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Abstract
Probabilistic linguistic term set solves the problem of probabilistic distribution of
linguistic terms. Due to the objective and subjective factors such as the decision
makers’experience and preference, the credibility of the linguistic terms is differ-
ent. However, current studies on PLTSs ignore this difference. In this paper, we first
propose a novel concept called Z probabilistic linguistic term set (ZPLTS). As an
extension of existing tools, it takes advantage of the fact that Z-number can repre-
sent both information and corresponding credibility. At the same time, we discuss the
normalization, operational rules, ranking method and distance measure for ZPLTSs.
Then, we propose a new weight calculation method, an aggregation-based method
and an extended TOPSIS method, and apply them to multi-attribute group decision
making in Z probabilistic linguistic environment. Finally, a numerical example and
some comparisons with other methods illustrate the necessity and effectiveness of the
proposed method.
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1 Introduction

The world we live in is full of uncertainty, while traditional values cannot express the
uncertainty and complexity. Therefore, Zadeh (1965) proposed fuzzy sets to represent
this uncertain fuzzy concept.With the development of the discipline and its application
in decision making, Zadeh proposed linguistic variables (Zadeh 1975) to represent
linguistic information more conveniently and clearly. Linguistic variables such as “a
little bit”, “very well” and “unlikely” are closer to decision maker’s (DM’s) intentions
than numerical values, which helps in decision making.

The decision making of linguistic information has been studied extensively. Her-
rera et al. (1996, 1997) established a series of group decision making models under
linguistic evaluation. Xu (2004) extended the traditional single linguistic variable
into an interval linguistic variable and proposed the uncertain linguistic variable.
Multi-attribute group decision making (MAGDM) has a wide range of applications in
uncertain linguistic environments. Based on the distance and similarity theory Xian
and Sun (2014), further proposed the Euclidean and Minkowski ordered weighted
average distance operators (FLIEOWAD and FLIOWAMD) and applied to linguistic
group decision making.

There are decision preferences in decision making, and a single linguistic term can-
not accurately express this preference. To express DMs’ hesitation, Rodriguez et al.
(2012) proposed hesitant fuzzy linguistic term sets (HFLTSs) based on the hesitant
fuzzy sets (HFSs) (Torra 2010) and linguistic term sets (LTSs) (Zadeh 1975), which
can express several possible linguistic terms simultaneously. The TOPSIS method
of HFLTSs (Beg and Rashid 2013) and correlation operators (Wei et al. 2014) were
also proposed and applied to decision making. Subsequently, Wang (2015) developed
extended hesitant fuzzy linguistic term sets (EHFLTSs) based on HFLTSs. Scholars
found that the weights of the linguistic information given by different DMs should
be different in actual decision making. Therefore, Pang (Pang et al. 2016) proposed
the PLTS to present possible linguistic terms and corresponding probabilistic informa-
tion. Gou and Xu (2016) explored its operational rules. Bai et al. (2017) and Xian et al.
(2019) put forward different methods to rank PLTSs. Since PLTSs are in line with the
actual situation of decision making, it is also widely used in GDM Xing Li and Liao
2018. To show the preference of DMs, Zhang et al. (2016) proposed the probabilis-
tic linguistic preference relation (PLPR) and applied it to risk assessment. Hu et al.
(2020) made a comprehensive analysis of the current research status, applications and
future development directions related to PLTSs.

The above concepts all assume that the uncertain information is true and reliable.
But in the real world, information released by government departments is obviously
more reliable than it transmitted by individuals. This is due to the different credibility of
the information. In view of the defect that the credibility of the information is ignored
in the fuzzy domain, Zadeh (2011) proposed Z-numbers. A Z-number is expressed as
Z = (A, B), where A is the evaluation and B is the credibility of A. For example,
when evaluating the quality of a product, we use a Z-number (good, sure) to express
“the DM is sure the quality is good”. “Good” is the evaluation and “sure” is its credibil-
ity. Kang et al. (2016) proposed a multi-attribute decision making (MADM)method to
solve the supplier selection problem. Yaakob andGegov (2016) combined the TOPSIS
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method with Z-numbers. Xiao (2014) applied Z-numbers to MADM. Z-number has
also been studied to represent linguistic information,Wang et al. (2017) and Xian et al.
(2019) respectively proposed the linguistic Z-number and the Z linguistic variable to
represent the linguistic evaluation information containing credibility.

In decision making, the information credibility is influenced by two aspects: DM’s
objective experience and subjective decision preference. DMs have different experi-
ence and familiaritywith different fields involved.The evaluation credibility of familiar
fields is higher, while that of unfamiliar fields is lower. Some DMs are accustomed to
giving higher evaluations, while others are usually lower. Therefore, the credibility of
the evaluation information is obviously different.

However, in the group decision making (GDM) research on PLTSs, most of the
current studies focus on the representation of the linguistic terms and the calculation
of the probability distribution, without considering the influence of the information
credibility. Due to the subjective or objective reasons mentioned above, we often
encounter the situation that the credibility of the evaluation information is different.
For example, there are ten experts assessing the risk of a project, seven of them evaluate
it as “high”, and three of them evaluate it as “very high”. Four of the ten experts are
senior experts with years of experience in risk assessment, and their credibilities of
the assessment are “very likely”; six of the ten experts are young and inexperienced,
and their credibilities are “likely”. In this case, the decision information is expressed
as: ({high(0.7), very high(0.3)}, {(likely(0.4), very likely(0.6))}).

In the above example, if we do not consider the credibility of the information,
then they are completely credible by default. Obviously, incomplete decision infor-
mation may lead to inaccurate final decision results. In addition, the existing methods
to calculate attribute weights, such as the maximum deviation method, do not take
the information credibility into consideration. It is more in line with people’s decision
making habits to assign higher weights to the attributes with high credibility. In this
paper, we propose a novel concept, Z probabilistic linguistic term set (ZPLTS). It com-
bines the advantage that Z-numbers can represent information credibility, and solves
the problem of inaccurate decision results caused by lack of information credibility in
PLTS group decision problems. As a new linguistic information representation tool,
ZPLTS can simultaneously represent multiple possible linguistic terms, probability
distribution and information credibility, making decision information more complete.

The main contributions of this paper are:
First, inspired by Z-numbers, we propose the concept called ZPLTS. ZPLTS can not

only represent the linguistic evaluation of DMs, but also show the hesitant decision
information and preference of DMs. The normalization, operational rules, ranking
method and distance measure are also proposed.

Second, combining with the characteristics of the information credibility, a weight
calculation method based on the credibility is proposed.

Finally, we build a MAGDM model based on ZPLTSs, including the operators
method and the extended TOPSIS method.

The distribution of the rest of the paper is as follows: In Sect. 2, we review some
concepts of PLTSs and Z-numbers. The concept of ZPLTSs is proposed in Sect. 3. The
normalization, operational rules, ranking method and distance are also put forward in
this section. In Sect. 4, a MAGDM model is proposed to solve the decision making
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problems under Z probabilistic linguistic environment. We take a numerical example
and conduct a comparative analysis to discuss the necessity and validity of what we
proposed in Sect. 5. Section 6 concludes.

2 Preliminaries

In this section, we first review some concepts used in the following.

2.1 Linguistic term sets

Definition 1 (Xu 2005) Let S = {si |i = −ς, . . . ,−1, 0, 1, . . . , ς} be a LTS, si
presents the possible value of a linguistic varible.

Example 1 Let ς = 3, 2 , respectively. S and S′ are express as

S = {s−3 = very bad, s−2 = bad, s−1 = slight bad,

s0 = f air , s1 = slight good, s2 = good, s3 = very good} .

S′ = { s′−2 = impossible, s′−1 = slight impossible, s′
0 = f air ,

s′
1 = slight possible, s′

2 = possible }.

2.2 Hesitant fuzzy linguistic term sets

On the basis of LTSs, the hesitant psychology of DMs was taken into consideration.
DMs may evaluate several linguistic term values in the actual decision making. Then
the concept of HFLTSs was put forward.

Definition 2 (Rodriguez et al. 2012) S = {si |i = −ς, . . . ,−1, 0, 1, . . . , ς} is a LTS,
and bS is a HFLTS. bS is an ordered finite subset of the consecutive linguistic terms
of S.

Example 2 Continue to Example 1, bS and bS′ are expressed as follows:
bS = {s−1 = slight bad, s1 = slight good}.
bS′ = {s′

0 = f air , s′
1 = slight possible good, s′

2 = possible}.
If we simplify them, we obtain bS = {s−1, s0}, bS′ = {s′

0, s′
1, s′

2}.

2.3 Probabilistic linguistic term sets

In HFLTSs, each linguistic variable has the same weight. However, preference exists
in actual decision problems. To express the preference of DMs, Pang Pang et al. (2016)
proposed PLTSs to make decision information more realistic and complete.

Definition 3 (Pang et al. 2016) S = {si |i = −ς, . . . ,−1, 0, 1, . . . , ς} is a LTS, then
a PLTS is defined as
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L(p) = {L(m)(p(m))|L(m) ∈ S, p(m) ≥ 0,m = 1, 2, . . . , #L(p),
#L(p)∑

m=1

p(m) ≤ 1},
(1)

where L(m) is a linguistic term, p(m) is its probability, and #L(p) denotes the number
of all different linguistic terms in L(p).

The operational rules of PLTSs are defined as follows:

Definition 4 (Gou and Xu 2016) Let L1(p) and L2(p) be two PLTSs, χ is a real
number and χ > 0. Then,

(1) L1(p) ⊕ L2(p) = g−1

(

∪
ε1(m)∈g(L1),ε2(n)∈g(L2)

{(ε1(m) + ε2
(n) − ε1

(m)ε2
(n))(p(m)

1 p(n)
2 )}

)
,

m = 1, 2, . . . , #L1(p), n = 1, 2, . . . , #L2(p);

(2) L1(p) ⊗ L2(p) = g−1

(

∪
ε1(m)∈g(L1),ε2(n)∈g(L2)

{(ε1(m)ε2
(n))(p(m)

1 p(n)
2 )}

)
,

m = 1, 2, . . . , #L1(p), n = 1, 2, . . . , #L2(p);

(3) χL(p) = g−1

(

∪
ε(m)∈g(L)

{(1 − (1 − ε(m))
χ
)(p(m))}

)
, m = 1, 2, . . . , #L(p);

(4) (L(p))χ = g−1( ∪
ε(m)∈g(L)

{(ε(m))χ (p(m))}), m = 1, 2, . . . , #L(p);

where g : [−ς, ς ] → [0, 1], g(si ) = i
2ς + 1

2 = σ ; g−1 : [0, 1] →
[−ς, ς ], g−1(σ ) = s(2σ−1)ς = si .

2.4 Z-number

Zadeh (2011) proposed Z-numbers by adding credibility to the traditional evaluation.

Definition 5 (Zadeh 2011) AZ-number is denoted as Z = (A, B), which is an ordered
pair of fuzzy numbers. The first component, A, is a description or restriction of a value,
and B is a measure of the credibility of A.

3 Z probabilistic linguistic term sets

To solve the problemof ignoring information credibility in the existing study of PLTSs,
we propose ZPLTSs. In this section, the definition, relative operational rules, ranking
method, normalization and distance are put forward.

3.1 The concept of ZPLTSs

In GDM, as the example illustrated in Sect. 1, ignoring credibility will lead to inac-
curate results for decision making in probabilistic linguistic environment. Therefore,
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each DM gives the corresponding credibility while evaluating, which is a linguistic
Z-number. Then, the evaluation and the credibility of multiple DMs are summarized
to form two PLTSs, respectively, thus forming a novel ZPLTS. It contains three kinds
of decision information: possible linguistic terms, probabilistic distribution, and cred-
ibility.

Definition 6 X is a non-empty set, then a ZPLTS Ẑ# is defined as:

Ẑ# = {< x, Ẑ > |x ∈ X}, (2)

where Ẑ is a Z probabilistic linguistic value (ZPLV).

Definition 7 Let LA(p) and LB(p) be two PLTSs, then a ZPLV is defined as

Ẑ = ( Â, B̂) = (L Â(p), L B̂(p)), (3)

where

L Â(p) =
⎧
⎨

⎩L Â
(m)(pÂ

(m))|L Â
(m) ∈ S, pÂ

(m) ≥ 0,m = 1, 2, . . . , #L Â(pÂ) ,

#L Â(pÂ)∑

m=1

pÂ
(m) ≤ 1

⎫
⎬

⎭ ,

L B̂(p) =
⎧
⎨

⎩L B̂
(n)(pB̂

(n))|L B̂
(n) ∈ S′, pB̂

(n) ≥ 0, n = 1, 2, . . . , #L B̂(pB̂) ,

#L B̂ (pB̂ )∑

n=1

pB̂
(n) ≤ 1

⎫
⎬

⎭ ,

S = {si |i = −ς, . . . ,−1, 0, 1, . . . , ς} and S′ = {s′
j | j = −ζ, . . . ,−1, 0, 1, . . . , ζ }

are two LTSs.

Remark 1 (1) If L B̂(p) = {s′
ζ (1)}, then the credibility is the highest, the concept of

the credibility can be ignored. A ZPLV is reduced to a PLTS, and it is expressed as:

Ẑ = (L Â(p), {s′
ζ (1)}) = L Â(p). (4)

(2) If #L Â(pÂ) = #L B̂(pB̂) = 1 and pÂ
(m) = pB̂

(n) = 1, then both Â and B̂
have only one linguistic term, and the probabilities are 1. Then, a ZPLV is reduced to
a linguistic Z-number (Wang et al. 2017), and it is expressed as:

Ẑ = ({si (1)}, {s′
j (1)}) = (si , s

′
j ), (5)

where i = −ς, . . . ,−1, 0, 1, . . . , ς and j = −ζ, . . . ,−1, 0, 1, . . . , ζ .
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Example 3 Continue to Example 1. Assume that there are four experts evaluating a
product, and their evaluations and corresponding credibilities are: (good, slight
possible), (very good, possible), (good, f air), and (good, possible). Then,
represent them by the linguistic terms in Example 1 and obtain four linguistic Z-
numbers: (s2, s′

1), (s3, s′
2), (s2, s′

0), (s2, s′
2). Summarize them to aZPLTS and obtain

({s2(0.75), s3(0.25)}, {s′
0(0.25), s′

1(0.25), s′
2(0.5)}).

3.2 The normalization of ZPLVs

For the normalization of ZPLVs, both L Â(p) and L B̂(p) in ZPLVs should be normal-
ized. The process is divided into two parts: one is the normalization of the probability
distribution, and the other is the normalization of the number of linguistic terms.

The first is the normalization of the probability. When the sums of probabilities
in L Â(p) and L Â(p) are less than 1, the remaining probabilities need to be further
allocated.

Definition 8 Let Ẑ = (L Â(p), L B̂(p)) be a ZPLV with
#L Â(pÂ)∑
m=1

pÂ
(m) < 1 and

#L B̂ (pB̂ )∑
n=1

pB̂
(n) < 1, then the associated ZPLV is:

Ẑ = (L̇ Â(p), L̇ B̂(p)) = ({L Â
(m)( ṗ(m)

Â
)}, {L B̂

(n)( ṗ(n)

B̂
)}), (6)

where

ṗ(m)

Â
= pÂ

(m)
/#L Â(pÂ)∑

m=1

pÂ
(m),

ṗ(n)

B̂
= pB̂

(n)
/#L B̂ (pB̂ )∑

n=1

pB̂
(n),

m = 1, 2, . . . , #L Â(pÂ) and n = 1, 2, . . . , #L B̂(pB̂).

Next is the normalization of the number of linguistic terms. In order to facilitate the
calculation of the distance between ZPLVs, we need to make the number of linguistic
terms in L A(p) and LB(p) equal.

Definition 9 Let Ẑ1 = (L Â1(p), L B̂1(p)) and Ẑ2 = (L Â2(p), L B̂2(p)) be two
ZPLVs. #L Â1(pÂ1) and #L Â2(pÂ2) are the numbers of linguistic terms in L Â1(p)
and L Â2(p), respectively. #L B̂1(pB̂1) and #L B̂2(pB̂2) are the numbers of the linguis-
tic terms in L B̂1(p) and L B̂2(p), respectively. If #L Â1(pÂ1) > #L Â2(pÂ2), then

(1) add #L Â1(pÂ1) − #L Â2(pÂ2) linguistic terms to L Â2(p), and the added lin-
guistic terms are any linguistic terms in L Â2(p);

(2) let the probabilities of the added linguistic terms be 0.
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Similarly, when #L B̂1(pB̂1) > #L B̂2(pB̂2), the steps for their normalization are
like these.

3.3 Basic operational rules of ZPLVs

Inspired by Xian et al. (2019) and Gou and Xu (2016), the operational rules of ZPLVs
are defined in this part.

Definition 10 Let Ẑ1 = ( Â1, B̂1) = (L Â1(p), L B̂1(p)) and Ẑ2 = ( Â2, B̂2) =
(L Â2(p), L B̂2(p)) be two ZPLVs, where

L Â1(p) =
⎧
⎨

⎩L Â1
(m)(pÂ1

(m))|L Â1
(m) ∈ S, pÂ1

(m) ≥ 0,m = 1, 2, . . . , #L Â1(pÂ1) ,

#L Â1(pÂ1)∑

m=1

pÂ1
(m) ≤ 1

⎫
⎬

⎭ ,

L B̂1(p) =
⎧
⎨

⎩L B̂1
(n)(pB̂1

(n))|L B̂1
(n) ∈ S′, pB̂1

(n) ≥ 0, n = 1, 2, . . . , #L B̂1(pB̂1) ,

#L B̂1(pB̂1)∑

n=1

pB̂1
(n) ≤ 1

⎫
⎬

⎭ ,

L Â2(p) =
⎧
⎨

⎩L Â2
(h)(pÂ2

(h))|L Â2
(h) ∈ S, pÂ2

(h) ≥ 0, h = 1, 2, . . . , #L Â2(pÂ2) ,

#L Â2(pÂ2)∑

h=1

pÂ2
(h) ≤ 1

⎫
⎬

⎭ ,

and

L B̂2(p) =
⎧
⎨

⎩L B̂2
(k)(pB̂2

(k))|L B̂2
(k) ∈ S′, pB̂2

(k) ≥ 0, k = 1, 2, . . . , #L B̂2(pB̂2) ,

#L B̂2(pB̂2)∑

k=1

pB̂2
(k) ≤ 1

⎫
⎬

⎭ ,
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then some basic operational rules are as follows:

(1) Ẑ1 + Ẑ2 = ( Â1 + Â2,
B̂1+B̂2

2 ) = (L Â1(p) + L Â2(p),
L B̂1(p)+L B̂2(p)

2 )

=
(
g−1

(

∪
ε1(m)∈g(L Â1),ε2

(h)∈g(L Â2)

{(ε1(m) + ε2
(h) − ε1

(m)ε2
(h))(p(m)

Â1
p(h)

Â2
)}
)

,

1
2g

−1

(

∪
ε1(n)∈g(L B̂1),ε2

(k)∈g(L B̂2)

{(ε1(n) + ε2
(k) − ε1

(n)ε2
(k))(p(n)

B̂1
p(k)

B̂2
)}
))

;

(2) Ẑ1 ⊗ Ẑ2 = ( Â1 ⊗ Â2, B̂1 ⊗ B̂2) = (L Â1(p) ⊗ L Â2(p), L B̂1(p) ⊗ L B̂2(p) )

=
(
g−1

(

∪
ε1(m)∈g(L Â1),ε2

(h)∈g(L Â2)

{(ε Â1(m)ε Â2
(h))(p(m)

Â1
p(h)

Â2
)}
)

,

g−1

(

∪
ε1(n)∈g(L B̂1),ε2

(k)∈g(L B̂2)

{(εB̂1(n)εB̂2
(k))(p(n)

B̂1
p(k)
B̂2

)}
))

;

(3) χ Ẑ1 = (χ Â1, B̂1) = (χL Â1(pÂ1), L B̂1(pÂ1))

=
(
g−1

(

∪
ε(m)∈g(L Â1)

{(1 − (1 − ε(m))
χ
)(pÂ1

(m))}
)

, L B̂1(pB̂1)

)
;

(4) Ẑχ
1 = ( Âχ

1 , B̂χ
1 ) = ((L Â1(pÂ1))

χ , (L B̂1(pB̂1))
χ )

=
(
g−1

(

∪
ε(m)∈g(L Â1)

{(ε(m))
χ
(pÂ1

(m))}
)

, g−1

(

∪
ε(h)∈g(L B̂1)

{(ε(h))
χ
(pB̂1

(h))}
))

.

Theorem 1 Let Ẑ , Ẑ1, Ẑ2 be three ZPLVs, and χ, χ1, χ2 are three real numbers.
Then

(1) Ẑ1 + Ẑ2 = Ẑ2 + Ẑ1;
(2) Ẑ1 ⊗ Ẑ2 = Ẑ2 ⊗ Ẑ1;
(3) χ(Ẑ1 + Ẑ2) = χ Ẑ1 + χ Ẑ2;
(4) (Ẑ1 ⊗ Ẑ2)

χ = Ẑχ
1 ⊗ Ẑχ

2 ;

(5) χ1 Ẑ + χ2 Ẑ = (χ1 + χ2)Ẑ , when ε(m), ε(n) ∈ g(L Â) and m = n;

(6) Ẑχ1 ⊗ Ẑχ2 = Ẑχ1+χ2 , when ε(m), ε(n) ∈ g(L Â), ε(h), ε(k) ∈ g(L B̂), m = n
and h = k.

Proof The proofs of (1) and (2) are obvious, so we omit the proofs here.

(3) χ
(
Ẑ1 + Ẑ2)

= χ(g−1

(

∪
ε1(m)∈g(L Â1),ε2

(h)∈g(L Â2)

{(ε1(m) + ε2
(h) − ε1

(m)ε2
(h))(p(m)

Â1
p(h)

Â2
)}
)

,

1

2
g−1

(

∪
ε1(n)∈g(L B̂1),ε2

(k)∈g(L B̂2)

{(ε1(n) + ε2
(k) − ε1

(n)ε2
(k))(p(n)

B̂1
p(k)

B̂2
)}
))

=
(
g−1

(

∪
ε1(m)∈g(L Â1),ε2

(h)∈g(L Â2)

{(1 − (1 − ε1
(m))

χ
(1 − ε2

(h))
χ
)(pÂ1

(m) pÂ2
(h))}

)
,
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L B̂1(p) + L B̂2(p)

2

)

=
(
g−1

(

∪
ε1(m)∈g(L Â1)

{(1 − (1 − ε1
(m))

χ
)(pÂ1

(m))}
)

, L B̂1(p)

)

+
(
g−1

(

∪
ε2(h)∈g(L Â2)

{(1 − (1 − ε2
(h))

χ
)(pÂ2

(h))}
)

, L B̂2(p)

)
= χ Ẑ1 + χ Ẑ2

(4) (Ẑ1 ⊗ Ẑ2)
χ

=
((

g−1

(

∪
ε1(m)∈g(L Â1),ε2

(h)∈g(L Â2)

{(ε Â1(m)ε Â2
(h))(p(m)

Â1
p(h)

Â2
)}
))χ

,

(
g−1

(

∪
ε1(n)∈g(L B̂1),ε2

(k)∈g(L B̂2)

{(εB̂1(n)εB̂2
(k))(p(n)

B̂1
p(k)

B̂2
)}
))χ)

=
(
g−1

(

∪
ε1(m)∈g(L Â1),ε2

(h)∈g(L Â2)

{(ε Â1(m))
χ
(ε Â2

(h))
χ
(p(m)

Â1
p(h)

Â2
)}
)

,

g−1

(
( ∪
ε1(n)∈g(L B̂1),ε2

(k)∈g(L B̂2)

{(εB̂1(n))
χ
(εB̂2

(k))
χ
(p(n)

B̂1
p(k)

B̂2
)}
))

=
((

g−1

(

∪
ε1(m)∈g(L Â1)

{(ε Â1(m))(p(m)

Â1
)}
))χ

,

(
g−1

(
( ∪
ε1(n)∈g(L B̂1)

{(εB̂1(n))(p(n)

B̂1
)}
))χ)

⊗
((

g−1

(

∪
ε2(h)∈g(L Â2)

{(ε Â2(h))(p(h)

Â2
)}
))χ

,

(
g−1

(
( ∪
ε2(k)∈g(L B̂2)

{(εB̂2(k))(p(k)

B̂2
)}
))χ)

= Ẑχ
1 ⊗ Ẑχ

2

(5) When ε(m), ε(n) ∈ g(L Â) and m = n, then

χ1 Ẑ + χ2 Ẑ = (χ1 + χ2)Ẑ

=
(
g−1

(

∪
ε(m)∈g(L Â)

{(1 − (1 − ε(m))
χ1

)(pÂ
(m))}

)
,

L B̂(pB̂)) + (g−1

(

∪
ε(n)∈g(L Â)

{(1 − (1 − ε(n))
χ2

)(pÂ
(n))}

)
, L B̂(pB̂))

= (g−1

(

∪
ε(m),ε(n)∈g(L Â)

{(1 − (1 − ε(m))
χ1

(1 − ε(n))
χ2

)(pÂ
(m) pÂ

(n))}
)

,

L B̂ (pB̂ )+L B̂ (pB̂ )

2 ) = (g−1

(

∪
ε(m)∈g(L Â),m=n

{(1 − (1 − ε(m))
χ1+χ2

)(pÂ
(m))}

)
,

L B̂(pB̂)) = (χ1 + χ2)Ẑ
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(6) When ε(m), ε(n) ∈ g(L Â), ε(h), ε(k) ∈ g(L B̂), m = n and h = k.Then

Ẑχ1 ⊗ Ẑχ2 = Ẑχ1+χ2 =
(
g−1

(

∪
ε(m)∈g(L Â)

{(ε(m))
χ1

(pÂ
(m))}

)
,

g−1

(

∪
ε(h)∈g(L B̂ )

{(ε(h))
χ1

(pB̂
(h))}

))
⊗
(
g−1

(

∪
ε(n)∈g(L Â)

{(ε(n))
χ2

(pÂ
(n))}

)
,

g−1

(

∪
ε(k)∈g(L B̂ )

{(ε(k))
χ2

(pB̂
(k))}

))
=
(
g−1

(

∪
ε(m),ε(n)∈g(L Â)

{(ε(m))
χ1

(ε(n))
χ2

(pÂ
(m) pÂ

(n))}
)

,

g−1

(

∪
ε(h),ε(k)∈g(L B̂ )

{(ε(h))
χ1

(ε(k))
χ2

(pB̂
(h) pB̂

(k))}
))

=
(
g−1

(

∪
ε(m)∈g(L Â),m=n

{(ε(m))
χ1+χ2

(pÂ
(m))}

)
, g−1

(

∪
ε(h)∈g(L B̂ ),h=k

{(ε(h))
χ1+χ2

(pB̂
(h))}

))

= Ẑχ1+χ2 
�
Example 4 Let Ẑ1 = ( Â1, B̂1) = (L Â1(p), L B̂1(p)) = ({s0(0.2), s1(0.4), s3(0.4)},
{s′−2(0.1), s

′
0(0.4)})andẐ2 = ( Â2, B̂2) = (L Â2(p), L B̂2(p)) = ({s−1(0.4), s0(0.6)},

{s′
1(0.5), s

′
2(0.5)}) be two ZPLVs, and χ = 2.

The normalized Ẑ1 and Ẑ2 are:

Ẑ1 = ({s0(0.2), s1(0.4), s3(0.4)}, {s′−2(0.2), s
′
0(0.4)}),

Ẑ2 = ({s−1(0.4), s0(0.6), s−1(0)}, {s′
1(0.5), s

′
2(0.5)}).

(1) Ẑ1 + Ẑ2 = (g−1{ 23 (0.08), 3
4 (0.12),

7
9 (0.16),

5
6 (0.24), 1(0.4)}, 1

2g
−1{ 1318 (0.1),

31
36 (0.1),

5
6 (0.4),

11
12 (0.4)}) = ({s1(0.08), s1.5(0.12), s1.67(0.16),

s2(0.24), s3(0.4)}, {s′−0.18(0.1), s′
0.54(0.4), s′

0.78(0.1), s′
1.26(0.4)})

(2) Ẑ1 ⊗ Ẑ2 = (g−1{ 16 (0.08), 1
4 (0.12),

2
9 (0.16),

1
2 (0.24),

1
3 (0.4)}, g−1{ 19 (0.1),

5
36 (0.1),

1
3 (0.4),

5
12 (0.4)}) = ({s−2(0.08), s−1.5(0.12), s−1.67(0.16),

s−1(0.4), s0(0.24)}, {s′−2.33(0.1), s′−2.17(0.1), s′−1(0.4), s′−0.5(0.4)})
(3) 2Ẑ1 = (g−1{ 34 (0.2), 8

9 (0.4), 1(0.4)}, {s′−2(0.2), s′
0(0.8)})

= ({s1.5(0.2), s2.33(0.4), s3(0.4)}, {s′−2(0.2), s′
0(0.8)})

(4) Ẑ2
1 = (g−1{ 14 (0.2), 4

9 (0.4), 1(0.4)}, g−1{ 1
36 (0.2),

1
4 (0.8)})= ({s−1.5(0.2), s−0.33(0.4), s3(0.4)}, {s′−2.83(0.2), s′−1.5(0.8)})

3.4 The comparisonmethod of ZPLVs

In this section, we propose a comparison method for ZPLVs. First, we define the
concept of the score of the ZPLV. We express the linguistic values of A and B in
ZPLV through the axes. And then use the area as the score of the ZPLV, as shown in
Fig.1.
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Fig. 1 The score of a ZPLV

Definition 11 Let

Ẑ = ( Â, B̂) = (L Â(p), L B̂(p)) = ({L Â
(m)(pÂ

(m))|m = 1, 2, . . . , #L Â(pÂ)},
{L B̂

(n)(pB̂
(n))|n = 1, 2, . . . , #L B̂(pB̂)}),

v
(m)

Â
and v

(n)

B̂
are the subscripts of L Â

(m) and L B̂
(n). The score of Ẑ is

S(Ẑ) = (ᾱ + ς)(ᾱ′ + ζ ), (7)

where

ᾱ =

#L Â(pÂ)∑
m=1

v(m) pÂ
(m)

#L Â(pÂ)∑
m=1

pÂ
(m)

and ᾱ′ =

#L B̂ (pB̂ )∑
n=1

v(n) pB̂
(n)

#L B̂ (pB̂ )∑
n=1

pB̂
(n)

.

The higher the score of the ZPLV is, the larger the ZPLV is. However, it is also
possible for the scores of two ZPLVs to be equal, as shown in Fig.2. Therefore, we
introduce another concept, the deviation degree of the ZPLV.

The definition of the deviation degree of the ZPLV is as follows:

Definition 12 Let

Ẑ = ( Â, B̂) = (L Â(p), L B̂(p)) = ({L Â
(m)(pÂ

(m))|m = 1, 2, . . . ,

#L Â(pÂ)}, {L B̂
(n)(pB̂

(n))|n = 1, 2, . . . , #L B̂(pB̂)}),

v Â
(m) and vB̂

(n) are the subscripts of L Â
(m) and L B̂

(n). The score of Ẑ is S(Ẑ) =

(ᾱ + ς)(ᾱ′ + ς), where ᾱ =
#L

Â
(p

Â
)∑

m=1
v Â

(m) pÂ
(m)

#L
Â

(p
Â

)∑
m=1

pÂ
(m)

and ᾱ′ =
#L

B̂
(p

B̂
)∑

n=1
vB̂

(n) pB̂
(n)

#L
B̂

(p
B̂

)∑
n=1

pB̂
(n)

.

123



Z probabilistic linguistic term sets and its… 541

Fig. 2 Two ZPLVs have the
same score

The deviation degree of Ẑ is

D(Ẑ) =

√√√√√√

#L Â(pÂ)∑
m=1

#L B̂ (pB̂ )∑
n=1

(
(pÂ

(m)v Â
(m) + ς)(pB̂

(n)vB̂
(n) + ζ ) − (ᾱ + ς)(ᾱ′ + ζ )

)2

#L Â(pÂ)#L B̂(pB̂)
.

(8)

Then, the comparison method of ZPLVs is summarized as follows:

Definition 13 Let Ẑ1 and Ẑ2 be two ZPLVs, then

(1) If S(Ẑ1) > S(Ẑ2), then Ẑ1 > Ẑ2.
(2) If S(Ẑ1) < S(Ẑ2), then Ẑ1 < Ẑ2.
(3) If S(Ẑ1) = S(Ẑ2), then

(1̇) If D(Ẑ1) > D(Ẑ2), then Ẑ1 < Ẑ2.
(2̇) If D(Ẑ1) < D(Ẑ2), then Ẑ1 > Ẑ2.
(3̇) If D(Ẑ1) = D(Ẑ2), then Ẑ1 ≈ Ẑ2.
(4̇) If L Â1(p) = L B̂1(p) and L Â2(p) = L B̂2(p), then Ẑ1 = Ẑ2.

Example 5 Continue to Example 4, compare Ẑ1 and Ẑ2. We calculate the score and
the deviation degree of them, respectively.

ᾱ1 =

#L Â1(pÂ1)∑
m=1

v Â1
(m) pÂ1

(m)

#L Â1(pÂ1)∑
m=1

pÂ1
(m)

= 0 × 0.2 + 1 × 0.4 + 3 × 0.4

0.2 + 0.4 + 0.4
= 1.6

ᾱ′
1 =

#L B̂1(pB̂1)∑
n=1

vB̂1
(n) pB̂1

(n)

#L B̂1(pB̂1)∑
n=1

pB̂1
(n)

= −2 × 0.2 + 0 × 0.8

0.2 + 0.8
= −0.4
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S(Ẑ1) = (ᾱ1 + ς)(ᾱ′
1 + ζ ) = (1.6 + 3)(−0.4 + 3) = 11.96

D(Ẑ1) =

√√√√
#L

Â
(p

Â
)∑

m=1

#L
B̂

(p
B̂

)∑
n=1

(
(pÂ1

(m)v Â1
(m)+ς)(pB̂1

(n)vB̂1
(n)+ζ )−(ᾱ1+ς)(ᾱ′

1+ζ )
)2

#L Â(pÂ1)#L B̂1(pB̂1)

=
√

(3×2.6−11.96)2+(3×3−11.96)2+(3.4×2.6−11.96)2+(3.4×3−11.96)2+(4.2×2.6−11.96)2+(4.2×3−11.96)2

3×2
≈ 2.59

With the same method, we obtain

S(Ẑ2) = 10.8, D(Ẑ2) ≈ 1.07.

∵ S(Ẑ1) > S(Ẑ2), ∴ Ẑ1 > Ẑ2.

3.5 The distance between ZPLVs

The distance between ZPLVs is based on the deviation degree of ZPLVs and the
modified Euclidean distance.

Definition 14 Let Ẑ1 = ( Â1, B̂1) = (L Â1(p), L B̂1(p)) = ({L Â1
(m)(pÂ1

(m))|m =
1, 2, . . . , #L Â1(pÂ1)}, {L B̂1

(n)(pB̂1
(n))|n = 1, 2, . . . , #L B̂1(pB̂1)}) and Ẑ2 =

( Â2, B̂2) = (L Â2(p), L B̂2(p)) = ({L Â2
(h)(pÂ2

(h))|h = 1, 2, . . . , #L Â2(pÂ2)},
{L B̂2

(k)(pB̂2
(k))|k = 1, 2, . . . , #L B̂2(pB̂2)})be twoZPLVs. #L Â1(pÂ1) = #L Â2(pÂ2)

and#L B̂1(pB̂1) = #L B̂2(pB̂2), then the distance between Ẑ1 and Ẑ2 is

d(Ẑ1, Ẑ2) =
√√√√√√√

#L
Â1

(p
Â1

)∑

m=1

#L
B̂1

(p
B̂1

)∑

n=1

(
(pÂ1

(m)v Â1
(m) + ς)(pB̂1

(n)vB̂1
(n) + ζ ) − (pÂ2

(m)v Â2
(m) + ς)(pB̂2

(n)vB̂2
(n) + ζ )

)2

#L Â1(pÂ1)#L B̂1(pB̂1)
.

(9)

Theorem 2 Let Ẑ1, Ẑ2, Ẑ3 be three ZPLVs, then they satisfy the next three theorems:

(1) d(Ẑ1, Ẑ2) ≥ 0;
(2) d(Ẑ1, Ẑ2) = d(Ẑ2, Ẑ1);
(3) If Ẑ1 ≤ Ẑ2 ≤ Ẑ3, then d(Ẑ1, Ẑ2) ≤ d(Ẑ1, Ẑ3)and d(Ẑ2, Ẑ3) ≤ d(Ẑ1, Ẑ3).

Proof (1) and (2) are obvious.
(3)

d(Ẑ1, Ẑ2) =
√√√√√√√

#L
Â1

(p
Â1

)∑

m=1

#L
B̂1

(p
B̂1

)∑

n=1

(
(pÂ1

(m)v Â1
(m) + ς)(pB̂1

(n)vB̂1
(n) + ζ ) − (pÂ2

(m)v Â2
(m) + ς)(pB̂2

(n)vB̂2
(n) + ζ )

)2

#L Â1(pÂ1)#L B̂1(pB̂1)
.
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d(Ẑ1, Ẑ3) =
√√√√√√√

#L
Â1

(p
Â1

)∑

m=1

#L
B̂1

(p
B̂1

)∑

n=1

(
(pÂ1

(m)v Â1
(m) + ς)(pB̂1

(n)vB̂1
(n) + ζ ) − (pÂ3

(m)v Â3
(m) + ς)(pB̂3

(n)vB̂3
(n) + ζ )

)2

#L Â1(pÂ1)#L B̂1(pB̂1)
.

For Ẑ2 ≤ Ẑ3, so

(pÂ2
(m)v Â2

(m) + ς)(pB̂2
(n)vB̂2

(n) + ζ ) ≤ (pÂ3
(m)v Â3

(m) + ς)(pB̂3
(n)vB̂3

(n) + ζ ).

Therefore, d(Ẑ1, Ẑ2) ≤ d(Ẑ1, Ẑ3).

Similarly, d(Ẑ2, Ẑ3) ≤ d(Ẑ1, Ẑ3). 
�
Example 6 Continue to Example 4, the distance between the normalized Ẑ1 and Ẑ2
is:

d(Ẑ1, Ẑ2) =

√√√√
#L

Â1
(p

Â1
)∑

m=1

#L
B̂1

(p
B̂1

)∑
n=1

(
(pÂ1

(m)v Â1
(m)+ς)(pB̂1

(n)vB̂1
(n)+ζ )−(pÂ2

(m)v Â2
(m)+ς)(pB̂2

(n)vB̂2
(n)+ζ )

)2

#L Â1(pÂ1)#L B̂1(pB̂1)

=
√

(3×2.6−2.6×3.5)2+(3×3−2.6×4)2+(3.4×2.6−3×3.5)2+(3.4×3−3×4)2+(4.2×2.6−3×3.5)2+(4.2×3−3×4)2

3×2

≈ 1.3

4 MAGDMwith ZPLTSs

Assume that there are a discrete set of alternatives X = {x1, x2, . . . , xs}(s ≥ 2) and
a set of attributes C = {c1, c2, . . . , ct }(t ≥ 2). The weighting vector of attributes is

W = (ω1, ω2, . . . , ωt )
T , where ωθ ∈ [0, 1], θ = 1, 2, · · · , t , and

t∑
θ=1

ωθ = 1. The

attribute weights are unknown. According to the evaluation and the corresponding
credibility given by DMs, we can obtain ZPLVs. All of the ZPLVs constitute the
ZPLV decision matrix and it is denoted as R.

R = [Ẑγ θ ]s×t =

⎡

⎢⎢⎢⎢⎢⎢⎣

Ẑ11 · · · Ẑγ θ · · · Ẑ1t
...

. . .
...

. . .
...

Ẑγ 1 · · · Ẑγ θ · · · Ẑγ t
...

. . .
...

. . .
...

Ẑs1 · · · Ẑγ θ · · · Ẑst

⎤

⎥⎥⎥⎥⎥⎥⎦
, (10)

where Ẑγ θ = ( Âγ θ , B̂γ θ ) = (L Âγ θ
(p), L B̂γ θ

(p)) = ({L Âγ θ

(m)(pÂγ θ

(m))|m =
1, 2, . . . , #L Âγ θ

(pÂγ θ
)}, {L B̂γ θ

(n)(pB̂γ θ

(n))| n = 1, 2, . . . , #L B̂γ θ
(pB̂γ θ

)}). It repre-
sents the decision information of attribute θ(θ = 1, 2, . . . , t) of alternative γ (γ =
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1, 2, . . . , s). L Âγ θ

(m) is the mth value of L Âγ θ
(pÂγ θ

), pÂγ θ

(m) is the corresponding
probability, #L Âγ θ

(pÂγ θ
) is the number of different linguistic terms in L Âγ θ

(pÂγ θ
).

L B̂γ θ

(n) is the nth value of L B̂γ θ
(pB̂γ θ

), pB̂γ θ

(n) is the corresponding probability,
#L B̂γ θ

(pB̂γ θ
) is the number of different linguistic terms in L B̂γ θ

(pB̂γ θ
).

4.1 Calculationmethod for attribute weights based on the credibility

The determination of the attribute weights is a very important part in MAGDM.
However, due to the complexity and the uncertainty of the decision environment,
the attribute weights are often unknown. Therefore, we propose a method to deter-
mine the attribute weights in Z probabilistic linguistic (ZPL) environment based on
the credibility of the information. The main idea of this method is that the higher the
credibility of the evaluation information is, the more credible the information is, and
the higher the weight is given to it.

The information credibility of the attribute θ is labeled as:

L B̂θ
(pB̂θ

) = {L B̂θ

( f )(pB̂θ

( f ))| f = 1, 2, . . . , #L B̂θ
(pB̂θ

)}, (11)

where L B̂θ

( f ) is the f th value of L B̂θ
(pB̂θ

), pB̂θ

( f ) is the corresponding probability,

#L B̂θ
(pB̂θ

) is the number of different linguistic terms in #L B̂θ
(pB̂θ

) and vB̂θ

( f ) is the

subscript of L B̂θ

( f ). And

L B̂θ
(pB̂θ

) =

s∑
γ=1

L B̂γ θ
(pB̂γ θ

)

s
. (12)

Using the score of PLTSs in Pang et al. (2016), the score of L B̂θ
(pB̂θ

) is:

E(L B̂θ
(pB̂θ

)) = s ′̄
α

θ
, (13)

where ᾱθ =
#L B̂θ

(pB̂θ
)∑

f =1
pB̂θ

( f )vB̂θ

( f )
/#L B̂θ

(pB̂θ
)∑

f =1
pB̂θ

( f ).

Then the attribute weight ωθ is:

ωθ = g(s′
ᾱ

θ
)

∑t
θ=1 g(s

′
ᾱ

θ
)
, (θ = 1, 2, . . . , t), (14)

where g(s′
ᾱ

θ
) is calculated by the equation mentioned in Definition 4. It’s easy to

prove ωθ > 0.
By normalizing ωθ(θ = 1, 2, . . . , t) so that its sum is 1, the following equation is

obtained:
ω∗

θ = ωθ∑t
θ=1 ωθ

. (15)
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In this way, we obtain the attribute weight vector W = (ω1, ω2, . . . , ωt )
T . It is

used in the following operators and the extended TOPSIS method for ZPLVs.

4.2 Some aggregate operators based on ZPLTSs

In decision making, information aggregation is an indispensable part. To integrate
ZPLTSs in decision making, we propose three operators to aggregate decision infor-
mation.

4.2.1 ZPLWA operator

First, we propose the Z probabilistic linguistic weighted averaging (ZPLWA) operator.

Definition 15 Let Ẑ# be a ZPLTS, Ẑθ = ( Âθ , B̂θ ) ∈ Ẑ#, θ = 1, 2, . . . , t . A ZPLWA
operator aggregation is as follows:

φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∑

θ=1

ωθ Ẑθ , (16)

where ωθ is calculated by the method proposed in Sect. 4.1, ωθ ∈ [0, 1], and
t∑

θ=1
ωθ = 1.

Theorem 3 Ẑθ = ( Âθ , B̂θ ) = (L Âθ
(pÂθ

), L B̂θ
(pB̂θ

)) = ({L Âθ
(m)(pÂθ

(m))|m =
1, 2, . . . , #L Âθ

(pÂθ
)}, {L B̂θ

(n)(pB̂θ
(n))|n = 1, 2, . . . , #L B̂θ

(pB̂θ
)}), then their aggre-

gated value by using the ZPLWA operator is also a ZPLV, and

φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∑

θ=1
ωθ Ẑθ =

t∑
θ=1

ωθ

(
Âθ , B̂θ

)

=
(

t∑
θ=1

ωθ Âθ ,
t∑

θ=1
B̂θ )

=
⎛

⎜⎝
t∑

θ=1
ωθ L Âθ

(p),

t∑
θ=1

L B̂θ
(p)

t

⎞

⎟⎠ .

(17)

Proof For t = 2,ω1 Ẑ1+ω2 Ẑ2 = ω1( Â1, B̂1)+ω2( Â2, B̂2) = ω1(L Â1(p), L B̂1(p))+
ω2(L Â2(p), L B̂2(p)) =

(
ω1L Â1(p) + ω2L Â2(p),

L B̂1(p)+L B̂2(p)
2

)
.
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When t = k, we have

ω1 Ẑ1 + ω2 Ẑ2 + · · · + ωk Ẑk =
k∑

θ=1
ωθ Ẑθ =

k∑
θ=1

ωθ( Âθ , B̂θ )

=
(

k∑
θ=1

ωθ Âθ ,
k∑

θ=1
B̂θ

)

=
⎛

⎜⎝
k∑

θ=1
ωθ L Âθ

(p),

k∑
θ=1

L B̂θ
(p)

k

⎞

⎟⎠ .

When t = k + 1, we have

ω1 Ẑ1 + ω2 Ẑ2 + · · · + ωk+1 Ẑk+1 =
k∑

θ=1
ωθ Ẑθ + ωk+1 Ẑk+1

=
k∑

θ=1
ωθ( Âθ , B̂θ ) + ωk+1( Âk+1, B̂k+1)

=
(

k∑
θ=1

ωθ Âθ ,
k∑

θ=1
B̂θ

)
+ (ωk+1 Âk+1, B̂k+1)

=
⎛

⎜⎝
k+1∑
θ=1

ωθ L Âθ
(p),

k+1∑
θ=1

L B̂θ
(p)

k+1

⎞

⎟⎠ .

Therefore, this equation holds for all t . 
�
Theorem 4 (Monotonicity) Let (Ẑ1, Ẑ2, . . . , Ẑt )and (Ẑ∗

1 , Ẑ
∗
2 , . . . , Ẑ

∗
t )be twoZPLTSs.

If Ẑθ < Ẑ∗
θ for all θ = 1, 2, . . . , t , then

φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) < φZ PLNW A(Ẑ∗
1 , Ẑ

∗
2 , . . . , Ẑ

∗
t ). (18)

Proof

φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∑

θ=1

ωθ Ẑθ

φZ PLW A(Ẑ∗
1 , Ẑ

∗
2 , . . . , Ẑ

∗
t ) =

t∑

θ=1

ωθ Ẑ
∗
θ

Ẑθ < Ẑ∗
θ holds for all θ = 1, 2, . . . , t . Therefore, φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) <

φZ PLW A(Ẑ∗
1 , Ẑ

∗
2 , . . . , Ẑ

∗
t ). 
�

Theorem 5 (Idempotency) If Ẑθ , Ẑ ∈ Ẑ# and Ẑθ = Ẑ , θ = 1, 2, . . . , t , then

φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) = Ẑ . (19)
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Proof Since for all θ = 1, 2, . . . , t , we have Ẑθ = Ẑ ,

φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∑

θ=1

ωθ Ẑθ =
t∑

θ=1

ωθ Ẑ .

According to
t∑

θ=1
ωθ = 1,

φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) = Ẑ .


�
Theorem 6 (Boundedness) Let Ẑm = min(Ẑ1, Ẑ2, . . . , Ẑt ), ẐM = max(Ẑ1, Ẑ2, . . . ,

Ẑt ). Then
Ẑm ≤ φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) ≤ ẐM . (20)

Proof For Ẑm ≤ Ẑθ ≤ ẐM , θ = 1, 2, . . . , t , and
t∑

θ=1
ωθ = 1,

φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∑

θ=1
ωθ Ẑθ ≥

t∑
θ=1

ωθ Ẑm = Ẑm .

φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∑

θ=1
ωθ Ẑθ ≤

t∑
θ=1

ωθ ẐM = ẐM .

Therefore, Ẑm ≤ φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) ≤ ẐM . 
�
Remark 2 When ωθ = 1

t , the ZPLWA operator is reduced to the Z probabilistic lin-
guistic averaging (ZPLA) operator.

φZ PLA(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∑

θ=1

1
t Ẑθ = 1

t

t∑
θ=1

( Âθ , B̂θ ) =
(

1
t

t∑
θ=1

Âθ ,
t∑

θ=1
B̂θ

)

=
⎛

⎜⎝

t∑
θ=1

L Âθ
(p)

t ,

t∑
θ=1

L B̂θ
(p)

t

⎞

⎟⎠ .

(21)

4.2.2 ZPLWG operator

Second, we propose the Z probabilistic linguistic weighted geometric (ZPLWG) oper-
ator.

Definition 16 Let Ẑ# be a ZPLTS, Ẑθ = ( Âθ , B̂θ ) ∈ Ẑ#, θ = 1, 2, . . . , t . A ZPLWG
operator aggregation is as follows:

φZ PLWG(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∏

θ=1

Ẑωθ

θ , (22)
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where ωθ is calculated by the method proposed in Sect. 4.1, ωθ ∈ [0, 1], and
t∑

θ=1
ωθ = 1.

Theorem 7

Ẑθ = ( Âθ , B̂θ ) = (L Âθ
(pÂθ

), L B̂θ
(pB̂θ

)) = ({L Âθ
(m)(pÂθ

(m))|m = 1, 2, . . . ,

#L Âθ
(pÂθ

)}, {L B̂θ
(n)(pB̂θ

(n))|n = 1, 2, . . . , #L B̂θ
(pB̂θ

)}),

then their aggregated value by using the ZPLWG operator is also a ZPLV, and

φZ PLWG(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∏

θ=1
Ẑωθ

θ =
t∏

θ=1
( Âθ , B̂θ )

ωθ

=
(

t∏
θ=1

Âωθ

θ ,
t∏

θ=1
B̂ωθ

θ

)

=
(

t∏
θ=1

L Âθ
(pÂθ

)ωθ ,
t∏

θ=1
B̂θ (pB̂θ

)ωθ

)
.

(23)

Theorem 8 (Monotonicity) Let (Ẑ1, Ẑ2, . . . , Ẑt )and (Ẑ∗
1 , Ẑ

∗
2 , . . . , Ẑ

∗
t )be twoZPLTSs.

If Ẑθ < Ẑ∗
θ for all θ = 1, 2, . . . , t , then

φZ PLWG(Ẑ1, Ẑ2, . . . , Ẑt ) < φZ PLWG(Ẑ∗
1 , Ẑ

∗
2 , . . . , Ẑ

∗
t ). (24)

Theorem 9 (Idempotency) If Ẑθ , Ẑ ∈ Ẑ# and Ẑθ = Ẑ , θ = 1, 2, . . . , t , then

φZ PLWG(Ẑ1, Ẑ2, . . . , Ẑt ) = Ẑ . (25)

Theorem 10 (Boundedness) Let Ẑm = min(Ẑ1, Ẑ2, . . . , Ẑt ), ẐM = max(Ẑ1, Ẑ2, . . . ,

Ẑt ). Then
Ẑm ≤ φZ PLWG(Ẑ1, Ẑ2, . . . , Ẑt ) ≤ ẐM . (26)

Remark 3 When ωθ = 1
t , the ZPLWG operator is reduced to the Z probabilistic

linguistic geometric(ZPLG) operator.

φZ PLG(Ẑ1, Ẑ2, . . . , Ẑt ) = Ẑ
1
t
1 ⊗ Ẑ

1
t
2 ⊗ · · · ⊗ Ẑ

1
t
t = (

t∏
θ=1

L Âθ
(p)

1
t ,

t∏
θ=1

L B̂θ
(p)

1
t ).

(27)

4.2.3 ZPLWD operator

Finally,wepropose theZprobabilistic linguisticweighted distance (ZPLWD)operator.
In ZPLVs, there is a positive ideal solution when Â and B̂ are both the largest, that

is, the highest evaluation and the highest credibility.
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Definition 17 Let R = [Ẑγ θ ]s×t be a ZPLV decision matrix, where

Ẑγ θ = (L Âγ θ
(pÂγ θ

), L B̂γ θ
(pB̂γ θ

))

= ({L Âγ θ

(m)(pÂγ θ

(m))|m = 1, 2, . . . , #L Âγ θ
(pÂγ θ

)},
{L B̂γ θ

(n)(pB̂γ θ

(n))|n = 1, 2, . . . , #L B̂γ θ
(pB̂γ θ

)}).

Then the positive ideal solution of the alternatives is Ẑ+ = (Ẑ+
1 , Ẑ+

2 , · · · , Ẑ+
t ), where

Ẑ+
θ = (L Âθ

+(pÂθ
), L B̂θ

+(pB̂θ
))

= ({(L Âθ

(m))+|m = 1, 2, . . . , #L Âγ θ
(pÂγ θ

)}, {(L B̂θ

(n))+|n = 1, 2, . . . , #L B̂γ θ
(pB̂γ θ

)})

and ((L Âθ

(m))+, (L B̂θ

(n))+) = (s
max

γ
{p(m)

γ θ v
(m)
γ θ }, s

′
max

γ
{p(n)

γ θ v
(n)
γ θ }), v

(m)
γ θ and v

(n)
γ θ are the

subscripts of L Âγ θ

(m) and L B̂γ θ

(n), respectively.

Definition 18 Let Ẑ# be a ZPLTS, Ẑθ = ( Âθ , B̂θ ) ∈ Ẑ#, and θ = 1, 2, . . . , t . A
ZPLWD operator aggregation is as follows:

φZ PLWD(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∑

θ=1

ωθd(Ẑθ , Ẑ
+
θ ), (28)

where Ẑ+
θ is the positive ideal solution, which is calculated by Definition 17. ωθ is

calculated by the method proposed in Section 4.1, ωθ ∈ [0, 1], and
t∑

θ=1
ωθ = 1.

Their aggregated value by using the ZPLWD operator is the distance between xγ

and the optimal alternative, and it is labeled as d(xγ , Z+). d(Ẑθ , Ẑ
+
θ ) can also be

abbreviated to dθ .

Theorem 11 (Monotonicity) Let (Ẑ1, Ẑ2, . . . , Ẑt ) and (Ẑ∗
1 , Ẑ

∗
2 , . . . , Ẑ

∗
t ) be two

ZPLTSs. If dθ < dθ
∗ for all θ = 1, 2, . . . , t , then

φZ PLWD(Ẑ1, Ẑ2, . . . , Ẑt ) < φZ PLWG(Ẑ∗
1 , Ẑ

∗
2 , . . . , Ẑ

∗
t ). (29)

Theorem 12 (Idempotency) If Ẑθ , Ẑ ∈ Ẑ# and dθ = d, θ = 1, 2, . . . , t , then

φZ PLWD(Ẑ1, Ẑ2, . . . , Ẑt ) = d. (30)

Theorem 13 (Boundedness) Let dm = min(d1, d2, . . . , dt ), dM = max(d1, d2, . . . ,
dt ). Then

dm ≤ φZ PLWD(Ẑ1, Ẑ2, . . . , Ẑt ) ≤ dM . (31)
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4.3 An extended TOPSIS method for ZPLTSs

We propose a series of operators in the last section, but the aggregation process leads
to increased computational complexity and loss of decision information. In order to
overcome these shortcomings, we propose an extended TOPSIS method for ZPLTs to
solve MAGDM problems in Z probabilistic linguistic environment environment. The
main idea of the TOPSIS method is to find an ideal solution which is the closest to the
positive ideal solution and the farthest from the negative ideal solution.

Definition 19 Let R = [Ẑγ θ ]s×t be a ZPLV decision matrix. Then the attribute values
vector of the alternative xγ (γ = 1, 2, . . . , s) is Ẑγ = (Ẑγ 1, Ẑγ 2, . . . , Ẑγ t ).

The definition of the positive ideal solution is proposed in Definition 17. The negative
ideal solution requires the worst evaluation and the highest credibility.

Definition 20 Let R = [Ẑγ θ ]s×t be a ZPLV decision matrix, where Ẑγ θ =
(L Âγ θ

(pÂγ θ
), L B̂γ θ

(pB̂γ θ
)) = ({L Âγ θ

(m)(pÂγ θ

(m))|m = 1, 2, . . . , #L Âγ θ
(pÂγ θ

)},
{L B̂γ θ

(n)(pB̂γ θ

(n))|n = 1, 2, . . . , #L B̂γ θ
(pB̂γ θ

)}). Then the negative ideal solution of

the alternatives is Ẑ− = (Ẑ−
1 , Ẑ−

2 , · · · , Ẑ−
t ), where Ẑ−

θ = (L Âθ

−(pÂθ
), L B̂θ

+(pB̂θ
))

= ({(L Âθ

(m))−|m = 1, 2, . . . , #L Âγ θ
(pÂγ θ

)}, {(L B̂θ

(n))+|n = 1, 2, . . . , #

L B̂γ θ
(pB̂γ θ

)}) and ((L Âθ

(m))−, (L B̂θ

(n))+) = (s
min
γ

{p(m)
γ θ v

(m)
γ θ }, s

′
max

γ
{p(n)

γ θ v
(n)
γ θ }), v

(m)
γ θ and

v
(n)
γ θ are the subscripts of L Âγ θ

(m) and L B̂γ θ

(n), respectively.

The distance between xγ and the positive ideal solution is:

dγ
+ = d(xγ , Ẑ+) =

t∑

θ=1

ωθd(Ẑγ θ , Ẑ
+
θ ), (32)

where

d(Ẑγ θ , Ẑ+
θ ) =

√√√√√√√

#L Âγ θ
(pÂγ θ

)
∑
m=1

#L B̂γ θ
(pB̂γ θ

)
∑
n=1

(
(pÂγ θ

(m)v Âγ θ

(m)+ς)(pB̂γ θ

(n)vB̂γ θ

(n)+ζ )−((pÂθ

(m)v Âθ

(m))
++ς)((pB̂θ

(n)vB̂θ

(n))
++ζ )

)2

#L Âγ θ
(pÂγ θ

)#L B̂γ θ
(pB̂γ θ

)
,

ωθ is calculated by the method proposed in Sect. 4.1.
The distance between xγ and the negative ideal solution is:

dγ
− = d(xγ , Ẑ−) =

t∑

θ=1

ωθd(Ẑγ θ , Ẑ
−
θ ), (33)

where

d(Ẑγ θ , Ẑ−
θ ) =
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√√√√√√√

#L Âγ θ
(pÂγ θ

)
∑
m=1

#L B̂γ θ
(pB̂γ θ

)
∑
n=1

(
(pÂγ θ

(m)v Âγ θ

(m) + ς)(pB̂γ θ

(n)vB̂γ θ

(n) + ζ ) − ((pÂθ

(m)v Âθ

(m))
− + ς)((pB̂θ

(n)vB̂θ

(n))
+ + ζ )

)2

#L Âγ θ
(pÂγ θ

)#L B̂γ θ
(pB̂γ θ

)
,

ωθ is calculated by the method proposed in Sect. 4.1.
It is not difficult to see that the smaller d+

min is, the larger d−
max is, the better the

alternative is.
The smallest distance between xγ and the positive ideal solution is:

d+
min = min

1≤γ≤s
dγ

+. (34)

The largest distance between xγ and the negative ideal solution is:

d−
max = max

1≤γ≤s
dγ

−. (35)

Then, the closeness coefficient of the alternative xγ (γ = 1, 2, . . . , s) is:

C(xγ ) = dγ
−

d−
max

− dγ
+

d+
min

, (C(xγ ) ≤ 0). (36)

The best alternative is:

xγ
∗ = {xγ | max

1≤γ≤s
C(xγ )}. (37)

4.4 AMAGDMmodel based on ZPLTSs

ZPLTS can be widely used in MAGDM because it can not only show the preference
of DMs, but also represent information in a more comprehensive way. We build a
MAGDM model based on ZPLTSs in this section. The flow chart of the model is
shown in Fig.3.

In a MAGDM problems, assume there are a discrete set of alternatives X =
{x1, x2, . . . , xs}(s ≥ 2), a set of DMs D = {d1, d2, . . . , dη}(η ≥ 2), and a set of
attributesC = {c1, c2, . . . , ct }(t ≥ 2). EachDMgive a ZPLV decisionmatrix Rη(η =
1, 2, · · · , q) to evaluate every attributes of different alternatives. Rη = [Ẑη

γ θ ]s×t

and Ẑη
γ θ = ( Âη

γ θ , B̂
η
γ θ ) = (Lη

Âγ θ
(pη

Âγ θ
), Lη

B̂γ θ
(pη

B̂γ θ
)) = ({Lη(m)

Âγ θ
(pη(m)

Âγ θ
)|m =

1, 2, . . . , #Lη
Âγ θ

(pη
Âγ θ

)}, {Lη(n)

B̂γ θ
(pη(n)

B̂γ θ
)|n = 1, 2, . . . , #Lη

B̂γ θ
(pη

B̂γ θ
)}).

Step 1. Combine all of the DMs’ evaluations and corresponding credibilities to
construct the final ZPLV decision matrix R = [Ẑγ θ ]s×t .

Step 2.Calculate the attribute weight vector by Eq. (16). If DMs choose the method
of the operators, then go to Step 3. If DMs choose the extended TOPSIS method, then
go to Step 5.

Step 3. DMs choose the appropriate operator according to the actual situation.
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Fig. 3 A MAGDM model based on ZPLTSs

(1) Calculate the ZPLTS Ẑxγ (γ = 1, 2, . . . , s) of the alternative xγ by the ZPLWA
operator.

Ẑxγ = ( Âxγ , B̂xγ ) = φZ PLW A(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∑

θ=1

ωθ Ẑγ θ .

(2)Calculate the ZPLTS Ẑxγ (γ = 1, 2, . . . , s) of the alternative xγ by the ZPLWG
operator.

Ẑxγ = ( Âxγ , B̂xγ ) = φZ PLWG(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∏

θ=1

Ẑωθ

γ θ .

(3) Calculate the distance d(xγ , Ẑ+) between each alternative and the positive ideal
solution by the ZPLWD operator.

d(xγ , Ẑ+) = φZ PLWD(Ẑ1, Ẑ2, . . . , Ẑt ) =
t∑

θ=1

ωθd(Ẑγ θ , Ẑ
+
θ ).

Step4. IfDMs choose theZPLWAoperator and theZPLWGoperator, then rank Ẑxγ

with the ranking method proposed in Sect. 3.3. If DMs choose the ZPLWD operator,
then the smaller d(xγ , Ẑ+) is, the better the alternative is. Select the best alternative(s)
and go to Step 9.
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Step 5. Determine the positive ideal solution Ẑ+ and the negative ideal solution
Ẑ− by Definitions 17 and 20.

Step 6. Calculate the distance d+
γ between xγ and the positive ideal solution by

Eq. (33). And calculate the distance d−
γ between xγ and the positive ideal solution by

Eq. (34).
Step 7. Calculate d+

min and d−
max by Eq. (35) and Eq. (36), respectively.

Step 8. Obtain C(xγ ) of each alternative by Eq. (37) and select the best one(s) by
Eq. (38).

Step 9. End.
The MAGDM model contains two methods: the operators, and the extended TOP-

SIS method. It is easy to see from Fig.3 that the steps of the operators are relatively
simple. The extended TOPSIS method reduce the loss of decision information. Each
method has its advantages, so DMs can choose according to their needs.

5 Illustrative example and discussion

We illustrate ZPLTSs with a numerical example from (Pang et al. 2016).

5.1 A numerical example

A company plan a project in the next following years, and there are three projects
to choose. Five company employers decide one integrated optimal project to be the
development plan of the company. Assessment to evaluate mainly from the following
four aspects:

(1) Financial perspective(c1);
(2) The customer satisfaction(c2);
(3) Internal business process perspective(c3);
(4) Learning and growth perspective(c4).

DMs provide the decision information represented by ZPLVs according to their expe-
rience, which includes the evaluation and the corresponding credibility. The evaluation
is based on the LTS

S = {s0 = none, s1 = very low, s2 = low, s3 = medium,

s4 = high, s5 = very high, s6 = per f ect },

and the credibility is based on the LTS

S′ = { s′−3 = not at all sure, s′−2 = not sure, s′−1 = a li t tle not sure,
s′
0 = medium sure, s′

1 = a li t tle sure, s′
2 = sure, s′

3 = very sure }.

Five linguistic decision matrixes provided by five DMs are listed in Table 1–5. Next,
we use the operators and the extended TOPSIS method to calculate.
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Table 1 The first DM’s
linguistic decision matrix

c1 c2 c3 c4

x1 (s0, s
′
2) (s1, s

′−2) (s1, s
′
3) (s−2, s

′
2)

x2 (s0, s
′
3) (s0, s

′−1) (s−1, s
′
0) (s0, s

′
2)

x3 (s1, s
′
1) (s0, s

′−1) – (s1, s
′−3)

Table 2 The second DM’s
linguistic decision matrix

c1 c2 c3 c4

x1 ((s1, s
′
3) (s−1, s

′
2) (s1, s

′
2) (s2, s

′
3)

x2 (s0, s
′
2) – (s−2, s

′−2) (s0, s
′
2)

x3 (s1, s
′
0) (s0, s

′
0) (s2, s

′−2) (s1, s
′−2)

Table 3 The third DM’s
linguistic decision matrix

c1 c2 c3 c4

x1 (s1, s
′
2) (s1, s

′−2) (s1, s
′
2) (s0, s

′
2)

x2 (s2, s
′
3) (s−1, s

′
1) – (s1, s

′
1)

x3 (s0, s
′−1) (s0, s

′
2) (s1, s

′
3) (s3, s

′−1)

Table 4 The fourth DM’s
linguistic decision matrix

c1 c2 c3 c4

x1 (s1, s
′
3) (s1, s

′
2) (s2, s

′
1) (s0, s

′
2)

x2 (s0, s
′
1) (s1, s

′−1) (s0, s
′
2) (s0, s

′
2)

x3 (s0, s
′−1) – (s0, s

′
0) (s1, s

′−3)

5.1.1 The aggregate operators

Step 1. The linguistic decision matrixes of five DMs are summarized into a ZPLV
decisionmatrix. For example, for the first attribute of the first alternative, the evaluation
information given by five DMs are (s0, s′

2), (s1, s
′
3), (s1, s

′
2), (s1, s

′
3), and (s0, s′

3). For
there are two s0 and three s1, the probabilities of s0 and s1 are 0.4 and 0.6. Similarly,
the probabilities of s′

2 and s′
3 are 0.4 and 0.6. Therefore, the summarized ZPLV is

({s0(0.4), s1(0.6)}, {s′
2(0.4), s

′
3(0.6)}). The ZPLV decisionmatrix is shown in Table 6.

Then, normalize Table 6 to obtain the normalized matrix shown in Table 7.

Table 5 The fifth DM’s
linguistic decision matrix

c1 c2 c3 c4

x1 (s0, s
′
3) (s1, s

′
2) (s0, s

′
1) (s2, s

′
2)

x2 (s0, s
′
1) (s0, s

′−1) (s−1, s
′
2) (s0, s

′
2)

x3 (s0, s
′−1) (s1, s

′−1) – (s1, s
′−3)
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Ta
bl
e
6

T
he

gr
ou
p
lin

gu
is
tic

de
ci
si
on

m
at
ri
x

c 1
c 2

x 1
({s

0
(0

.4
),
s 1

(0
.6

)},
{s′ 2

(0
.4

),
s′ 3

(0
.6

)})
({s

−1
(0

.2
),
s 1

(0
.8

)},
{s′ −2

(0
.4

),
s′ 2

(0
.6

)})
x 2

({s
2
(0

.2
),
s 0

(0
.8

)},
{s′ 1

(0
.4

),
s′ 2

(0
.2

),
s′ 3

(0
.4

)})
({s

−1
(0

.2
),
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Step 2. Calculate the attribute weight vector by Eq. (16).

W = (0.278, 0.257, 0.238, 0.226)T .

Step 3. Select the optimal project with the operators based on ZPLTSs.
(1) Aggregate Ẑγ (γ = 1, 2, 3) with the ZPLWA operator and select the optimal

project.

S(Ẑx1) ≈ 22.826, S(Ẑx2) ≈ 15.258, S(Ẑx3) ≈ 13.1

∵ S(Ẑ1) > S(Ẑ2) > S(Ẑ3), ∴ x1 > x2 > x3.

Therefore, x1 is the optimal project.
(2) Aggregate Ẑγ (γ = 1, 2, 3) with the ZPLWG operator and select the optimal

project.

S(Ẑ1) ≈ 19.71, S(Ẑ2) ≈ 10.192, S(Ẑ3) ≈ 3.467

∵ S(Ẑx1) > S(Ẑx2) > S(Ẑx3), ∴ x1 > x2 > x3.

Therefore, x1 is the optimal project.
(3) Aggregate Ẑγ (γ = 1, 2, 3) with the ZPLWD operator and select the optimal

project.
Determaine the positive ideal solution.

Ẑ+ = (Ẑ+
1 , Ẑ+

2 , Ẑ+
3 , Ẑ+

4 ) = (({s0.4, s0.6, s0},
{s′

0.8, s′
1.8, s′

1.2}), ({s0, s0.6, s0.25}, {s′
0.8, s′

1.8, s′
0.5}),

({s0, s0.8, s0.66}, {s′
0.5, s′

0.5, s′
1}), ({s0.8, s1.2, s0}, {s′

1.6, s′
1.6, s′

0}))
Aggregate with the ZPLWD operator.

d(x1, Z
+) ≈ 2.479, d(x2, Z

+) ≈ 4.818, d(x3, Z
+) ≈ 5.724

∵ d(x1, Z
+) < d(x2, Z

+) < d(x3, Z
+)), ∴ x1 > x2 > x3.

Therefore, x1 is the optimal project.

5.1.2 The extended TOPSIS method

Step 1. Construct the ZPLV decision making matrix as Table 7.
Step 2. Calculate the attribute weight vector by Eq. (16).

W = (0.278, 0.257, 0.238, 0.226)T .

Step 3. Determine Ẑ+ and Ẑ− by Definitions 17 and 20.

Ẑ+ = (Ẑ+
1 , Ẑ+

2 , Ẑ+
3 , Ẑ+

4 ) = (({s0.4, s0.6, s0}, {s′
0.8, s′

1.8, s′
1.2}), ({s0, s0.6, s0.25},

{s′
0.8, s′

1.8, s′
0.5}), ({s0, s0.8, s0.66}, {s′

0.5, s′
0.5, s′

1}),
({s0.8, s1.2, s0}, {s′

1.6, s′
1.6, s′

0})).
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Ẑ− = (Ẑ−
1 , Ẑ−

2 , Ẑ−
3 , Ẑ−

4 ) = (({s0, s0, s0}, {s′
0.8, s′

1.8, s′
1.2}),

({s−0.25, s0, s0}, {s′
0.8, s′

1.8, s′
0.5}), ({s−0.5, s−0.5, s0}, {s′

0.5, s′
0.5, s′

1}),
({s0, s0, s0}, {s′

1.6, s′
1.6, s′

0})).

Step 4. Calculate d+
γ and d−

γ by Eq. (33) and Eq. (34).

d+
1 = 5.352, d+

2 = 5.630, d+
3 = 6.236

d−
1 = 5.127, d−

2 = 4.422, d−
3 = 4.862

Step 5. Calculate d+
min and d−

max by Eq. (35) and Eq. (36).

d+
min = 5.352, d−

max = 5.127

Step 6. Obtain C(xγ ) of each project by Eq. (37) and select the best one by Eq. (38).

C(x1) = 0, C(x2) = −0.189, C(x3) = −0.217

∵ C(x1) > C(x2) > C(x3), ∴ x1 > x2 > x3.

Therefore, x1 is the optimal project.

5.2 Analysis and discussion

5.2.1 Comparison with particular ZPLVs

In this section, we explore the impact of the information credibility on ranking results.
In the numerical example above, we set all of the credibilities as {s′

3(1), s
′
3(0), s

′
3(0)},

and then the normalized ZPLV decision matrix is constructed as Table 8. At this time,
the credibility is themaximum,which can be ignored as ZPLVs degenerate into PLTSs.
Repeat the calculation in the previous section, and the obtained results are compared
with those obtained in Sect. 5.1, as shown in Table 9.

As can be seen from Table 9, the attribute weight vectors are the same. This is
because all of the credibilities are equal. When the credibility of each evaluation is
different, just like the example in Sect. 5.1, the obtained attribute weights are different.
However, other weighting methods (such as the maximum deviation method) ignore
the important role of the information credibility.

Except for attribute weights, the change of the credibility also lead to the changes
of the ranking and the optimal alternative. These also prove the necessity of the ZPLTs
and the ZPLVs proposed in this paper.

5.2.2 Comparison with PLTSs

We use PLTSs (Pang et al. 2016) to calculate the above example as a comparison. The
processes are follows:

First, we take the probabilistic linguistic weighted averaging (PLWA) operator as
an example.
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Table 10 The normalized group linguistic decision matrix with PLTSs

c1 c2
x1 {s0(0.4), s1(0.6), s1(0)} {s0(0.4), s1(0.6), s1(0)}
x2 {s2(0.2), s0(0.8), s0(0)} {s−1(0.25), s0(0.5), s1(0.25)}
x3 {s0(0.6), s1(0.4), s1(0)} {s0(0.75), s1(0.25), s1(0)}

c3 c4
x1 {s0(0.2), s1(0.8), s1(0)} {s0(0.4), s2(0.6), s2(0)}
x2 {s−2(0.25), s−1(0.5), s0(0.25)} {s1(0.2), s0(0.8), s0(0)}
x3 {s0(0.33), s1(0.33), s2(0.33)} {s1(0.8), s3(0.2), s3(0)}

Step 1. Construct a probabilistic linguistic decision making matrix and normalize
it. The normalized matrix is shown in Table 10.

Step 2. Calculate the attribute weight vector by the maximizing deviation method.

W = (0.158, 0.157, 0.359, 0.326)T .

Step 3. Aggregate Z̃γ (ω) with the PLWA operator:

Z̃γ (ω) = ω1Lγ 1(p) ⊕ ω2Lγ 2(p) ⊕ ω3Lγ 3(p) ⊕ ω4Lγ 4(p).

Then,

Z̃1(ω) = {s0, s0.8674, s0}, Z̃ (ω) = {s−0.090, s0.−0.180, s0.039}, Z̃2(ω) = {s0.261, s0.417, s0.237}.

Step 4. The score of each alternative is

E(Z̃1(ω)) = 0.289, E(Z̃2(ω)) = −0.077, E(Z̃3(ω)) = 0.305

Step 5. Rank and select the optimal project.

∵ E(Z̃3(ω)) > E(Z̃1(ω)) > E(Z̃2(ω)), ∴ x3 > x1 > x2.

Therefore, x3 is the optimal project.
Then, the extended TOPSIS method with PLTSs is used to calculate the numerical

example.
Step 1. Construct a probabilistic linguistic decision making matrix and normalize

it. The normalized matrix is shown in Table 10.
Step 2. Calculate the attribute weight vector by the maximizing deviation method.

W = (0.158, 0.157, 0.359, 0.326)T .

Step 3. Determine the PIS L(p)+ and the NIS L(p)−.

L(p)+ = (L(p)+1 , L(p)+2 , L(p)+3 , L(p)+4 ) = ({s0.4, s0.6, s0},
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{s0, s0.6, s0.25}, {s0, s0.8, s0.66}, {s0.8, s1.2, s0}).
L(p)− = (L(p)−1 , L(p)−2 , L(p)−3 , L(p)−4 ) = ({s0, s0, s0),
{s−0.25, s0, s0}, {s−0.5, s−0.5, s0}, {s0, s0, s0}).

Step 4. Calculate the deviation degree d(xγ , L(p)+) between each project and the
deviation degree d(xγ , L(p)−) between each project and the NIS.

d(x1, L(p)+) = 0.347, d(x2, L(p)+) = 0.86, d(x3, L(p)+) = 0.290

d(x1, L(p)−) = 0.628, d(x2, L(p)−) = 0.097, d(x3, L(p)−) = 0.450

Step 5. Calculate dmax(xγ , L(p)+) and dmin(xγ , L(p)−).

dmax(xγ , L(p)+) = 0.290, dmin(xγ , L(p)−) = 0.628

Step 6. Obtain the improved closeness coefficient C(xγ ) of each project and select
the best one.

C I (x1) = −0.194, C I (x2) = −2.209, C I (x3) = −0.204

∵ C I (x1) > C I (x3) > C I (x2), ∴ x1 > x3 > x2.

Therefore, x1 is the optimal project.
The ranking results of PLTSs are compared those of ZPLVs when the credibility is

the highest. The comparison results are shown in Table 11.
The attribute weights calculated by this paper are different from those calculated

by Pang (Pang et al. 2016). This is due to the different emphasis of the two methods.
This paper emphasizes the influence of the credibility on weights, and the maximum
deviation method emphasizes the deviation degree of the evaluation.

Table 11 shows that the ranking and the optimal alternative obtained by both the
operator method and the extended TOPSIS method are the same. This is because
ZPLVs can degenerate to PLTSs under special circumstances(that is, when the credi-
bility is the highest). The results in the table further confirm the theory. ZPLVs in this
paper can not only represent the evaluation and probability in traditional PLTSs, but
also the corresponding credibility. The diversity of information representation is an
advantage over PLTSs.

5.2.3 Comparison with other linguistic representation method

We compare several linguistic representation methods in this section, including
HFLTS, EHFLTS, PLTS, uncertain probabilistic linguistic term set (UPLTS) (Jin et al.
2019), linguistic Z-number, Z linguistic variable and ZPLTS proposed in this paper.
The comparison aspects including the characteristics, the probability information, and
the credibility. The comparison results are shown in Table 12.

As can be seen from Table 12, the ZPLTS can not only include the linguistic evalua-
tion and the probability of preference, but also represent the credibility of information,
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making the decision informationmore complete and the decision result more accurate.
A single PLTS or Z-number will not do the trick.

6 Conclusion

In GDM of PLTSs, only considering the linguistic terms and the probability distri-
bution but ignoring the credibility of the information will lead to the loss of decision
information, thereby affecting the accuracy of the decision results. Therefore, in this
paper, we propose the ZPLTS in combination with the existing linguistic representa-
tion tools. The normalization, calculation, comparison method and distance measure
are studied. Then we put forward a new weight calculation method based on the cred-
ibility, and put forward a MAGDM model based on ZPLTSs in combination with the
correlation operators and the extended TOPSIS method. Finally, a numerical example
and comparisons with other methods are given to prove its effectiveness.

In the future,wewill discuss the newmethod to calculating probabilistic distribution
in ZPLTSs. The current algorithm defaults to the sameweight for all DMs. In addition,
it is of great significance to further study the relevant theories of ZPLTSs and explore
its application in public health emergency decision making.
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