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Abstract
Fuzzy regression models are widely used to investigate the relationship between
explanatory and response variables for many decision-making applications in fuzzy
environments. To includemore fuzzy information in observations, this study uses intu-
itionistic fuzzy numbers (IFNs) to characterize the explanatory and response variables
in formulating intuitionistic fuzzy regression (IFR) models. Different from traditional
solution methods, such as the least-squares method, in this study, mathematical pro-
gramming problems are built up based on the criterion of least absolute deviations to
establish IFRmodels with intuitionistic fuzzy parameters. The proposed approach has
the advantages that the model formulation is not limited to the use of symmetric trian-
gular IFNs and the signs of the parameters are determined simultaneously in the model
formulation process. The prediction performance of the obtained models is evaluated
in terms of similarity and distance measures. Comparison results of the performance
measures indicate that the proposed models outperform an existing approach.

Keywords Fuzzy regression model · Intuitionistic fuzzy number · Mathematical
programming · Distance criterion

1 Introduction

Regression analysis is a widely used approach for characterizing the relationship
between response and explanatory variables. Due to the characteristics of practi-
cal observations, shortage of information, or decision-makers’ subjective judgment,
observations are usually expressed as linguistic terms characterized by member-
ship functions based on fuzzy sets (Zadeh 1965). For fuzzy observations, Tanaka
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et al. (1982) proposed mathematical programming for formulating a fuzzy regression
model using numerical explanatory variables and fuzzy responses. A number of fuzzy
approaches have been proposed to establish fuzzy regression models with crisp/fuzzy
parameters using various types of explanatory and response variables (Celmins 1987;
Chang and Lee 1994; D’Urso and Santoro 2006; Chen and Hsueh 2009; Kelkinnama
and Taheri 2012; Chen et al. 2017).

Based on the concept of fuzzy sets, Atanassov (1986) proposed intuitionistic fuzzy
sets (IFSs), which include both a membership degree and a non-membership degree
to express positive and negative information, respectively. IFSs, which contain more
information than do fuzzy sets, have been widely studied and applied in various fields
(Atannasov 1999). For solving time series problems, IFSs have been applied to neuron
network techniques, such as support vector regression (Lin et al. 2016; Hung and Lin
2013), intuitionistic fuzzy inference (Eyoh et al. 2018; Hájek and Olej 2012), and
semi-parametric partially logistic regression (Hesamian and Akbari 2017); however,
overfitting may occur and the influence power of explanatory variables cannot be
known. A few studies have proposed approaches for formulating intuitionistic fuzzy
regression (IFR) models (Parvathi et al. 2013; Arefi and Taheri 2015). Parvathi et al.
(2013) applied a linear programming problem to determine the symmetric triangular
intuitionistic fuzzy number (TIFN) coefficients of an IFR model. In their study, a key
task was to determine the upper and lower bounds of observed crisp data using an IFR
model in which the intuitionistic fuzziness is minimized by minimizing the support of
the determined coefficients. Based on the concept proposed by Tanaka et al. (1982),
the approach presented by Parvathi et al. (2013) produces the crisp parameters of
explanatory variables for an objective function of the linear programming problem.
Arefi and Taheri (2015) proposed an IFR model based on the least-squares method in
which the response and explanatory variables are symmetric TIFNs. In their approach,
to simplify computation, a multiplication operation of two symmetric TIFNs is used to
approximately produce a symmetric TIFN. This operation is used to obtain a general
solution formulation to determine symmetric TIFN parameters. In addition, the formu-
lation was derived based on the premise that explanatory variables and the parameters
to be determined are all positive; however, a negative parameter was produced in their
example.

The present study proposes an approach for formulating IFRmodels. Acknowledg-
ing the developments of fuzzy regressionmodels, some of their advantages are adopted
in this study, since IFSs are the extended version of fuzzy sets. For example, as verified
in many studies (Kelkinnama and Taheri 2012) fuzzy regression approaches that adopt
the least absolute deviation of the distance between the observed and predicted datasets
can produce a more robust estimator than that of those based on least-squares devia-
tion (Stahel and Weisberg 2012). In addition, the signs of the determined parameters
can greatly affect the performance of the established fuzzy models based on the fuzzy
arithmetic operations. However, some approaches presume that all parameters in the
model are positive, although negative parameters can be produced (Chen and Hsueh
2009; Arefi and Taheri 2015), which may affect the interpretation of the explana-
tory variables and result in poor model performance. Particularly, when least-squares
approaches are used for fuzzy regression in the formulation process, the signs of the
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parameters should be predetermined for deriving the solution equations; however, this
is impractical for fuzzy regression analyses with multiple explanatory variables.

With the above considerations, the present study proposes an approach for formu-
lating IFR models. Mathematical programming problems with an objective function
for minimizing the absolute deviation of distance are built up based on the definitions
of intuitionistic fuzzy numbers (IFNs). The signs of the parameters in the IFR model
can be determined for the proposed mathematical programming problem to reflect
the corresponding IFN operations. In the following section, some basic definitions of
IFSs/IFNs and their properties, such as arithmetic operations and a distance measure,
are described. In Sect. 3, a general IFR model is formulated, with the signs of the
parameters determined in the formulation process. An example is used to demon-
strate the proposed approach and for comparison with an existing approach in Sect. 4.
Finally, the conclusions are provided in Sect. 5.

2 Background

This section introduces the basic definitions and properties of IFSs (Atanassov 1986),
which are a generalization of those for fuzzy sets. IFSs include membership and non-
membership degrees.

Definition 1 (Guha and Chakraborty 2010) Let X denote a universe of discourse. An
IFS Ã in X is given by:

Ã � {(x, μA(x), vA(x))|x ∈ R} (1)

whereμA(x), vA(x) : X → [0, 1] are functions that satisfy 0 ≤ μA(x)+vA(x) ≤ 1 for
all x ∈ X . As shown in Fig. 1, the values of μA(x) and vA(x) represent membership
and non-membership degrees, respectively; then, the hesitancy degree can be defined
as πA(x) � 1 − μA(x) − vA(x).

Definition 2 (Guha and Chakraborty 2010) An IFN is an IFS characterized by:
(1) An IFN is an intuitionistic fuzzy subset defined on the real line.
(2) A unique value m ∈ X exists, and μA(m) � 1 and vA(m) � 0 are met where m

is called the mean value of Ã.

Fig. 1 Intuitionistic fuzzy set
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Fig. 2 Triangular intuitionistic
fuzzy set

(3) The convexity of the membership function μA(x) is defined as:

μA(λx1 + (1 − λ)x2) ≥ min(μA(x1), μA(x2)), where x1, x2 ∈ R and λ ∈ [0, 1]
(2)

(4) The concavity of the non-membership function vA(x) is defined as:

vA(λx1 + (1 − λx2)) ≤ max(vA(x1), vA(x2)), where x1, x2 ∈ R and λ ∈ [0, 1]
(3)

Definition 3 (Mahapatra and Roy 2009) A TIFN Ã � (aV L , aM L , aC , aMU , aV U ) is
an IFS in R with the following membership function, μA(x), and non-membership
function, vA(x), respectively:

μA(x) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−aM L

aC −aM L , aM L ≤ x ≤ aC

aMU −x
aMU −aC , aC ≤ x ≤ aMU

0, otherwise

and vA(x) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − x−aV L

aC −aV L , aV L ≤ x ≤ aC

1 − aV U −x
aV U −aC , aC ≤ x ≤ aV U

1, otherwise

(4)

For the TIFN shown in Fig. 2, aC is called the central value; aM L and aMU are the
lower and upper bounds of membership, respectively; aV L and aV U are the lower and
upper bounds of non-membership, respectively.

Definition 4 (Chakraborty et al. 2014) A TIFN Ã � (aV L , aM L , aC , aMU , aV U ) is
called positive, i.e., Ã > 0, if aV L > 0; it is called negative, i.e., Ã < 0, if aV U < 0.
In addition, Ã ≥ 0 implies aV L ≥ 0.

Definition 5 (Guha and Chakraborty 2010) The α-cuts of an IFN Ã are defined as:

Ãα � {〈x, μ(x), v(x)〉|μ(x) ≥ α and v(x) ≤ 1 − α, α ∈ [0, 1]} (5)

The inequality vA(x) ≤ 1 − α is equivalent to 1 − vA(x) ≥ α and thus Ãα

can be expressed as the crisp sets Ãμ(α) � {x : μA(x) ≥ α} and Ã1−v(α) �
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Fig. 3 α-cuts of a TIFN

{x : 1 − vA(x) ≥ α}. Alternatively, Ãα can be represented by the following pair of
intervals:

Ãα �
{
[ ÃL

μ(α), ÃR
μ(α)], [ Ã

L
1−v(α), ÃR

1−v(α)]
}

(6)

Figure 3 shows that the two crisp sets {x : vA(x) ≤ 1 − α} and Ã1−v(α) �
{x : 1 − vA(x) ≥ α} have the same intervals. For simplicity and compatibility with
a previous study (Arefi and Taheri 2015), the notation of Ã1−v(α) is adopted hereafter.

Based on this definition, the α-cuts of a TIFN Ã can be formulated in the following
general form:

Ãα �
{[

aM L + α(aC − aM L ), aMU − α(aMU − aC )
]
,

[
aV L + α(aC − aV L ), aV U − α(aV U − aC )

]}
(7)

The two extreme cases are Ãα�0 � {[aM L , aMU ], [aV L , aV U ]} and Ãα�1 �
{[aC ], [aC ]}.

Definition 6 (Mahapatra and Roy 2009) Let Ã � (aV L , aM L , aC , aMU , aV U ) and
B̃ � (bV L ,bM L ,bC ,bMU ,bV U ) be two TIFNs. Based on the extension principle, the
sum of two TIFNs can be formulated as:

Ã ⊕ B̃ � (aV L + bV L , aM L + bM L , aC + bC , aMU + bMU , aV U + bV U ) (8)

The multiplication of a TIFN and a constant k can be expressed as:

k Ã � (kaV L , kaM L , kaC , kaMU , kaV U ), if k ≥ 0 (9)

k Ã � (kaV U , kaMU , kaC , kaM L , kaV L ), if k < 0 (10)
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The multiplication of two TIFNs can be approximately determined using the fol-
lowing equations based on the signs of two TIFNs:

Ã ⊗ B̃ ∼� (aV LbV L , aM L bM L , aC bC , aMU bMU , aV U bV U ), if Ã ≥ 0 and B̃ ≥ 0
(11)

Ã ⊗ B̃ ∼� (aV U bV L , aMU bM L , aC bC , aM L bMU , aV LbV U ), if Ã ≥ 0 and B̃ ≤ 0
(12)

Ã ⊗ B̃ ∼� (aV U bV U , aMU bMU , aC bC , aM L bM L , aV LbV L ), if Ã ≤ 0 and B̃ ≤ 0
(13)

Property 1 Define a zero TIFN as 0̃ � (0, 0, 0, 0, 0). Based on the definition of the
arithmetic operators of TIFNs, the multiplication of any two TIFNs with different
signs, i.e., Ã≥ 0 and B̃≤ 0, will result in zero if and only if Ã or B̃ is zero.

Proof The case of and B̃ indicates that 0 ≤ aV L ≤ aC ≤aMU ≤aV U and bV L≤
bM L ≤bC ≤bMU ≤bV U ≤ 0 based on the above definition. In addition, the multi-
plication of Ã ⊗ B̃ � (aV U bV L ,aMU bM L ,aC bC ,aM L bMU ,aV LbV U )� {0} implies
that aV U bV L �aMU bM L�aC bC �aM L bMU �aV LbV U � 0. Based on the defini-
tion of TIFNs, the inequalities aV U bV L ≤aMU bM L≤aC bC ≤aM L bMU ≤aV LbV U

hold. Ã �� {0}, i.e., aC > 0, implies that bC � 0. In addition, the constraint of
0 <aC ≤aMU ≤aV U makes bV L� bM L � 0 and then aV U bV L �aMU bM L� 0 is
satisfied. The constraint of bC ≤bMU ≤bV U ≤ 0 implies that bMU �bV U � 0 since
bC � 0. Therefore, the TIFN B̃ is a zero TIFN.

Definition 7 (Grzegorzewski 2003) The distance between two IFNs, Ã and B̃, can be
measured by calculating the integral of the average absolute difference of all α-cuts
with a parameter p, where 1 ≤ p ≤ ∞. The distance measure, Dp( Ã, B̃), can be
denoted as:

Dp( Ã, B̃) �
(
1

4

∫ 1

0

∣
∣
∣ ÃL

μ(α) − B̃L
μ (α)

∣
∣
∣

p
dα +

1

4

∫ 1

0

∣
∣
∣ ÃR

μ(α) − B̃ R
μ (α)

∣
∣
∣

p
dα

+
1

4

∫ 1

0

∣
∣
∣ ÃL

1−v(α) − B̃L
1−v(α)

∣
∣
∣

p
dα +

1

4

∫ 1

0

∣
∣
∣ ÃR

1−v(α) − B̃ R
1−v(α)

∣
∣
∣

p
dα

1/ p
)

.

(14)

Based on Eq. (14), the distance measure is the average of the absolute distance
difference between the two-side membership (non-membership) functions of the two
IFNs. When the IFNs Ã and B̃ are triangular, i.e., TIFNs, and p � 1, the integral
of | ÃL

μ(α) − B̃L
μ (α)| with 0 ≤ α ≤ 1, i.e., the absolute distance difference between

the left-hand-side membership functions of Ã and B̃, will yield either a trapezoidal
area (Fig. 4a) or two triangular areas (Fig. 4b), where the top-side length is | ÃL

μ(1) −
B̃L

μ (1)|, the bottom-side length is | ÃL
μ(0) − B̃L

μ (0)|, and the height is 1. Based on

basic geometry, if the signs of ( ÃL
μ(1) − B̃L

μ (1)) and ( ÃL
μ(0) − B̃L

μ (0)) are the same,
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(a) (b)

Fig. 4 Integral of the difference of the left spread of membership between two TIFNs

i.e.,
(

ÃL
μ(1) − B̃L

μ (1)
)

×
(

ÃL
μ(0) − B̃L

μ (0)
)

≥ 0, a trapezoidal area will be produced;

otherwise, two triangular areas are obtained. The area of the former can be expressed
as 1

2 (| ÃL
μ(1) − B̃L

μ (1)|+| ÃL
μ(0) − B̃L

μ (0)|), and that of the latter is 1
4 (| ÃL

μ(1) − B̃L
μ (1)|

+ | ÃL
μ(0) − B̃L

μ (0)|). Let DM L ( Ã, B̃) denote the integral of | ÃL
μ(α) − B̃L

μ (α)| with
0≤α≤1; it can be formulated as:

DM L ( Ã, B̃) �
∫ 1

0

∣
∣
∣ ÃL

μ(α) − B̃L
μ (α)

∣
∣
∣dα

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(∣
∣
∣ ÃL

μ(1) − B̃L
μ (1)

∣
∣
∣ +

∣
∣
∣ ÃL

μ(0) − B̃L
μ (0)

∣
∣
∣

)
,

if
(

ÃL
μ(1) − B̃L

μ (1)
)(

ÃL
μ(0) − B̃L

μ (0)
)

≥ 0

1

4

(∣
∣
∣ ÃL

μ(1) − B̃L
μ (1)

∣
∣
∣ +

∣
∣
∣ ÃL

μ(0) − B̃L
μ (0)

∣
∣
∣

)
,

if
(

ÃL
μ(1) − B̃L

μ (1)
)(

ÃL
μ(0) − B̃L

μ (0)
)

< 0

�

⎧
⎪⎨

⎪⎩

1

2

(∣
∣
∣aC − bC

∣
∣
∣ +

∣
∣
∣aM L − bM L

∣
∣
∣

)
, if (aC − bC )(aM L − bM L ) ≥ 0

1

4

(∣
∣
∣aC − bC

∣
∣
∣ +

∣
∣
∣aM L − bM L

∣
∣
∣

)
, if (aC − bC )(aM L − bM L ) < 0

(15)

Similarly, the other three components of the distance measure can be determined
as:

DV L ( Ã, B̃) �

⎧
⎪⎨

⎪⎩

1

2

(∣
∣
∣aC − bC

∣
∣
∣ +

∣
∣
∣aV L − bV L

∣
∣
∣

)
, if (aC − bC )(aV L − bV L ) ≥ 0

1

4

(∣
∣
∣aC − bC

∣
∣
∣ +

∣
∣
∣aV L − bV L

∣
∣
∣

)
, if (aC − bC )(aV L − bV L ) < 0

(16)
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DMU ( Ã, B̃) �

⎧
⎪⎨

⎪⎩

1

2

(∣
∣
∣aC − bC

∣
∣
∣ +

∣
∣
∣aMU − bMU

∣
∣
∣

)
, if (aC − bC )(aMU − bMU ) ≥ 0

1

4

(∣
∣
∣aC − bC

∣
∣
∣ +

∣
∣
∣aMU − bMU

∣
∣
∣

)
, if (aC − bC )(aMU − bMU ) < 0

(17)

DV U ( Ã, B̃) �

⎧
⎪⎨

⎪⎩

1

2

(∣
∣
∣aC − bC

∣
∣
∣ +

∣
∣
∣aV U − bV U

∣
∣
∣

)
, if (aC − bC )(aV U − bV U ) ≥ 0

1

4

(∣
∣
∣aC − bC

∣
∣
∣ +

∣
∣
∣aV U − bV U

∣
∣
∣

)
, if (aC − bC )(aV U − bV U ) < 0

(18)

Therefore, the distance measure of two TIFNs can be reformulated as the average
of the above four kinds of distance measure as follows:

DT I F N ( Ã, B̃) � 1

4

(
DV L ( Ã, B̃) + DM L ( Ã, B̃) + DMU ( Ã, B̃) + DV U ( Ã, B̃)

)
(19)

The above formulation can be considered as a general distance measure for mea-
suring the distance between two TIFNs.

Definition 8 (Arefi and Taheri 2015) A similarity measure of two TIFNs Ã and B̃ is
defined as:

S( Ã, B̃) � 1 − 1

2

[ ∫ ∞
−∞ |μA(x) − μB(x)|dx

∫ ∞
−∞ μA(x)dx +

∫ ∞
−∞ μB(x)dx

+

∫ ∞
−∞ |vA(x) − vB(x)|dx

∫ ∞
−∞ (1 − vA(x))dx +

∫ ∞
−∞ (1 − vB(x))dx

]

(20)

with the value of 0 ≤ S( Ã, B̃) ≤ 1. This index is measured in terms of the area of the
average difference between the membership and non-membership functions of two
IFNs. However, the degree of difference cannot be determined if the two IFNs have
no interactions.

Definition 9 The general formula of a different distance measure based on squared
errors between two TIFNs, proposed by Arefi and Taheri (2015), is:

d2( Ã, B̃) �
(

aC − bC
)2

+
1

24

[(
s M L

B − s M L
A

)2
+

(
s M R

B − s M R
A

)2
+

(
sV L

B − sV L
A

)2

+
(

sV R
B − sV R

A

)2
]

+
1

6
(m A − m B)

[(
s M L

B − s M L
A

)
−

(
s M R

B − s M R
A

)

+
(

sV L
B − sV L

A

)
−

(
sV R

B − sV R
A

)]
(21)

where s M L
A � aC − aM L and s M R

A � aMU − aC are called the left and right spreads
of the membership function, respectively; similarly, sV L

A � aC − aV L and sV R
A �

aV U −aC are the left and right spreads of the non-membership function, respectively.
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Usefulmeasures are critical for evaluating IFRmodel performance.Arefi andTaheri
(2015) adopted the similarity measure S( Ã, B̃) and squared error distance d2( Ã, B̃) to
evaluate the performance of their proposed IFR approach with TIFN explanatory and
response datasets. Besides these two measures, the distance measure DT I F N ( Ã, B̃) in
terms of the average absolute difference of two TIFNs is used in this study to compare
the performance of the proposed approach with that proposed by Arefi and Taheri
(2015).

3 Formulations

This study builds up an IFRmodel based on the criterion of the least absolute difference
of distance. With the least absolute deviations criterion, mathematical programming
problems are formulated to determine the optimal parameters of TIFNs tominimize the
total distance between the observation and prediction variables. To achieve this end, the
general distancemeasure, DT I F N ( Ã, B̃), expressed in Eq. (19), is used as the objective
function in themathematical programming problems. In addition, for comparisonwith
an existing approach (Arefi and Taheri 2015), the observed, predicted, and explanatory
variables and parameters are expressed as TIFNs in Definition 3.

Consider the intuitionistic fuzzy observation set (Ỹi , X̃1i , X̃2i , . . . , X̃ ji , . . . , X̃ pi ),
where Ỹi � (yV L

i ,yM L
i ,yC

i ,yMU
i ,yV U

i ) is the response variable and
X̃ ji �(xV L

ji ,x M L
ji ,xC

ji ,x
MU
ji ,xV U

ji ) represents the jth explanatory variable in the
form of TIFNs. The general IFR model can be expressed as:

Ỹi � B̃0 ⊕ B̃1 ⊗ X̃1i ⊕ B̃2 ⊗ X̃2i ⊕ · · · ⊕ B̃p ⊗ X̃ pi �
p∑

j�0

B̃ j ⊗ X̃ ji (22)

where B̃ j � (bV L
j , bM L

j , bC
j ; bMU

j , bV U
j ) is the corresponding intuitionistic fuzzy

parameters, and X̃0i � (1, 1, 1, 1, 1) is specified. Let the predicted fuzzy response

variable be denoted as ˆ̃Yi � (ŷV L
i ,ŷM L

i ,ŷC
i ,ŷMU

i ,ŷV U
i ); then, the predicted IFRmodel

can be formulated as:

ˆ̃Yi � ˆ̃B0 ⊕ ( ˆ̃B1 ⊗ X̃1i ) ⊕ ( ˆ̃B2 ⊗ X̃2i ) ⊕ · · · ⊕ ( ˆ̃Bp ⊗ X̃ pi ) �
p∑

j�0

ˆ̃B j ⊗ X̃ ji (23)

where ˆ̃B j � (b̂V L
j , b̂M L

j , b̂C
j ; b̂MU

j , b̂V U
j ) is the jth estimated intuitionistic fuzzy

parameter of the TIFNs. Consider a model with one explanatory variable, i.e.,
ˆ̃Yi � ˆ̃B0 ⊕ ( ˆ̃B1 ⊗ X̃i ). Suppose that the TIFN parameter ˆ̃B1 is negative, i.e.,

ˆ̃B1 ≤ 0;

then, based on the arithmetic operator in Definition 6, the predicted response TIFN ˆ̃Yi

is determined as:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷV L
i � b̂V L

0 + b̂V L
1 xV U

i

ŷM L
i � b̂M L

0 + b̂M L
1 x MU

i

ŷC
i � b̂C

0 + b̂C
1 xC

i

ŷMU
i � b̂MU

0 + b̂MU
1 x M L

i

ŷV U
i � b̂V U

0 + b̂V U
1 xV L

i

(24)

Alternatively, suppose that this TIFN parameter is positive and denoted as ˆ̃B2, i.e.,ˆ̃B2 ≥ 0; then, the TIFN ˆ̃Yi can be expressed as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷV L
i � b̂V L

0 + b̂V L
2 xV L

i

ŷM L
i � b̂M L

0 + b̂M L
2 x M L

i

ŷC
i � b̂C

0 + b̂C
2 xC

i

ŷMU
i � b̂MU

0 + b̂MU
2 x MU

i

ŷV U
i � b̂V U

0 + b̂V U
2 xV U

i

(25)

The signs of the explanatory TIFN parameters are unknown, which influences the
IFRmodel performance. To overcome this problem, this study sets two dummy TIFNs

with different signs, i.e., ˆ̃B1 ≤ 0 and ˆ̃B2 ≥ 0. Based on Property 1, if an IFR model

has the formulation ˆ̃Yi � ˆ̃B0 ⊕ (( ˆ̃B1 ⊕ ˆ̃B2) ⊗ X̃i ) subject to
ˆ̃B1 ⊗ ˆ̃B2 � 0, then

one dummy TIFN parameter will be determined as the optimal parameter for the
explanatory variable and the other one will be zero. Therefore, the predicted TIFN
response will have two dummy TIFN parameters for each explanatory TIFN variable
in the mathematical programming problems, in which the constraint of their product
being zero is added. For the predicted TIFN response with one explanatory variable,
the formulations in the mathematical programming problems are:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷV L
i � b̂V L

0 + b̂V L
1 xV U

i + b̂V L
2 xV L

i

ŷM L
i � b̂M L

0 + b̂M L
1 x MU

i + b̂M L
2 x M L

i

ŷC
i � b̂C

0 + b̂C
1 xC

i + b̂C
2 xC

i

ŷMU
i � b̂MU

0 + b̂MU
1 x M L

i + b̂MU
2 x MU

i

ŷV U
i � b̂V U

0 + b̂V U
1 xV L

i + b̂V U
2 xV U

i

(26)

With multiple TIFN explanatory variables, the mathematical programming prob-
lems are formulated as Eq. (27), in which the objective function DT I F N ( Ã, B̃) in
Eq. (19) is adopted to determine the optimal parameters in order to minimize the
distance between observed and predicted TIFN responses.

min
n∑

i�1

DT I F N (Ỹi ,
ˆ̃Yi ) � 1

4

n∑

i�1

(
DV L (Ỹi ,

ˆ̃Yi ) + DM L (Ỹi ,
ˆ̃Yi ) + DMU (Ỹi ,

ˆ̃Yi ) + DV U (Ỹi ,
ˆ̃Yi )

)
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s.t. ŷV L
i � b̂V L

0 +
p∑

j�1

[
b̂V L

j1 xV U
ji + b̂V L

j2 xV L
ji

]

ŷM L
i � b̂M L

0 +
p∑

j�1

[
b̂M L

j1 x MU
ji + b̂M L

j2 x M L
ji

]

ŷC
i � b̂C

0 +
p∑

j�1

[
b̂C

j1 + b̂C
j2

]
xC

ji

ŷMU
i � b̂MU

0 +
p∑

j�1

[
b̂MU

j1 x M L
ji + b̂MU

j2 x MU
ji

]

ŷV U
i � b̂V U

0 +
p∑

j�1

[
b̂V U

j1 xV L
ji + b̂V U

j2 xV U
ji

]

b̂C
j1 ≤ 0; b̂C

j2 ≥ 0

b̂V L
jk ≤ b̂M L

jk ≤ b̂C
jk ≤ b̂MU

jk ≤ b̂V U
jk

b̂V L
j1 b̂V U

j2 � b̂M L
j1 b̂MU

j2 � b̂C
j1b̂C

j2 � b̂MU
j1 b̂M L

j2 � b̂V U
j1 b̂V L

j2 � 0

i � 1, · · · , n, j � 1, . . . , p, k � 1, 2 (27)

The last three constraints in the above model restrict the two dummy parameters,
ˆ̃B j1, and

ˆ̃B j2, for each explanatory variable with different signs. The zero restriction,
ˆ̃B j1 ⊗ ˆ̃B j2 � 0, holds for all dummy parameters. The resulting parameters should
follow the definition of a TIFN.

In addition, the objective function in Eq. (27) is the average of DV L (Ỹi ,
ˆ̃Yi ),

DM L (Ỹi ,
ˆ̃Yi ), DMU (Ỹi ,

ˆ̃Yi ), and DV U (Ỹi ,
ˆ̃Yi ), in which correct formulations should

be decided for each measure in the resolution process based on Eqs. (15)–(18). To
deal with this problem, a pair of dummy binary variables, dV L

1i and dV L
2i , is added in

DV L (Ỹi ,
ˆ̃Yi ); they can be reformulated as:

DV L (Ỹi ,
ˆ̃Yi ) � dV L

1i
1

2

(∣
∣
∣yC

i − ŷC
i

∣
∣
∣ +

∣
∣
∣yV L

i − ŷV L
i

∣
∣
∣

)
+ dV L

2i
1

4

(∣
∣
∣yC

i − ŷC
i

∣
∣
∣ +

∣
∣
∣yV L

i − ŷV L
i

∣
∣
∣

)

�
(
1

2
dV L
1i +

1

4
dV L
2i

)(∣
∣
∣yC

i − ŷC
i

∣
∣
∣ +

∣
∣
∣yV L

i − ŷV L
i

∣
∣
∣

)
(28)

Additional constraints of Eq. (29) are also added in the mathematical programming
problems.

(dV L
1i − dV L

2i )(yC
i − ŷC

i )(yV L
i − ŷV L

i ) ≥ 0

dV L
1i + dV L

2i � 1, dV L
1i , dV L

2i ∈ {0, 1} (29)

The constraints guarantee that when (yC
i − ŷC

i )(yV L
i − ŷV L

i ) ≥ 0, then dV L
1i � 1

and dV L
2i � 0; otherwise, dV L

1i � 0 and dV L
2i � 1, and DV L (Ỹi ,

ˆ̃Yi ) in Eq. (28) is

obtained. Similarly, DM L (Ỹi ,
ˆ̃Yi ), DMU (Ỹi ,

ˆ̃Yi ), and DV U (Ỹi ,
ˆ̃Yi ) can be determined.

Therefore, Eq. (27) becomes:

123



202 L.-H. Chen, S.-H. Nien

min
n∑

i�1

DT I F N (Ỹi ,
ˆ̃Yi ) � 1

4

n∑

i�1

{(
dV L
1i

2
+

dV L
2i

4

)
(∣
∣
∣yC

i − ŷC
i

∣
∣
∣ +

∣
∣
∣yV L

i − ŷV L
i

∣
∣
∣

)

+

(
d M L
1i

2
+

d M L
2i

4

)
(∣
∣
∣yC

i − ŷC
i

∣
∣
∣ +

∣
∣
∣yM L

i − ŷM L
i

∣
∣
∣

)

+

(
d MU
1i

2
+

d MU
2i

4

)
(∣
∣
∣yC

i − ŷC
i

∣
∣
∣ +

∣
∣
∣yMU

i − ŷMU
i

∣
∣
∣

)

+

(
dV U
1i

2
+

dV U
2i

4

)
(∣
∣
∣yC

i − ŷC
i

∣
∣
∣ +

∣
∣
∣yV U

i − ŷV U
i

∣
∣
∣

)
}

s.t. ŷV L
i � b̂V L

0 +
p∑

j�1

[
b̂V L

j1 xV U
ji + b̂V L

j2 xV L
ji

]

ŷM L
i � b̂M L

0 +
p∑

j�1

[
b̂M L

j1 x MU
ji + b̂M L

j2 x M L
ji

]

ŷC
i � b̂C

0 +
p∑

j�1

[
b̂C

j1 + b̂C
j2

]
xC

ji

ŷMU
i � b̂MU

0 +
p∑

j�1

[
b̂MU

j1 x M L
ji + b̂MU

j2 x MU
ji

]

ŷV U
i � b̂V U

0 +
p∑

j�1

[
b̂V U

j1 xV L
ji + b̂V U

j2 xV U
ji

]

(dV L
1i − dV L

2i )(yC
i − ŷC

i )(yV L
i − ŷV L

i ) ≥ 0

(d M L
1i − d M L

2i )(yC
i − ŷC

i )(yM L
i − ŷM L

i ) ≥ 0

(d MU
1i − d MU

2i )(yC
i − ŷC

i )(yMU
i − ŷMU

i ) ≥ 0

(dV U
1i − dV U

2i )(yC
i − ŷC

i )(yV U
i − ŷV U

i ) ≥ 0

dV L
1i + dV L

2i � 1, d M L
1i + d M L

2i � 1, d MU
1i + d MU

2i � 1, dV U
1i + dV U

2i � 1

dV L
1i , dV L

2i , d M L
1i , d M L

2i , d MU
1i , d MU

2i , dV U
1i , dV U

2i ∈ {0, 1}
b̂C

j1 ≤ 0; b̂C
j2 ≥ 0

b̂V L
jk ≤ b̂M L

jk ≤ b̂C
jk ≤ b̂MU

jk ≤ b̂V U
jk

b̂V L
j1 b̂V U

j2 � b̂M L
j1 b̂MU

j2 � b̂C
j1b̂C

j2 � b̂MU
j1 b̂M L

j2 � b̂V U
j1 b̂V L

j2 � 0

i � 1, . . . , n, j � 1, . . . , p, k � 1, 2 (30)

Furthermore, considering that the objective function in Eq. (30) is expressed as the
sum of the absolute difference between observed and predicted TIFN responses, this
will increase computational efforts. To deal with this problem, an efficient approach
can be applied to enhance the computational efficiency. For example, let M1

i denote
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max{yC
i − ŷC

i , 0} and M2
i be max{ŷC

i − yC
i , 0}. It is easy to show that M1

i + M2
i is

equivalent to |yC
i − ŷC

i | and that M1
i − M2

i is equivalent to yC
i − ŷC

i . Thus, the model
can be reformulated as:

min
n∑

i�1

DT I F N (Ỹi ,
ˆ̃Yi ) � 1

4

n∑

i�1

{(
dV L
1i

2
+

dV L
2i

4

)
(

M1
i + M2

i + V L1
i + V L2

i

)

+

(
d M L
1i

2
+

d M L
2i

4

)
(

M1
i + M2

i + M L1
i + M L2

i

)

+

(
d MU
1i

2
+

d MU
2i

4

)
(

M1
i + M2

i + MU1
i + MU2

i

)

+

(
dV U
1i

2
+

dV U
2i

4

)
(

M1
i + M2

i + V U1
i + V U2

i

)
}

s.t. M1
i − M2

i � yC
i − ŷC

i

V L1
i − V L2

i � yV L
i − ŷV L

i

M L1
i − M L2

i � yM L
i − ŷM L

i

MU1
i − MU2

i � yMU
i − ŷMU

i

V U1
i − V U2

i � yV U
i − ŷV U

i

ŷV L
i � b̂V L

0 +
p∑

j�1

[
b̂V L

j1 xV U
ji + b̂V L

j2 xV L
ji

]

ŷM L
i � b̂M L

0 +
p∑

j�1

[
b̂M L

j1 x MU
ji + b̂M L

j2 x M L
ji

]

ŷC
i � b̂C

0 +
p∑

j�1

[
b̂C

j1 + b̂C
j2

]
xC

ji

ŷMU
i � b̂MU

0 +
p∑

j�1

[
b̂MU

j1 x M L
ji + b̂MU

j2 x MU
ji

]

ŷV U
i � b̂V U

0 +
p∑

j�1

[
b̂V U

j1 xV L
ji + b̂V U

j2 xV U
ji

]

(dV L
1i − dV L

2i )(M1
i − M2

i )(V L1
i − V L2

i ) ≥ 0

(d M L
1i − d M L

2i )(M1
i − M2

i )(M L1
i − M L2

i ) ≥ 0

(d MU
1i − d MU

2i )(M1
i − M2

i )(MU1
i − MU2

i ) ≥ 0

(dV U
1i − dV U

2i )(M1
i − M2

i )(V U1
i − V U2

i ) ≥ 0

dV L
1i + dV L

2i � 1, d M L
1i + d M L

2i � 1, d MU
1i + d MU

2i � 1, dV U
1i + dV U

2i � 1

dV L
1i , dV L

2i , d M L
1i , d M L

2i , d MU
1i , d MU

2i , dV U
1i , dV U

2i ∈ {0, 1}
b̂C

j1 ≤ 0; b̂C
j2 ≥ 0

b̂V L
jk ≤ b̂M L

jk ≤ b̂C
jk ≤ b̂MU

jk ≤ b̂V U
jk

b̂V L
j1 b̂V U

j2 � b̂M L
j1 b̂MU

j2 � b̂C
j1b̂C

j2 � b̂MU
j1 b̂M L

j2 � b̂V U
j1 b̂V L

j2 � 0

M1
i , M2

i , V L1
i , V L2

i , M L1
i , M L2

i , MU1
i , MU2

i , V U1
i , V U2

i ≥ 0
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i � 1, . . . , n, j � 1, . . . , p, k � 1, 2 (31)

In addition, sometimes an observation dataset contains two types of explana-
tory variable, i.e., crisp and TIFN explanatory variables. For example, suppose
that p explanatory variables are adopted to build up an IFR model, among which
X̃1, X̃2, . . . , X̃k are TIFNs and Xk+1, Xk+2, . . . , X p are crisp numbers, i.e., X V L

ji ,

X M L
ji , X MU

ji , and X V U
ji are equal to XC

ji for j � k+1 to p. The formulations of the
predicted TIFN responses in Eq. (30) become:

ŷV L
i � b̂V L

0 +
k∑

j�1

[
b̂V L

j1 xV U
ji + b̂V L

j2 xV L
ji

]
+

p∑

j�k+1

[
b̂V L

j1 + b̂V L
j2

]
xC

ji

ŷM L
i � b̂M L

0 +
k∑

j�1

[
b̂M L

j1 x MU
ji + b̂M L

j2 x M L
ji

]
+

p∑

j�k+1

[
b̂M L

j1 + b̂M L
j2

]
xC

ji

ŷC
i � b̂C

0 +
k∑

j�1

[
b̂C

j1 + b̂C
j2

]
xC

ji

ŷMU
i � b̂MU

0 +
k∑

j�1

[
b̂MU

j1 x M L
ji + b̂MU

j2 x MU
ji

]
+

p∑

j�k+1

[
b̂MU

j1 + b̂MU
j2

]
xC

ji

ŷV U
i � b̂V U

0 +
k∑

j�1

[
b̂V U

j1 xV L
ji + b̂V U

j2 xV U
ji

]
+

p∑

j�k+1

[
b̂V U

j1 + b̂V U
j2

]
xC

ji (32)

If all explanatory variables are crisp numbers, the above formulations become:

ŷV L
i � b̂V L

0 +
p∑

j�1

[
b̂V L

j1 + b̂V L
j2

]
xC

ji

ŷM L
i � b̂M L

0 +
p∑

j�1

[
b̂M L

j1 + b̂M L
j2

]
xC

ji

ŷC
i � b̂C

0 +
k∑

j�1

[
b̂C

j1 + b̂C
j2

]
xC

ji

ŷMU
i � b̂MU

0 +
p∑

j�1

[
b̂MU

j1 + b̂MU
j2

]
xC

ji

ŷV U
i � b̂V U

0 +
p∑

j�1

[
b̂V U

j1 + b̂V U
j2

]
xC

ji (33)

Based on the above formulations, the proposed approach can deal with explanatory
variables of various types, increasing flexibility. The signs of the TIFN parameters
are determined in the solution process of a mathematical programming problem based
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on the criterion of the minimum distance between the observed and predicted TIFN
responses. In addition, the mathematical programming model can be easily solved
using commercial software, such as LINGO (Anderson et al. 2017).

4 Example and comparison

This study builds up a linear IFR model from mathematical programming problems
with the criterion of least absolute deviation between the observed and predicted
TIFN responses. Studies on IFR models are very limited. The approach proposed by
Parvathi et al. (2013) uses crisp observation and explanatory variables and attempts
to determine the IFR model with the least intuitionistic fuzziness, where all the given
data can be included. As such, their approach cannot be compared with the approach
proposed here. In this section, to demonstrate the proposed approach, the dataset from
Arefi and Taheri (2015) is used to formulate an IFR model, and the performance of
the model is compared to that of Arefi and Taheri (2015). The performance criteria
include the similarity measure and distance measure proposed by Arefi and Taheri
(2015). In addition, the distance measure proposed in this study is adopted.

Arefi and Taheri (2015) demonstrated their model using the TIFN dataset (see
Table 1) given byMohammadi and Taheri (2004). They fitted the least-squares regres-

sion model ˆ̃YAT as:

ˆ̃YAT � (19.9929, 21.0878, 21.9811, 22.8744, 23.9693)

⊕ (−0.2339,−0.2338,−0.2221,−0.2104,−0.2103) ⊗ X̃1 ⊕ (2.4701) ⊗ X̃2
(34)

Using the approach proposed here, the TIFN parameters can be solved from the

model, as shown in Table 2. The IFR model ˆ̃YC N is expressed as:

ˆ̃YC N � (20.7126, 21.0663, 21.0663, 21.1706, 21.7505) ⊕ (−0.1969) ⊗ X̃1 ⊕ (2.6922) ⊗ X̃2

(35)

As shown in Table 2, only one dummy TIFN variable was obtained with the cor-
responding sign. In addition, the parameters of explanatory variables are crisp values
to produce the smallest absolute deviation.

Examining the two models, namely Eqs. (34) and (35), the signs of the determined
parameters from Arefi and Taheri (2015) and the proposed approach are the same.
If traditional regression analysis is applied to build up a regression model using the
central value of the TIFN data in the example, the regression estimators of the explana-
tory will be b̂0 � 21.9767, b̂1 � −0.2221, and b̂2 � 2.4727, indicating that the two
approaches can produce the same signs of parameters and approximately equivalent
values compared to those obtained using traditional regression analysis. However, the
outcomes from Arefi and Taheri’s approach (Arefi and Taheri 2015) are questionable
since the model formulation is based on least-squares regression analysis under the
assumption that the parameters and TIFN explanatory variables are positive. In con-
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Table 3 Results of performance comparison

No. Arefi and Taheri (2015) Approach

SM(Ỹi ,
ˆ̃Yi ) d2(Ỹi ,

ˆ̃Yi ) DT I F N (Ỹi ,
ˆ̃Yi ) SM(Ỹi ,

ˆ̃Yi ) d2(Ỹi ,
ˆ̃Yi ) DT I F N (Ỹi ,

ˆ̃Yi )

1 0.5608 0.6140 0.7559 0.9212 0.0119 0.1028

2 0.2900 4.7794 1.9495 0.1748 3.5224 1.7459

3 0.6541 0.3787 0.5891 0.9690 0.0132 0.0391

4 0.6336 0.5027 0.6938 0.7283 0.0964 0.4227

5 0.4487 2.2008 1.3543 0.4253 1.1581 0.9396

6 0.2275 5.9011 2.3396 0.1208 5.0699 2.1275

7 0.6333 0.4485 0.6057 0.8697 0.0064 0.1843

8 0.6780 0.5456 0.6610 0.5028 0.7865 0.7543

9 0.3912 2.9830 1.5941 0.1259 3.2841 1.9229

10 0.2066 6.3307 2.4026 0.0463 6.5403 2.6741

11 0.6819 0.5197 0.6589 0.6612 0.1892 0.4655

12 0.6881 0.5945 0.7183 0.6662 0.4474 0.5443

13 0.6193 1.0048 1.0254 0.8918 0.0313 0.2016

14 0.5654 1.4272 1.1305 0.6946 0.4343 0.5301

15 0.4448 2.0048 1.3707 0.2642 2.4260 1.4338

16 0.5656 0.8963 0.8465 0.5286 0.3241 0.6243

17 0.1034 7.5727 2.7066 0.0168 5.8791 2.5328

18 0.5544 1.0316 0.9757 0.4173 0.5482 0.8588

19 0.6550 0.4914 0.7200 0.7947 0.1653 0.2846

20 0.5831 0.9669 0.9890 0.7854 0.2110 0.3276

21 0.7904 0.1894 0.3918 0.7281 0.0942 0.3570

22 0.0848 12.6771 3.4838 0.0201 11.2529 3.2242

23 0.1657 8.5320 2.6535 0.0035 10.3513 3.3259

24 0.1664 7.4196 2.4534 0.0073 7.9225 2.9318

Sum 11.3919 70.0124 33.0698 11.3640 60.7661 28.5555

The bold numbers denote the better performance under the corresponding measure in comparing the two
approaches

trast, in the proposed approach, the signs of parameters are determined in the model
formulation process.

Furthermore, Arefi and Taheri’s approach (2015) was developed based on sym-
metric TIFNs, and thus the estimated parameters and predicted response are also
symmetric TIFNs. However, based on the definitions of the product operator for TIFNs
given in Eqs. (11)–(13), the product of two TIFNs does not produce a symmetric TIFN,
even if they are symmetric. The proposed predicted TIFN responses are not symmetric,
which is more reasonable in theory.

Performance comparisons between Arefi and Taheri’s approach (2015) and the

proposed approach based on the similarity measure SM(Ỹi ,
ˆ̃Yi ) [Eq. (20)], the dis-

tance measure d2(Ỹi ,
ˆ̃Yi ) [Eq. (21)], and the absolute distance measure DT I F N (Ỹi ,

ˆ̃Yi )
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[Eq. (19)] were conducted item by item. The results are listed in Table 3. Although the

similarity measure SM(Ỹi ,
ˆ̃Yi ) of the proposed model is 0.2% lower than that of the

model obtained using Arefi and Taheri’s approach (2015), the proposed approach out-

performs Arefi and Taheri’s approach (2015) in terms of distance measures d2(Ỹi ,
ˆ̃Yi )

and DT I F N (Ỹi ,
ˆ̃Yi ) by 13.2% and 13.7%, respectively.

These results show the feasibility and applicability of the proposed approach. The
proposed approach can deal with different TIFN types in a dataset whether they are
symmetric or asymmetric. The signs of TIFN parameters are known prior to formu-
lating the model in the proposed approach. In addition, the linear formulation of the
proposedmathematical programming problems increases computational performance.
In general, the proposed approach is more generalized than existing ones.

5 Conclusion

This study used mathematical programming problems to build up IFR models. The
least absolutely deviations between the predicted and observed TIFN responses are
considered as the objective function,making themodelsmore robust. The linear formu-
lation of the proposed mathematical programming problems increases computational
performance. The formulation of IFRmodels is derived based on themain components
of an IFRmodel, i.e., the central value and lower and upper bounds of membership and
non-membership functions. Unlike existing methods, the proposed approach does not
limit observations to be symmetrical TIFNs. More importantly, the signs of param-
eters can be determined in the resolution process of finding the optimal parameters
simultaneously. The proposed approach is general and can be used with TIFNs or
crisp numbers. A performance comparison showed that the present IFR model outper-
forms an existing one in terms of distance measures. In future research, a more robust
approach will be developed, and more applications will be used to demonstrate the
applicability of the IFR model.
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