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Abstract
We prove a measurability result which implies that the measurable events concern-
ing the values of a fuzzy random variable, in two related mathematical approaches
wherein the codomains of the variables are different spaces, are the same (provided
both approaches apply). Further results on the perfectness of probability distributions
of fuzzy random variables are presented.

Keywords Borel measurability · Fuzzy random variable · Perfect distribution ·
Probability distribution

1 Introduction

Fuzzy random variables are a well established mathematical model for the simulta-
neous handling of probabilistic and fuzzy uncertainty. Since fuzziness may appear in
almost all aspects of a decision problem, they are not only a tool for statistical data
analysis but have also been used in decision making. A few examples are Bayesian
decision (Gil and López-Díaz 1996; Rodríguez-Muñiz and López-Díaz 2008), finance
problems (Yoshida 2003;Terán 2006;Yoshida et al. 2006),multiobjective decision (Xu
and Zeng 2014; Yano 2017), multicriteria decision (Inuiguchi et al. 2016), group deci-
sion (Terán and Moreno-Jiménez 2008).

A fuzzy random variable is, intuitively, just a random variable whose values
are fuzzy sets instead of numbers. Those values can be given different interpreta-
tions (Kruse and Meyer 1987; Couso et al. 2014; Gil et al. 2014), most commonly
either as fuzzy perceptions and linguistic descriptions of an underlying precise ran-
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178 M. Alonso de la Fuente, P. Terán

dom variable, or as intrinsically fuzzy data. However, at the mathematical level, fuzzy
random variables are significantly harder to handle than ordinary random variables
and present specific challenges related to the topology, arithmetics, and order of the
fuzzy sets which are allowed as values.

This paper revolves around one such challenge. While random variables take on
values in the real line, there are several spaces of fuzzy sets which can serve as the
codomain of a fuzzy random variable. Traditionally, for statistical purposes it has
been assumed that those fuzzy sets have bounded support (Puri and Ralescu 1986;
Kruse and Meyer 1987), and the metrics d∞ and dp (Diamond and Kloeden 1994
Chapter 7) had been used. However, Krätschmer (2004) and Krätschmer (2006) and
then Trutschnig et al. (2009) and González-Rodríguez et al. (2012) started an elegant
approach restricted to convex fuzzy sets but in which some fuzzy sets with unbounded
support (and bounded α-cuts for α > 0) are allowed. That space is then endowed with
a metric which allows one to embed it as a closed cone into an L p-space (typically
p = 2 since then the final space is aHilbert space)while being topologically equivalent
to dp in the bounded case.

These approaches are not intrinsically conflictive. The fact that dp is not complete
for fuzzy sets with bounded support means that, if one performed a similar embedding
and used known techniques of statistics in Hilbert spaces (if p = 2) to, e.g., find an
estimator, we would risk the situation that this estimator failed to correspond to any
fuzzy set in the original space (this is a nice example that topological properties which
might appear to be far removed from practice have a definite impact on whether a
method will work or not). However, to use this approach one also has to accept some
limitations. First, only convex fuzzy sets can be used. Second, while some fuzzy sets
with unbounded support are allowed as values, others are not, for no good reason other
than mathematical convenience. Moreover, it is not possible to work with the metric
d∞, the strongest in the literature, since it takes infinite values, leading one to settling
for weaker consistency and convergence results.

The lack of a single mathematical approach encompassing their advantages makes
it important to ensure that both approaches canwork in harmony. By this wemean that,
if a fuzzy random variable from one framework lives in the space used by the other,
we should be able to pass on to that framework and use its results without problems.

Let Fc(R) denote the space of all fuzzy numbers with bounded support (see next
section for further details). The question is tomodel fuzzy random variables as random
elements of Fc(R) or of a larger space when the fuzzy values we are working with
are actually elements of Fc(R) (which is the case in nearly all applications). These
will be called ‘the smaller framework’ and ‘the larger framework’ in the sequel. The
ideal situation would be for this mathematical choice to have no working consequence
whatsoever.

But an essential question is whether Fc(R) is a measurable set in the larger space
(i.e., an element of its σ -algebra). If that failed, unexpected problems would arise. For
example, if X is a fuzzy random variable with distribution PX and values in Fc(R),
then PX (Fc(R)) = 1 would be a true formula in the smaller framework whereas the
quantity PX (Fc(R)) would be undefined in the larger framework.

More generally, the distributions of a fuzzy random variable in both frameworks
(the probability measures induced in the two spaces of possible values) would use σ -
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Harmonizing two approaches to fuzzy random variables 179

algebras with the one for the smaller framework not being contained in the one for the
larger framework: the sets of values of which we can speak and calculate probabilities
would not be mutually consistent. Another consequence: if X and Y are independent
in the smaller framework, by definition

P(X ,Y)(A × B) = PX (A) · PY (B)

for certain sets of values A, B whereas those probabilities might be undefined in the
larger framework as soon as A, B are measurable in Fc(R) but not in the larger space
(due to the non-measurability of Fc(R) itself).

The aim of this paper is to prove that, fortunately, these problems actually do
not happen as indeed Fc(R) is measurable in the L p-type spaces used in the larger
framework. As a subproduct, we also show that all distributions of fuzzy random
variables are perfect, a property introduced by Gnedenko and Kolmogorov which
avoids some non-intuitive features of arbitrary probability measures.

The structure of the paper is as follows. Next section presents the preliminary
notions and results, Sect. 3 proves the measurability result, and Sect. 4 establishes the
results about distributions of fuzzy random variables. The paper concludes with some
final remarks in Sect. 5.

2 Preliminaries

2.1 Fuzzy sets

Recall a fuzzy subset of R is a function ˜U : R → [0, 1]. Its α-cuts are the sets

˜Uα = {x ∈ R | ˜U (x) ≥ α}, α ∈ (0, 1],

with the notation ˜U0 representing the closure of its support.
The set Fc(R) is formed by all fuzzy subsets of R such that ˜Uα is a non-empty

compact interval for all α ∈ [0, 1]. The elements of Fc(R) are characterized by the
properties of normalization, (fuzzy) convexity and upper semicontinuity.

The metric d∞ in Fc(R) is defined by

d∞(˜U , ˜V ) = sup
α∈(0,1]

dH (˜Uα, ˜Vα),

where dH is theHausdorff metric between non-empty compact sets, which in the case
of intervals can be written as

dH (K , L) = max{|min K − min L|, |max K − max L|}.

The norm is then the distance to the zero set,

‖K‖ = dH (K , {0}).
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180 M. Alonso de la Fuente, P. Terán

For each p ∈ [1,∞), the metric dp in Fc(R) is defined by

dp(˜U , ˜V ) =
(∫ 1

0
dH (˜Uα, ˜Vα)pdα

)1/p

.

We define now a metric space ̂Fc,p(R) containing (Fc(R), dp). Set

̂Fc,p(R) = {

˜U : R −→ [0, 1] : ∀α ∈ (0, 1] ˜Uα ∈ Kc(R), ‖˜U‖p < ∞}

,

where

‖˜U‖p =
(∫ 1

0
‖˜Uα‖pdα

)1/p

.

In ̂Fc,p(R) the definition of the dp-metric still makes sense and, in a natural way, we
still use the same notation for it.

2.2 Metric spaces

A Polish space is a topological space whose topology is generated by a complete
separable metric. The Borel σ -algebra BE of a metric space E is the smallest σ -
algebra which contains the open sets. In particular, the closed sets and the Gδ-sets
(those which can be written as the intersection of countably many open sets) are in
BE.

In the case of ̂Fc,p(R), for simplicity the Borel σ -algebra will be denoted by Bdp .
The space Fc(R) is the one used in the ‘smaller framework’, while some ̂Fc,p(R)

(typically p = 1, 2) is used in the ‘larger framework’. The reader may note, by
checking the original sources, that the latter uses similar metrics but not identical to
dp. It is known though that those metrics are equivalent (Krätschmer 2004; Trutschnig
et al. 2009), whence they generate the same Borel σ -algebra as dp. Since our proofs
involve working with dp, we will not discuss those metrics further here.

The restriction of a function f : E → R to a subset A ⊆ Ewill be denoted by f |A.

2.3 Fuzzy random variables

The notation for a probability space will be (�,A, P), where � is the sample space,
A the σ -algebra of events, and P the probability measure.

AmappingX : � → Fc(R) is called a fuzzy randomvariable if eachα-setmapping
Xα : ω ∈ � 	→ (X (ω))α is a random compact interval, equivalently if both minXα

and maxXα are random variables.
A mapping X : � → ̂Fc,p(R) is called a fuzzy random variable if it is measurable

with respect to the σ -algebras A and Bdp .
That leaves us with two definitions of the same concept, one from each framework.

But, as shown by Krätschmer, they are equivalent when both apply.
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Harmonizing two approaches to fuzzy random variables 181

It is important, however, to underline that the codomain of X indicates whether X
is being thought of as a fuzzy random variable in one framework or the other.

3 Measurability ofF c(R)

In this section, we establish the measurability result which is the basis for the subse-
quent results in the paper. Our starting point is a continuous extension theorem from
Srivastava (1998, Proposition 2.2.3, p. 54).

Lemma 3.1 Let E be a metric space and F a complete metric space. Let A ⊆ E. If
f : A −→ F is continuous, then it has a continuous extension f̄ : B −→ F to a
Gδ-set B which contains A.

That lemma allows us to prove the following support result which has independent
interest.

Proposition 3.2 Let E be a metric space endowed with its Borel σ -algebra and f :
E −→ R. If there exists an increasing sequence {An}n of (possibly non-measurable)
subsets which covers E, and if f |An is continuous for each n ∈ N, then f is a random
variable.

Proof Set hn = f |An . For each n ∈ N, let Bn be the Gδ-set provided by Lemma 3.1
such that An ⊆ Bn , Bn ∈ BE, and h̄n : Bn −→ R is a continuous extension of hn
from An to Bn . Set

gn(x) =
{

h̄n(x) if x ∈ Bn,

0 if x /∈ Bn .

Let us show each gn is measurable, namely g−1
n ((−∞, a)) ∈ BE for each a ∈ R.

Assume for now a < 0. Then

g−1
n ((−∞, a)) = (Bn ∩ g−1

n ((−∞, a))) ∪ (Bc
n ∩ g−1

n ((−∞, a)))

= h̄−1
n ((−∞, a)) ∪ ∅ = h̄−1

n ((−∞, a)) ∈ BE

Else, if a ≥ 0,

g−1
n ((−∞, a)) = (Bn ∩ g−1

n ((−∞, a))) ∪ (Bc
n ∩ g−1

n ((−∞, a)))

= h̄−1
n ((−∞, a)) ∪ (Bc

n ∩ g−1
n ({0})) = h̄−1

n ((−∞, a)) ∪ Bc
n ∈ BE

For each x ∈ E, there exists n ∈ N such that x ∈ An ⊆ E. Therefore, gm(x) = f (x)
for all m ≥ n, whence f is a random variable because it is the pointwise limit of the
measurable functions gn . �

The following left-continuity properties are well known.

Lemma 3.3 Let ˜U , ˜V ∈ Fc(R) and α ∈ (0, 1]. If αn ↗ α, then
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182 M. Alonso de la Fuente, P. Terán

1. dH (˜Uαn ,
˜Vαn ) → dH (˜Uα, ˜Vα).

2. ‖˜Uαn‖ → ‖˜Uα‖.
We will also use the fact that the dp-metrics are increasing in p.

Lemma 3.4 Let ˜U , ˜V ∈ Fc(R). If 1 ≤ p ≤ q < ∞, then dp(˜U , ˜V ) ≤ dq(˜U , ˜V ).

Proof Define the function

f : (0, 1] → R

α 	→ dH (˜Uα, ˜Vα)

By Lemma 3.3, f is left-continuous and thus measurable. Since

dp(˜U , ˜V ) =
(∫

[0,1]
dH (˜Uα, ˜Vα)pdα

)1/p

=
(∫

[0,1]
f pdα

)1/p

= ‖ f ‖p,

applying Minkowski’s inequality we have ‖ f ‖p ≤ ‖ f ‖q , that is, dp(˜U , ˜V ) ≤
dq(˜U , ˜V ). �

The main properties of the metric spaces (̂Fc,p(R), dp) were established by
Krätschmer (2002, Corollary 3.3).

Lemma 3.5 Let p ∈ [1,∞). Then (̂Fc,p(R), dp) is a complete, separable metric
space and a completion of (Fc(R), dp) (namely,Fc(R) is dense in the complete space
̂Fc,p(R)).

The following real functions play an important role in the proof of our main result.
Let φα and φα,k be defined as follows.

• For each α ∈ (0, 1],

φα : ̂Fc,p(R) → R

˜U 	→ ‖˜Uα‖

• For each k > 1
α
,

φα,k : ̂Fc,p(R) → R

˜U 	→
(

k ·
∫

[α− 1
k ,α]

‖˜Uβ‖pdβ

)1/p

In the sequel, when the values of α and k are fixed by the context, we will denote
I = [α − 1

k , α].
We will now prove the measurability of the φα,k .

Theorem 3.6 The mapping φα,k is a random variable for each α ∈ (0, 1] and k > 1
α
.
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Harmonizing two approaches to fuzzy random variables 183

Proof Fix α ∈ (0, 1], and k > 1
α
. Set

An =
{

˜U ∈ ̂Fc,p(R) : ‖˜Uα− 1
k
‖ ≤ n

}

.

Sinceα− 1
k > 0, the set ˜Uα− 1

k
is compact for all ˜U ∈ ̂Fc,p(R) and then ‖˜Uα− 1

k
‖ < ∞.

Therefore, {An}n is an increasing sequence of sets with

̂Fc,p(R) =
⋃

n∈N
An .

By Proposition 3.2, to complete the proof it is enough to show that the restrictions
φα,k |An are continuous for all n ∈ N. We will indeed prove that its power φ

p
α,k is

Lipschitzian in An , whence, by taking the pth root, the continuity of φα,k |An follows.
For any fixed n ∈ N, let ˜U , ˜V ∈ An . Then

‖φ p
α,k(

˜U ) − φ
p
α,k(

˜V )‖ =
∣

∣

∣

∣

k ·
∫

I
‖˜Uβ‖pdβ − k ·

∫

I
‖˜Vβ‖pdβ

∣

∣

∣

∣

≤ k ·
∫

I

∣

∣‖˜Uβ‖p − ‖˜Vβ‖p
∣

∣ dβ. (1)

Since β ∈ I , we have ˜Uβ ⊆ ˜Uα− 1
k
, therefore

0 ≤ ‖˜Uβ‖ ≤ ‖˜Uα− 1
k
‖ ≤ n.

Analogously, ‖˜Vβ‖ ∈ [0, n] as well. Denote by f p the function f p : x 	→ x p; since it
is continuously derivable, it is Lipschitzian on [0, n] with the Lipschitz constant

sup
x∈[0,n]

f ′
p(x) = sup

x∈[0,n]
px p−1 = pn p−1

because p ≥ 1.
Using the triangle inequality for dH ,

∣

∣‖˜Uβ‖p − ‖˜Vβ‖p
∣

∣ ≤ pn p−1
∣

∣‖˜Uβ‖ − ‖˜Vβ‖∣∣
= pn p−1|dH (˜Uβ, {0}) − dH (˜Vβ, {0})| ≤ pn p−1dH (˜Uβ, ˜Vβ)

Plugging that into (1),

‖φ p
α,k(

˜U ) − φ
p
α,k(

˜V )‖ ≤ kpn p−1
∫

I
dH (˜Uβ, ˜Vβ)dβ

≤ kpnn−1
∫

(0,1]
dH (˜Uβ, ˜Vβ)dβ = kpn p−1d1(˜U , ˜V ).
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184 M. Alonso de la Fuente, P. Terán

By Lemma 3.4 we know d1 ≤ dp, whence

|φ p
α,k(

˜U ) − φ
p
α,k(

˜V )| ≤ kpn p−1dp(˜U , ˜V ).

Indeed φ
p
α,k is a Lipschitz function on An (with constant kpn p−1), and the proof is

complete. �
We will show now that φα is a random variable.

Proposition 3.7 Let p ∈ [1,∞). For each ˜U ∈ ̂Fc,p(R) and α ∈ (0, 1],

φα(˜U ) = ‖˜Uα‖ = lim
k→∞ φα,k(˜U ).

Proof Let ˜U ∈ ̂Fc,p(R). Since

∫

I
dβ = 	(I ) = 1

k

we have

‖˜Uα‖p = ‖˜Uα‖p · k ·
∫

I
dβ = k ·

∫

I
‖˜Uα‖pdβ.

Then

∣

∣

∣φ
p
α,k(

˜U ) − ‖˜Uα‖p
∣

∣

∣ =
∣

∣

∣

∣

k ·
∫

I
‖˜Uβ‖pdβ − k ·

∫

I
‖˜Uα‖pdβ

∣

∣

∣

∣

=
∣

∣

∣

∣

k ·
∫

I
(‖˜Uβ‖p − ‖˜Uα‖p)dβ

∣

∣

∣

∣

≤ k ·
∫

I

∣

∣‖˜Uβ‖p − ‖˜Uα‖p
∣

∣ dβ.

|‖˜Uβ‖p − ‖˜Uα‖p| = ‖˜Uβ‖p − ‖˜Uα‖p ≤ ‖˜Uα− 1
k
‖p − ‖˜Uα‖p

for all β ∈ I = [α − 1
k , α]. Therefore

∣

∣

∣φ
p
α,k(

˜U ) − ‖˜Uα‖p
∣

∣

∣ ≤ k ·
∫

I
(‖˜Uα− 1

k
‖p − ‖˜Uα‖p)dβ = k · 1

k
· (‖˜Uα− 1

k
‖p − ‖˜Uα‖p)

By Lemma 3.3, ‖˜Uα− 1
k
‖ −→ ‖˜Uα‖, whence

∣

∣

∣φ
p
α,k(

˜U ) − ‖˜Uα‖p
∣

∣

∣ −→ 0

and then

φ
p
α,k(

˜U ) → ‖˜Uα‖.

�
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Corollary 3.8 Let α ∈ (0, 1]. The mapping φα : (̂Fc,p(R),Bdp ) −→ R is a random
variable.

Proof It is so because it is the pointwise limit of the random variables φα,k . �

Now we will use the measurability of the φα to achieve our main result.

Theorem 3.9 For each p ∈ [1,∞), the subspace Fc(R) is a Borel measurable set in
̂Fc,p(R).

Proof First let us show

‖˜U0‖ = sup
n

‖˜U1/n‖.

Recall

‖˜Uα‖ = max{| inf ˜Uα|, | sup ˜Uα|}.

Since ˜U0 is the closure of
⋃∞

n=1
˜U1/n , the quantity | inf ˜U1/n| decreases to | inf ˜U0|

as well as | sup ˜U1/n| increases to | sup ˜U0|. Thus ‖˜U1/n‖ −→ ‖˜U0‖ and, being a
monotone sequence, ‖˜U0‖ = supn ‖˜U1/n‖.

Now we will show
Fc(R) =

⋃

n∈N

⋂

m∈N
φ−1
1/n(−∞,m]. (2)

(⊆) Let ˜U ∈ Fc(R), ‖˜U0‖ < ∞. Let m ∈ N be such that m ≥ ‖˜U0‖. Then

‖˜U0‖ = sup
n

‖˜U1/n‖ �⇒ ‖˜U1/n‖ ≤ m ∀n ∈ N �⇒ φ1/n(˜U ) ≤ m ∀n ∈ N

�⇒ ˜U ∈ φ−1
1/n((−∞,m]) ∀n ∈ N �⇒ ˜U ∈

⋂

n∈N
φ−1
1/n((−∞,m]).

(⊇) Let ˜U ∈ ⋃

n∈N
⋂

m∈N φ−1
1/n(−∞,m]. We know ˜U ∈ ̂Fc,p(R), there exists m ∈ N

such that φ1/n(˜U ) ≤ m for all n ∈ N, yielding ‖˜U1/n‖ ≤ m for all n ∈ N. Then

sup
n

‖˜U1/n‖ ≤ m ⇒ ‖˜U0‖ ≤ m ⇒ ‖˜U0‖ < ∞ ⇒ ˜U ∈ Fc(R).

By Corollary 3.8, φα is a random variable whence, for each n,m ∈ N,

φ−1
1/n((−∞,m]) ∈ Bdp .

By (2) and the properties of a σ -algebra, Fc(R) ∈ Bdp and the proof is complete. �
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186 M. Alonso de la Fuente, P. Terán

4 Distributions of fuzzy random variables with values inFc(R) and
̂Fc,p(R)

In this section we use the measurability result Theorem 3.9 to study the distributions
of fuzzy random variables.

The following support result is from Parthasarathy (1967, Theorem 1.9).

Lemma 4.1 Let E be a metric space and let A ⊆ E. If A is a Borel set, then

BA = {B ∈ BE | B ⊆ A}.

Recall the definition of a fuzzy random variable X : � → Fc(R) as a mapping
such that each Xα is measurable. This is the same as to require X to be measurable
with respect to the σ -algebras A and σL , the smallest σ -algebra which makes the
mappings Lα : ˜U ∈ Fc(R) 	→ ˜Uα measurable.

Accordingly, the distribution of a fuzzy random variable X in the ‘smaller frame-
work’ is a probability measure on the σ -algebra σL of subsets of Fc(R) whereas its
distribution in the ‘larger framework’ is a probability measure on σdp , a family of
subsets of ̂Fc,p(R).

Theorem 4.2 The σ -algebras associated to the distributions of Fc(R)-valued and
̂Fc,p(R)-valued fuzzy random variables satisfy the following.

(a) If A ∈ σL then A ∈ σdp .
(b) If A ∈ σdp and A ⊂ Fc(R), then A ∈ σL .

Proof By part (ii)⇔(iv) in Krätschmer (2001, Theorem 6.6), σL is the Borel σ -algebra
of Fc(R) endowed with the dp metric. By Lemma 4.1, it is formed by the elements of
Bdp which are contained in Fc(R). That proves part (a) as well as part (b). �

Theorem 4.2 means that, whenever X is a fuzzy random variable with values in
Fc(R), it can be handled in both frameworks and the events A ⊂ Fc(R) of possible
values for which the expression PX (A) makes sense are exactly the same.

In the remainder of this section, we show that all distributions of fuzzy random
variables, with values in either Fc(R) or ̂Fc,p(R), are perfect.

Kolmogorov’s approach to probability, now standard, is based on measure theory
and thus the sample space is allowed to be an arbitrary set. Former approaches, like e.g.
Paul Lévy’s, constructed probability distributions as limits of discrete (finite) situations
and thus would not allow for arbitrary sample spaces (one may remark that still today
explicit constructions from finite situations are favoured by some, e.g. Jaynes 2003).

However, Kolmogorov’s generality gave rise in the 1940s to a number of striking or
pathological examples. One such situation is the following, observed by Doob (1948)
and Jessen (1948).

Proposition 4.3 (Doob–Jessen) There exists a probability space (�,A, P), indepen-
dent random variables ξ, η : � −→ R and sets A, B ⊆ R such that
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Harmonizing two approaches to fuzzy random variables 187

(a) {ξ ∈ A} ∈ A, {η ∈ B} ∈ A.

(b) P(ξ ∈ A, η ∈ B) �= P(ξ ∈ A) · P(η ∈ B).

At first sight this seems self-contradictory; the explanation is that such A, B are
not Borel sets whereas distributions of random variables are defined in the σ -algebra
of Borel sets. Thus ξ, η can satisfy the formal definition of independence while they
are intuitively not independent since

P(ξ ∈ A | η ∈ B) �= P(ξ ∈ A)

for certain sets A, B.
To overcome this and other anti-intuitive situations (see, e.g., Blackwell 1956),

the notions of a perfect probability measure and a perfect measurable space were
introduced by Gnedenko and Kolmogorov (1954). A probability measure P in a mea-
surable space (�,A) is called perfect if, for every A ⊆ R and every random variable
ξ : � −→ R such that {ξ ∈ A} ∈ A, there exist Borel sets B1, B2 ⊆ R such that

• B1 ⊆ A ⊆ B2.
• P(ξ ∈ B2\B1) = 0.

Thus a perfect probability measure is a probabilitymeasure which leaves no room for a
situation like Proposition 4.3 to happen since all the information about the values of ξ

in the experiment is contained in the Borel sets: if A is non-Borel then, for appropriate
Borel sets B1 ⊆ A ⊆ B2, we have

P(ξ ∈ A) = P(ξ ∈ B1) = P(ξ ∈ B2).

In its turn, a measurable space is called perfect if all probability measures which
can be defined on it are perfect.

Let us show that all distributions of fuzzy random variables with values in Fc(R)

or ̂Fc,p(R) are perfect.

Lemma 4.4 Every Polish space, endowed with its Borel σ -algebra, is perfect.

Proof This follows from Ramachandran (2002, Facts C1 and P2, pp. 770–771).
Namely, every probabilitymeasure in a Polish space is compact in the sense ofmeasure
theory, and every compact probability measure is perfect. �

It is immediate that ̂Fc,p(R) is a perfect space, since it is Polish because the metric
dp is separable and complete.

Corollary 4.5 Let p ∈ [1,∞). Let X : � −→ ̂Fc,p(R) be a fuzzy random variable.
Then its distribution PX is perfect.

To show that Fc(R) is perfect too we need another known result (Fremlin 2002,
Exercise 342X.(n).(i), p. 181).

Lemma 4.6 Every measurable subspace of a perfect measurable space is perfect.

Therefore distributions in Fc(R) are perfect.
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Proposition 4.7 Let X : � −→ Fc(R) be a fuzzy random variable. Then its distribu-
tion PX is perfect.

Proof By Theorem 3.9, Fc(R) is a measurable subspace of the perfect measurable
space ̂Fc,p(R). �

5 Concluding remarks

The informal terms ‘smaller framework’ and ‘larger framework’ only make sense in
the context of variables with convex values, since the latter stops to apply in the case
of non-convex values.

We have dealt with fuzzy random variables with convex values in Fc(R). It should
be emphasized that a similar concern with the relationship between Fc(R) and its
superspace F(R) formed by withdrawing the requirement of convexity is not neces-
sary, as it is not hard to show that Fc(R) is measurable in F(R).

Indeed, the space of all compact convex subsets is closed in the space of all compact
subsets (e.g. Li et al. 2002, Theorem 1.1.2), whence each set

{˜U ∈ F(R) | ˜Uα is convex}

is measurable. Writing Fc(R) as the countable intersection

Fc(R) =
⋂

α∈(0,1]∩Q
{˜U ∈ F(R) | ˜Uα is convex},

we see that it is indeed measurable.
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