6

h=1
COI

(
R3
h

)
= 0.89 , we increase the consensus level of the LPR 

R3
1
 by model (M-6) and get the following adjusted LPR

Furthermore, the corresponding CPLPR is 

R
3,(1)
1

(0.3) =

⎛⎜⎜⎜⎝

s5(0.3) s6(0.3) s5(0.3) s4(0.3)
s4(0.3) s5(0.3) s4(0.3) s3(0.3)
s5(0.3) s6(0.3) s5(0.3) s4(0.3)
s6(0.3) s7(0.3) s6(0.3) s5(0.3)

⎞⎟⎟⎟⎠
 . With respect to the adjusted CPLPR 

R
3,(1)
1

(0.3) , the corresponding expect LPR is E
�
B3,(1)

�
=

⎛⎜⎜⎜⎝

s5 s5.4 s3.85 s3.22
s4.6 s5 s3.46 s2.85
s6.15 s6.54 s5 s3.98
s6.78 s7.15 s6.02 s5

⎞⎟⎟⎟⎠
 . 

Again using Eq.  (35), the comprehensively expect LPR is 

E(B(1)) =

⎛⎜⎜⎜⎝

s5 s4.55 s5.47 s3.68
s5.45 s5 s5.87 s4
s4.53 s4.13 s5 s3.02
s6.32 s6 s6.98 s5

⎞⎟⎟⎟⎠
 . Moreover, the consensus levels of I-NPLPRs are 

COI(B1) = 0.97,COI(B2) = 0.94 and COI
(
B3,(1)

)
= 0.93.

E(B1) =

⎛
⎜⎜⎜⎝

s5 s4.2 s6.11 s3.89
s5.8 s5 s6.91 s4.49
s3.89 s3.09 s5 s2.57
s6.11 s5.51 s7.43 s5

⎞
⎟⎟⎟⎠
,E(B2) =

⎛
⎜⎜⎜⎝

s5 s3.74 s6.84 s3.49
s6.26 s5 s7.63 s4.58
s3.16 s2.37 s5 s1.91
s6.51 s5.42 s8.09 s5

⎞
⎟⎟⎟⎠
and

E(B3) =

⎛
⎜⎜⎜⎝

s5 s5.4 s3.26 s3.49
s4.6 s5 s2.83 s2.85
s6.74 s7.17 s5 s4.91
s6.51 s7.15 s5.09 s5

⎞
⎟⎟⎟⎠
.

E(B) =

⎛
⎜⎜⎜⎝

s5 s4.55 s5.27 s3.77
s5.45 s5 s5.64 s4
s4.73 s4.36 s5 s3.28
s6.23 s6 s6.72 s5

⎞
⎟⎟⎟⎠
.

R
3,(1)
1

=

⎛⎜⎜⎜⎝

s5 s6 s5 s4
s4 s5 s4 s3
s5 s6 s5 s4
s6 s7 s6 s5

⎞⎟⎟⎟⎠
.
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Repeat this process six times, we obtain the expect LPR 

E(B3,(6)) =

⎛
⎜⎜⎜⎝

s5 s5.3 s4.7 s3.22
s4.7 s5 s4.39 s2.94
s5.3 s5.61 s5 s3.22
s6.78 s7.06 s6.78 s5

⎞
⎟⎟⎟⎠
 and the comprehensive expect LPR 

E(B(6)) =

⎛
⎜⎜⎜⎝

s5 s4.55 s5.75 s3.68
s5.45 s5 s6.14 s4.01
s4.25 s3.86 s5 s2.8
s6.32 s5.99 s7.2 s5

⎞
⎟⎟⎟⎠
 . Meanwhile, the consensus levels of I-NPLPRs are 

COI(B1) = 0.97,COI(B2) = 0.95 and COI(B3,(6)) = 0.95.

Step 7: With respect to each LPR, we calculate the priority linguistic value of 
each object. Taking the LPRs obtained from Steps 1 and 2 for the I-NPLPR B1 
for example, the priority linguistic value vectors are

Furthermore, the expect priority linguistic value vec-
tors are s1 =

(
s2.18, s2.95, s1.30, s3.37

)
,s2 =

(
s2.00, s3.24, s0.93, s3.83

)
 and 

s3 =
(
s1.97, s1.73, s2.07, s4.23

)
.

Step 8: Based on the expect priority linguistic value vectors, the comprehensively 
expect priority linguistic value vector is s =

(
s2.05, s2.57, s1.35, s3.86

)
 . Thus, the 

ranking is x4 ≻ x2 ≻ x1 ≻ x3, namely, the fourth production process is the most suit-
able choice.

Remark 7.1 There are only two methods (Gao et al., 2019b; Song & Hu, 2019) for 
decision making with PLPRs in view of the multiplicative consistency. However, 
neither of them studies GDM with PLPRs. Furthermore, neither of them discussed 
InPLPRs. Therefore, none of previous research can be used in this example and the 
numerical comparison is omitted.

To indicate the differences between the new method and two previous multiplica-
tive consistency based methods (Gao et al., 2019b; Song & Hu, 2019), we further 
analyze them in view of principle.

 (i) Gao et al. (2019b) give a decision-making method with PLPRs that uses the 
score-based multiplicative consistency concept. The main issue of such type 
of consistency concepts is to cause information loss. It should be noted that the 
score-based LPR may not be any possible LPR constructed by LVs in PLPRs. 
Therefore, it is unreasonable to employ this LPR to define the consistency of 
PLPRs. Just like random variables, their expects cannot reflect the random-
ness, the score-based multiplicative consistency concept cannot indicate the 

s1
1
=
(
s2.55, s2.55, s1.03, s3.87

)
, s1

2
=
(
s2.16, s2.80, s1.14, s3.90

)
, s1

3
=
(
s2.14, s3.23, s1.40, s3.23

)
,

s1
4
=
(
s1.71, s2.61, s1.71, s3.96

)
, s1

5
=
(
s2.14, s3.23, s1.40, s3.23

)
.
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hesitancy of the DMs. For a given PLPR, Gao et al.’s method only obtains 
one exact numerical priority weight vector, which is also unreasonable. This 
numerical weight vector neither reflects the qualitative recognitions nor the 
hesitancy of the DMs. Furthermore, Gao et al.’s method for improving the 
consistency level needs to adjust all LVs in one PLTS with the same propor-
tion. However, according to model (22) in the literature (Gao et al., 2019b), we 
cannot determine which LV causes the inconsistency. Neither decision making 
with InPLPRs nor GDM with PLPRs is studied in Gao et al.’s method (Gao 
et al., 2019b).

 (ii) Song and Hu (2019) also research decision making with PLPRs following the 
multiplicative consistency discussion. It is noted that the multiplicative con-
sistency concept and method for improving the consistency level are the same 
as those offered by Gao et al. (2019b). Thus, Song and Hu’s method has the 
same issues as those in Gao et al.’s method (Gao et al., 2019b). Furthermore, 
Gao et al. (2019b) restrict to study decision making with complete PLPRs and 
disregard decision making with InPLPRs and GDM with PLPRs.

   It should be noted that the multiplicative consistency concepts for PLPRs 
in the references (Gao et al., 2019b; Song & Hu, 2019) are based on NPLPRs. 
Therefore, we directly reviewed them on NPLPRs as listed in Definitions 2.5 
and 2.6.

 (iii) The new method avoids the issues of previous multiplicative consistency 
concepts and previous methods for improving the consistency level. Further-
more, the new method discusses the determination of missing information in 
InNPLPRs and GDM with NPLPRs that follows the acceptably multiplicative 
consistency and consensus analysis.

8  Conclusion

Since Pang et al. (2016) first introduced PLTSs, decision making with probability 
linguistic information has been received many attentions of scholars. However, most 
research focuses on decision making with probability linguistic matrices. The stud-
ies about decision making with PLPRs are relatively fewer. At present, we only find 
two references (Gao et al., 2019b; Song & Hu, 2019) about decision making with 
NPLPRs based on the multiplicative consistency. However, these two methods are 
insufficient to cope with NPLPRs. Especially, they are inefficient for unacceptably 
multiplicatively consistent NPLPRs and InNPLPRs. Considering this case, this 
paper further introduces a new interactive algorithm for GDM with NPLPRs that is 
based on the acceptably multiplicative consistency and consensus analysis. The new 
method fully considers the NPLTSs offered by the DMs. To show the application 
of the new algorithm, we employ it to evaluate production processes of new energy 
vehicles. When the consensus requirement is not reached, we adopt the built model 
to adjust one LPR with the lowest consensus level at a time. Although this procedure 
can retain more original information offered by the DMs, it increases the interactive 
times. Similar to models for improving the consistency level, we can simultaneously 
adjust all LPRs whose consensus levels are smaller than the given threshold. All 
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main procedures of the new method are based on the built optimal models which 
needs the help of computers and associated software.

Due to the powerful information expression of PLTSs, the new method can cope 
with more complex decision-making problems than previous preference relation 
based linguistic decision-making methods. It should be noted that we can extend the 
new method to other types of preference relations such as probability hesitant fuzzy 
preference relations, probability multiplicative hesitant fuzzy preference relations, 
and probability multiplicative linguistic preference relations. In addition, we can 
similarly study the application of the new method in some other fields including the 
selection of PPP models, the evaluation of project managements and the assessment 
closed-loop supply chain recovery models.
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