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Abstract
This paper studies comparative static effects in a portfolio selection problem when
the investor has mean-variance preferences. Since the security market is complex,
there exists the situation where security returns are given by experts’ estimates when
they cannot be reflected by historical data. This paper discusses the problem in such a
situation. Based on uncertainty theory, the paper first establishes an uncertain mean-
variance utility model, in which security returns and background asset returns are
uncertain variables and subject to normal uncertainty distributions. Then, the effects of
changes in mean and standard deviation of uncertain background asset on capital allo-
cation are discussed. Furthermore, the influence of initial proportion in background
asset on portfolio investment decisions is analyzed when investors have quadratic
mean-variance utility function. Finally, the economic analysis illustration of invest-
ment strategy is presented.

Keywords Portfolio selection · Mean-variance utility · Background risk · Uncertain
variable · Uncertain programming

1 Introduction

Mean-variance utility framework is an important method for rational portfolio invest-
ment choice under risk. The mean-variance utility decision criterion hypothesizes that
an investor’s optimal choice ismade by ranking alternatives through a preference func-
tion defined over the first and second moments of random payoff. Since the studies
of Tobin (1958) and Chipman (1973), this decision-making framework has received
prominent attention and been widely applied in theoretical and empirical research.
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The mean-variance utility framework is impressive because of its simplicity and ease
of handling.

In recent years, a large number of research results have been presented based on
mean-variance utility framework. For example, Lajeri-Chaherli (2003) solves a port-
folio problem with a risk free asset and a risky asset by using the partial derivatives
of mean-variance utility. However, these research only considers the risks of financial
assets themselves. When investors make portfolio investment in financial assets, they
often face additional sources of risk, such as exogenous and unhedged risks brought
by labor income, health and real estate. These sources of risk are often referred to
as background risks and the sources background assets. Therefore, some research
based on mean-variance utility with background risk is done. For example, Eichner
andWagener (2003) study the influence of standard deviation increase in a mean-zero
background risk on an investor’s willingness to take risk when the investor adopts
mean-variance utility framework. Eichner and Wagener (2009) analyze the compar-
ative static effects in a generic, quasi-linear decision problem with endogenous risk
and background risk in the mean-variance utility model. Beaud and Willinger (2014)
recently show that more than 80% of investors actually reduce the risky investment
when being exposed to background risk. Guo et al. (2018) study the comparative static
effects of dependent background risk on the banking firm’s risk-taking in the mean-
variance utility model. Extensive research indicates that the presence of background
risk has a great impact on the optimal portfolio selection decision.

The papers mentioned above treat the security returns as random variables and
adopt probability theory as the tool. It is usually assumed that investors have suffi-
cient historical data and the future situation of the security returns can be reflected by
the information in the past. However, it cannot always be true. Since security market
is complex, it is found that sometimes historical data cannot predict future security
returns effectively. Investors must rely on experienced and knowledgeable experts
to predict security returns. Therefore, many researchers believe that another method
should be found to solve the problem of portfolio selection. With the introduction of
fuzzy set theory, researchers have tried employing this methodology to manage port-
folio and have produced important achievements. However, it has been found later that
paradoxeswould occur ifwe use fuzzy theory to handle humans’ imprecise estimations
Liu (2012). In order to better quantitatively describe the subjective imprecision, Liu
(2007) proposes an uncertainty theory. With the development of uncertainty theory,
applications of uncertainty theory have been widely studied. In the area of portfo-
lio selection, an uncertain portfolio selection theory is initiated by Huang (2010).
Afterwards, great progress has been made in this field. For example, Huang (2011)
proposes a risk curvemodel for uncertain portfolio selection. Huang (2012) studies the
uncertain mean-variance and mean-semivariance selection models. Later, Qin et al.
(2016) propose uncertain mean-semiabsolute deviation adjusting models for portfolio
adjusting problem. And Li et al. (2019) study the uncertain dynamic project portfolio
selection problem with divisibility. A review on uncertain portfolio selection can be
found in paper Huang (2017). In addition, Yao and Ji (2014) first apply uncertainty
theory to study the properties of an uncertain expected utility function and apply it to
uncertain portfolio solution. However, the literature mentioned above studies uncer-
tain portfolio selection problems which only consider the risk of financial assets and
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do not consider the background risk. In view of this, Huang and Di (2016) study the
uncertain mean-chance portfolio selection model with background risk. Based on the
results of Huang and Di (2016), Zhai and Bai (2018) propose an uncertain mean-risk
curve model with background risk. Yet scholars haven’t studied the portfolio selection
with background risk within the uncertain mean-variance utility framework based on
uncertainty theory. Motivated by this, this paper will discuss some properties of the
uncertain mean-variance utility model with background risk.

For most portfolio activities, it is usually assumed that investors are risk averse. In
this paper, we also assume that investors are risk averse.Wewill conduct a comprehen-
sive analysis of portfolio selection decision responding to the change of background
risk under the mean-variance utility framework. Our contribution is threefold: Firstly,
a new mean-variance utility model with background risk is proposed using the uncer-
tainty theory. Secondly, the effects of changes in mean and standard deviation of
uncertain background asset on capital allocation are discussed. Finally, the influ-
ence of initial proportion in background asset on portfolio investment decisions under
quadratic mean-variance utility function is discussed. These contributions can provide
good advice to investors who are sensitive to changes of background asset and initial
proportions of background asset when making decisions.

This paper proceeds as follows. Section 2 reviews some basic knowledge about
uncertainty theory. Section 3 develops a portfolio model with background risk under
uncertain mean-variance utility. In Sect. 4, we characterize comparative static effects
of changes in mean and standard deviation of uncertain background asset and initial
proportion in background asset on optimal risk taking. In Sect. 5, we conduct an
economic analysis illustration. Finally, we conclude the results in Sect. 6.

2 Preliminaries

This section introduces some fundamental concepts and properties in uncertainty the-
ory which will be used in the paper.

Definition 1 Let L be a σ -algebra over a nonempty set �. Each element � ∈ L is
called an event. A set function M{�} : L → [0, 1] is called an uncertain measure if it
satisfies the following axioms (Liu 2007):

(i) (Normality Axiom) M{�} = 1.
(ii) (Duality Axiom) M{�} + M{�c} = 1.
(iii) (Subadditivity Axiom) For every countable sequence of events {�i },

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i }.

In order to provide the operational law, Liu (2009) defines the product uncertain
measure on the product σ -algebra L, called product axiom.
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(iv) (Product Axiom) Let (�k, Lk, Mk) be uncertainty spaces for k = 1, 2, · · · . The
product uncertain measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k},

where �k are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.

Definition 2 (Liu 2007) An uncertain variable ξ is a function from an uncertainty
space (�, L, M) to the set of real numbers such that for any Borel set of B of real
numbers, the set

{ξ ∈ B} = {γ ∈ �|ξ(γ ) ∈ B}

is an event.

An uncertain variable is characterized by an uncertainty distribution function. The
uncertainty distribution � : � → [0, 1] of an uncertain variable ξ is defined as
�(t) = M{ξ ≤ t}, t ∈ �. If an uncertainty distribution �(t) has inverse function,
we call it the inverse uncertainty distribution of ξ.

An uncertain variable ξ is called normal if it has an uncertainty distribution

�(t) =
(
1 + exp

(
π(e − t)√

3σ

))−1

, t ∈ �.

In this paper, we denote it by N (e, σ ), where e and σ are real numbers and σ > 0.
The operational law is given by Liu (2010) as follows:

Theorem 1 (Liu 2010) Let ξ1, ξ2, · · · , ξn be independent uncertain variables whose
inverse uncertainty distributions exist and are �−1

1 ,�−1
2 , · · · ,�−1

n , respectively. Let
f (t1, t2, · · · , tn) be continuous and strictly increasing with respect to t1, t2, · · · , tn .
Then

ξ = f (ξ1, ξ2, · · · , ξn)

is an uncertain variable with inverse uncertainty distribution

	−1(α) = f (�−1
1 (α),�−1

2 (α), · · · ,�−1
n (α)), 0 < α < 1. (1)

As the average value of an uncertain variable in the sense of uncertain measure,
expected value can represent the size of the uncertain variable.

Definition 3 (Liu 2007) Let ξ be an uncertain variable. Then the expected value of ξ

is defined as

E[ξ ] =
∫ ∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr (2)

provided that at least one of the two integrals is finite.
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Theorem 2 (Liu 2010) Let ξ be an uncertain variable whose inverse uncertainty dis-
tribution �−1 exists. Then

E[ξ ] =
∫ 1

0
�−1(α)dα. (3)

As another important feature for an uncertain variable, variance is defined as follows:

Definition 4 (Liu 2007) Let ξ be an uncertain variable with finite expected value e.
Then the variance of ξ is defined by

V [ξ ] = E[(ξ − e)2]. (4)

Theorem 3 (Yao 2015) Let ξ be an uncertain variable with inverse uncertainty dis-
tribution �−1 and finite expected value e. Then

V [ξ ] =
∫ 1

0
(�−1(α) − e)2dα. (5)

3 The uncertain mean-variance utility model

An investor’s investment preference for stocks is represented by two-parameter utility
function

U : R+ × R → R, U = U (σy, μy), (6)

where σy and μy denote the standard deviation and the expected value of uncertain
final return y, respectively. We assume that the utility function U (σy, μy) is at least
twice continuously differentiable, increasing with μy and decreasing with σy (risk
aversion), and makes strictly convex indifference curves in the (σy, μy)-space. Here
we represent partial derivatives by subscripts, and the following properties are satisfied
for all (σy, μy) ∈ R+ × R :

Uμ(σy, μy) > 0,

Uσ (σy, μy) < 0,

U (σy, μy) is strictly concave in (σy, μy) space.

(7)

We denote by

m(σy, μy) := −Uσ (σy, μy)

Uμ(σy, μy)
(8)

the marginal rate of substitution between σy and μy , which measures the slope of
(σy, μy) indifference curves. As shown by Ormiston and Schlee (2001), the slope
of (σy, μy) indifference curves with respect to μy determines whether absolute risk
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aversion increases or decreases. Meyer (1987) and Lajeri-Chaherli (2003) show that
the marginal rate of substitution is decreasing in mean, i.e. mμ(σy, μy) < 0 if and
only if investor’s preferences reflect decreasing absolute risk aversion (DARA).

In this paper, we consider that an investor’s initial wealth is composed of financial
assets and background asset. The investment proportion of financial assets is w, and
the investment proportion of background asset is 1−w. Let ξ and r f denote the returns
of the risky asset and risk free asset, respectively, z denote return of the background
asset, which is independent of the return of the risky asset. Then the final return y of
the decision maker is given by

y = w
(
ξ (1 − x) + r f x

) + (1 − w) z, (9)

where x and 1− x denote the capital amounts to be invested in the risk free asset and
the risky asset, respectively.

For the given formula (9), when both the return of risky asset ξ and background asset
z follow normal uncertainty distributions, i.e., ξ ∼ N (μξ , σξ ) and z ∼ N (μz, σz),
respectively, according to Theorem 1, the inverse uncertainty distribution function of
the final return y is

w
(
(μξ + σξ

√
3

π
ln

α

1 − α
)(1 − x) + r f x

)
+ (1 − w)(μz + σz

√
3

π
ln

α

1 − α
).

According to Theorem 2, the expected value of final return can be obtained as follows:

μy(x) = E[y] = E

[
w

(
ξ(1 − x) + r f x

)
+ (1 − w)z

]

=
∫ 1

0

(
w

(
(μξ + σξ

√
3

π
ln

α

1 − α
)(1 − x) + r f x

)
+ (1 − w)

× (μz + σz
√
3

π
ln

α

1 − α
)

)
dα

= w
(
μξ (1 − x) + r f x

)
+ (1 − w)μz .

(10)

Similarly, according to Theorem 3, the variance of final return can be obtained as
follows:

V [y] = V

[
w

(
ξ(1 − x) + r f x

)
+ (1 − w)z

]

=
∫ 1

0

(
w

(
(μξ + σξ

√
3

π
ln

α

1 − α
)(1 − x) + r f x

)
+ (1 − w)
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× (μz + σz
√
3

π
ln

α

1 − α
) −

(
w

(
μξ (1 − x) + r f x

)
+ (1 − w)μz

))2

dα

=
(

w
(
σξ (1 − x)

)
+ (1 − w)σz

)2

.

Therefore,

σy(x) = √
V [y]

= w
(
σξ (1 − x)

)
+ (1 − w)σz .

(11)

Thus, if the investor wants to maximize his/her utility consisting of mean and standard
deviation, a portfolio decision model is established as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max U (σy(x), μy(x))

subject to :
σy(x) = w

(
σξ (1 − x)

)
+ (1 − w)σz

μy(x) = w
(
μξ (1 − x) + r f x

)
+ (1 − w)μz .

(12)

The optimal investment proportion x∗ is determined by the first-order condition

φ(x∗) = 0,

where

φ(x) : = ∂μy(x)

∂x
Uμ(σy(x), μy(x)) + ∂σy(x)

∂x
Uσ (σy(x), μy(x))

= w(r f − μξ )Uμ(σy(x), μy(x)) − wσξUσ (σy(x), μy(x)).
(13)

The second-order condition for a maximum is satisfied with

φx (x
∗) = w2(r f − μξ )

2Uμμ(σy(x
∗), μy(x

∗)) − 2w2σξ (r f − μξ )

×Uμσ (σy(x
∗), μy(x

∗)) + w2σ 2
ξ Uσσ (σy(x

∗), μy(x
∗))

< 0.

(14)

Note that the investor in our paper is risk averse, which means he/she is not willing
to hold risky assets without risk premium,μξ −r f . Therefore, we get thatμξ −r f > 0.

4 Comparative statics

Comparative statics is the comparison of two different economic outcomes, before
and after a change in some underlying exogenous parameters. Comparative statics for
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decision problems has long attracted the attention of economists. In this section, we
characterize the comparative static effects of changes in distribution parameters of
background asset and initial proportion in background asset on investment decisions.

4.1 Changes in the uncertain background risk

Proposition 1 When returns of risky asset and background asset are independent and
both follow normal uncertainty distributions, an individual will decrease x of the risk
free asset upon an increase in μz if and only if mμ < 0.

Proof Be aware of the marginal rate of substitution (8), then the first-order condition
(13) can be rewritten as

φ(x) = ∂μy(x)

∂x
Uμ(σy(x), μy(x)) + ∂σy(x)

∂x
Uσ (σy(x), μy(x))

= Uμ(σy(x), μy(x))(
∂μy(x)

∂x
− ∂σy(x)

∂x
m(σy, μy))

= wUμ(σy(x), μy(x))(r f − μξ + σξm(σy, μy)) = 0.

(15)

Implicit differentiation of (15) with respect to μz yields

∂x

∂μz
= −φμz (x)

φx (x)

= −
w

∂Uμ

∂μz

(
r f − μξ + σξm(σy, μy)

)
+ w(1 − w)Uμσξmμ(σy, μy)

φx (x)

= −w(1 − w)Uμσξmμ(σy, μy)

φx (x)
,

(16)

From formulas (7) and (14), we know Uμ > 0, φx (x) < 0. Since σξ > 0, we get ∂x
∂μz

is negative if and only if mμ(σy, μy) < 0 for all (σy, μy). ��
Proposition 2 When returns of risky asset and background asset are independent and
both follow normal uncertainty distributions, an individual will increase x of the risk
free asset upon an increase in σz if and only if mσ > 0.

Proof By the marginal rate of substitution (8), the first-order condition (13) can be
rewritten as the equation (15). Implicit differentiation of (15) with respect to σz yields

∂x

∂σz
= −φσz (x)

φx (x)
= −w(1 − w)Uμσξmσ (σy, μy)

φx (x)
, (17)

which is positive if and only if mσ (σy, μy) > 0 for all (σy, μy). ��
These propositions reveal the investors’ investment decisions to changes in the back-
ground risk, that is, investors will increase the risky asset proportion when the mean
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of the background asset increases if and only if their preference manifests as DARA
(i.e., mμ(σy, μy) < 0) or investors will reduce the risky asset proportion when the
standard deviation of the background asset increases if and only if their preference is
mσ (σy, μy) > 0.

4.2 Changes in parameters and proportion of background asset when the
uncertain mean-variance utility function is quadratic

To illustrate the Propositions 1 and 2 , we give a specific example of the utility function.
We apply the following utility function which is due to Saha (1997):

U (σy, μy) = μθ
y − σ

γ
y . (18)

The monotonicity and concavity properties (7) require θ > 1 and γ > 1. For simplic-
ity, we suppose that the mean-variance utility function is

U (σy, μy) = μ2
y − σ 2

y . (19)

From m(σy, μy) = σy
μy

, we obtain

mμ(σy, μy) = − σy

μ2
y

< 0,

mσ (σy, μy) = 1

μy
> 0,

(20)

because investors will always require that μy is greater than 0 when they make invest-
ment in real life. Then, we derive the following corollary,

Corollary 1 Suppose returns of risky asset and background asset are independent and
both follow normal uncertainty distributions. If the investor’s mean-variance utility
function is μ2

y − σ 2
y , then

(i) the increase in mean of background asset will decrease the investment in risk free
asset, i.e., ∂x

∂μz
< 0;

(ii) the increase in standard deviation of background asset will increase the investment
in risk free asset, i.e., ∂x

∂σz
> 0.

Based on the given utility function, the objective function of final return can be written
as

U (σy, μy) =
(

w
(
μξ (1 − x) + r f x

)
+ (1 − w)μz

)2

−
(

wσξ (1 − x)

+ (1 − w)σz

)2

.

(21)
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Taking the first derivative with respect to x yields

φ(x) = 2w2(r f − μξ )μξ (1 − x) + 2w2(r f − μξ )r f x + 2w(1 − w)

× (r f − μξ )μz + 2w2σ 2
ξ (1 − x) + 2w(1 − w)σξσz

= 2w2
(
(r f − μξ )

2 − σ 2
ξ

)
x + 2w2

(
(r f − μξ )μξ + σ 2

ξ

)
+ 2w(1 − w)

(
(r f − μξ )μz + σξσz

)
.

Taking the second derivative with respect to x yields

φx (x) = 2w2
(
(r f − μξ )

2 − σ 2
ξ

)
.

Letting the first-order condition be zero and solving for x gives

x = −
2w2

(
(r f − μξ )μξ + σ 2

ξ

)
+ 2w(1 − w)

(
(r f − μξ )μz + σξσz

)
2w2

(
(r f − μξ )2 − σ 2

ξ

)

= −
w

(
(r f − μξ )μξ + σ 2

ξ

)
+ (1 − w)

(
(r f − μξ )μz + σξσz

)
w

(
(r f − μξ )2 − σ 2

ξ

) ,

(22)

and the second-order condition is less than zero, we get

(r f − μξ )
2 − σ 2

ξ < 0.

Taking the derivative with respect to μz yields

∂x

∂μz
= − (1 − w)(r f − μξ )

w
(
(r f − μξ )2 − σ 2

ξ

)
= − 1

w

(r f − μξ )

(r f − μξ )2 − σ 2
ξ

+ (r f − μξ )

(r f − μξ )2 − σ 2
ξ

.

(23)

Since 0 < w < 1 and r f −μξ < 0 and (r f −μξ )
2 −σ 2

ξ < 0, we get ∂x
∂μz

< 0. Taking
the derivative with respect to σz yields

∂x

∂σz
= − (1 − w)σξ

w
(
(r f − μξ )2 − σ 2

ξ

)
= − 1

w

σξ

(r f − μξ )2 − σ 2
ξ

+ σξ

(r f − μξ )2 − σ 2
ξ

> 0.

(24)

From the formulas (23) and (24), we can deduce the relationship between ∂x
∂μz

and w,

and the relationship between ∂x
∂σz

and w, respectively.
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Proposition 3 Suppose returns of risky asset and background asset are independent
and both follow normal uncertainty distributions. If the investor’s mean-variance
utility function is μ2

y − σ 2
y , then

(i) the risk free asset proportion of an increase in μz with respect to w is positive,
i.e., ∂x

∂μz
is increasing about w;

(ii) the risk free asset proportion of an increase in σz with respect to w is negative,
i.e., ∂x

∂σz
is decreasing about w.

Proof When the decision maker’s uncertain mean-variance utility function isμ2
y −σ 2

y ,
we can obtain formulas (23) and (24).

(i) In formula (23), let k1 = (r f −μξ )

(r f −μξ )2−σ 2
ξ

, then

∂x

∂μz
= f (w) = −k1

1

w
+ k1. (25)

Since k1 > 0, we get that f (w) is increasing about w. That is, when w1 < w2,

∂x

∂μz
(w1) <

∂x

∂μz
(w2) < 0. (26)

(ii) In formula (24), let k2 = σξ

(r f −μξ )2−σ 2
ξ

, then

∂x

∂σz
= g(w) = −k2

1

w
+ k2. (27)

Since k2 < 0, we get that g(w) is decreasing about w. That is, when w1 < w2,

∂x

∂σz
(w1) >

∂x

∂σz
(w2) > 0. (28)

��

5 Illustration

In this section, we analyze the impact of changes in distribution parameters of
background asset and initial capital proportion in background asset on the optimal
investment decisions when mean-variance utility is quadratic function. For the pur-
pose of economic analysis, we need characteristics of the risky and risk free assets and
background asset. We follow a recent study of Xue et al. (2019), who have addressed
issues related to portfolio selection with background risk. From the data in the paper
(Xue et al. 2019), we select six stocks whose returns are given in Table 1. In order
to consider all the six stocks, we set up an equally weighted portfolio and obtain the
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Table 1 Uncertain returns of six securities

Security ξi Security ξi

1 N (0.0940, 0.1060) 4 N (0.0842, 0.0730)

2 N (0.1638, 0.2280) 5 N (0.2506, 0.2980)

3 N (0.1650, 0.1880) 6 N (0.1904, 0.2240)

Table 2 Optimal portfolio choice

w Risky asset Risk free asset Optimal target value μy σy

0.7 0.2170 0.7830 0.0011 0.0310 0.0452

0.8 0.2087 0.7913 0.0013 0.0333 0.0487

risky asset’s inputs as μξ = 0.16 and σξ = 0.19. For the risk free asset, we suppose
an annual interest rate is 0.03. For the characteristics of the background risk, different
from the assumptions in most previous literatures, the mean μz in this paper is not
equal to 0, which means that the optimal portfolio also depends on the mean of back-
ground asset. According to the experts’ estimations, it can be obtained that background
asset has normal uncertainty distribution, i.e., z ∼ N (0.015, 0.01) by referring to the
method (Liu 2010). In order to determine the optimal portfolio, we suppose w = 0.7
and w = 0.8, respectively, which means that 70 or 80 percent of investors’ wealth is
invested in financial assets. According to formula (22), the optimal solution is obtained
and shown in Table 2 when U (σy, μy) = μ2

y − σ 2
y .

First, we study the effect of change in mean of background asset μz on the invest-
ment decisions. Please be aware that the optimal portfolio solution also depends onw,
the initial proportion in background asset. We change the initial proportion in back-
ground asset from w = 0.7 to w = 0.8, which reflects the investors’ preference to
risky asset. We plot the optimal solutions with respect to different values of μz with
w = 0.7 and w = 0.8, respectively and show them in Fig. 1. In addition, we calculate
the optimal target values of the programming problem with different values of μz and
w, and show them in Fig. 2.

From Fig. 1, we can see that the optimal risk free investment proportion x is a
decreasing function of the mean value μz of the background asset. Moreover, when
the initial proportion in background asset changes, it does not affect the monotonicity
of the investment proportion, but it changes the decreasing speed of the investment
proportion in risk free asset. That is, with the increase of the mean of background
asset, the rate of decline of the optimal risk free investment proportion with large w

value is slower than that with small w value. From Fig. 2, we can get that the optimal
target value increases with the increase of the mean of the background asset.

Next, we study the effect of change in standard deviation of background asset σz
and initial proportion in background asset on the investment decisions. We calculate
the optimal solution of x with different values of σz and w and show them in Fig. 3.
In addition, we calculate the optimal target values with different values of σz and w

and show them in Fig. 4.
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Fig. 1 Impact of mean of uncertain background asset on the optimal solution
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Fig. 2 Impact of mean of uncertain background asset on the optimal target value

From Fig. 3, we observe that the optimal risk free investment proportion x is an
increasing function of the standard deviation of background asset σz . Furthermore,
we can see that the rate of increase of the optimal risk free investment proportion x
with large w value is slower than that with small w value. For example, when the
standard deviation of background asset of an investor increases, he or she will reduce
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Fig. 3 Impact of standard deviation of uncertain background asset on the optimal solution
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Fig. 4 Impact of standard deviation of uncertain background asset on the optimal target value

the investment risk by increasing the proportion of capital in risk free assets. At the
same time, the investor with big initial capital proportion in background asset is slower
to increase the proportion of risk free assets than the investor with small initial capital
proportion in background asset. From Fig. 4, we can get that the optimal target value
decreases with the increase of the standard deviation of the background asset.
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In summary, considering the changeof background asset can reflect investors’ actual
investment status more truly and has a great impact on investors’ investment strategy.
For investors considering background assets such as labor income or health status,
when the investors’ expectation of labor income increases or their health is expected
to be better, they will be more willing to increase the proportion of risky assets. When
there are risk increase of labor income or health, they will reduce the proportion of
risky assets in order to avoid risks. This is consistent with the intuitive behavior ofmost
investors. In addition, the size of the initial proportion of background assets reflects
the importance of background risk to the investors’ decisions in response to one unit
change in the mean or standard deviation of background asset. Compared with having
smaller initial proportion of background asset 1 − w, when the initial proportion of
background asset 1 − w is bigger, investors allocate extra less capital to the risk free
asset when both increasing one unit of mean of the background asset and invest extra
more capital in the risk free asset when both increasing one unit of standard deviation
of the background asset. These investment strategies provide good advice to investors
who are sensitive to changes of background asset and initial proportions of background
asset.

6 Conclusions

In real life, investors’ background risk affects their investment decisions in financial
securities. In addition, due to the complexity or the lack of historical data in the eco-
nomic and social environment, the background asset return and security returns cannot
always be reflected by historical data and should be evaluated by experts sometimes.
This paper explores the investors’ decisions in portfoliomanagement with background
risk under the uncertain mean-variance utility framework in such a situation where
returns of securities and background asset are estimated by experts. In this paper,
we regard security returns and background asset returns as uncertain variables which
are subject to normal uncertainty distributions and consider an investor who wants to
maximize his/her utility function of terminal returns. We obtain the explicit solution
of optimal strategy for quadratic mean-variance utility function. Then we discuss the
effect of changes in distribution parameters of background asset on capital allocation,
and find that the optimal risk free investment proportion x is respectively the decreas-
ing function of the mean μz of background risk and the increasing function of the
standard deviation σz of background risk. In addition, we analyze the influence of
initial proportion in background asset on portfolio investment decisions and get that
the change of optimal risk free investment proportion x to the change of mean of back-
ground asset increases with w value and the change of optimal risk free investment
proportion x to the change of standard deviation of background asset decreases withw

value. These results can provide good advice to investors who are sensitive to changes
of background asset and initial proportions of background asset to make decisions.
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