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Abstract

In the present paper, we consider fuzzy optimization problems which involve fuzzy
sets only in the objective mappings, and give two concepts of optimal solutions which
are non-dominated solutions and weak non-dominated solutions based on orderings
of fuzzy sets. First, by using level sets of fuzzy sets, the fuzzy optimization prob-
lems treated in this paper are reduced to set optimization problems, and relationships
between (weak) non-dominated solutions of the fuzzy optimization problems and the
reduced set optimization problems are derived. Next, the set optimization problems
are reduced to scalar optimization problems which can be regarded as scalarization of
the fuzzy optimization problems. Then, relationships between non-dominated solu-
tions of the fuzzy optimization problems and optimal solutions of the reduced scalar
optimization problems are derived.

Keywords Fuzzy set optimization - Scalarization - Fuzzy max order - Order
preserving property - Set optimization

1 Introduction

The concept of fuzzy sets has been primarily introduced for representing sets contain-
ing uncertainty or vagueness in Zadeh (1965). Then, fuzzy set theory has been applied
in various areas of decision making theory including economics and optimization,
etc., widely. Since the seminal work on fuzzy optimization problems by Bellman and
Zadeh (1970), much attention has been focused on fuzzy optimization problems with
various formulations such as linear cases, non-linear cases, single-objective, multi-
objective, etc. (Gupta and Dangar 2014; Inuiguchi 2005, 2007; Inuiguchi and Ramik
2000; Jamison and Lodwick 1999; Maeda 2008; Ramik and Rimanek 1985; Wu 2006,
2007, 2008). The fuzzy optimization problems are mathematical programming prob-
lems involving fuzzy parameters. Applying the classical mathematical programming
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problems to real-world problems, they have several parameters. Since the parame-
ters usually contain uncertainty or vagueness, the fuzzy optimization model is a more
adequate representation of the reality than the classical one.

In the fuzzy optimization problems, representations or treatments of constraints are
not discussed, and the case that fuzzy sets are involved only in the objective map-
pings is considered in this paper. Considering treatments of only objective mappings,
one of main approaches is possibilistic programming approach. The possibilistic pro-
gramming approach, which contains many various approaches, transforms the fuzzy
mathematical programming problem to the associated conventional mathematical pro-
gramming problem based on possibility and/or necessity measures (Inuiguchi 2005,
2007; Inuiguchi and Ramik 2000 and references therein). One of well-known other
approaches is to consider (weak) non-dominated solutions and so on based on some
ordering of fuzzy sets, and it is based on neither possibility nor necessity measures.
We refer to this approach as ordering-based efficiency approach, and the ordering-
based efficiency approach based on the fuzzy max order is adopted in this paper. The
fuzzy max order was first proposed in Ramik and Rimanek 1985. Since there is no
universal concept of optimal solutions to be accepted widely, it is important to define
the concepts of optimal solutions. In the ordering-based efficiency approach, fuzzy
number-valued objective mappings are considered in most of papers. Fuzzy optimiza-
tion problems with fuzzy number-valued objective mappings are considered in Gupta
and Dangar (2014), and Wu (2006, 2007, 2008), and fuzzy optimization problems
with fuzzy vector-valued objective mappings are considered in Maeda (2008). Within
our knowledge, no literature deals with fuzzy set-valued objective mappings in fuzzy
optimization problems. The fuzzy number-valued and fuzzy vector-valued objective
mappings are special cases of the fuzzy set-valued objective mappings. We refer to the
fuzzy optimization problem with a fuzzy set-valued objective mapping as a fuzzy set
optimization problem. We consider fuzzy set optimization problems and propose two
concepts of optimal solutions of them. They are non-dominated solutions and weak
non-dominated solutions, which are extensions of well-known (weak) non-dominated
solutions of fuzzy optimization problems with fuzzy number-valued and fuzzy vector-
valued objective mappings in the ordering-based efficiency approach. Another aspect
of view, the fuzzy set optimization problems are an extension of set optimization
problems. Thus, a lot of literature on the set optimization problems published so far
also prove the importance of the fuzzy set optimization problems. Then, it can be
expected that the fuzzy set optimization problems enable us to cover more situations
of real-world problems in the sense that the fuzzy number-valued, fuzzy vector-valued
and set-valued objective mappings are special cases of the fuzzy set-valued objective
mappings in the ordering-based efficiency approach. It does not mean that the ordering-
based efficiency approach for fuzzy set optimization problems is an extension of the
possibilistic programming approach.

In Wu (2006), a scalarization method is proposed by embedding fuzzy numbers into
a normed space. It is difficult to apply it’s scalarization method to fuzzy set-valued
objective mappings. In Maeda (2008), set optimization problems associated with fuzzy
optimization problems are derived by using the order preserving property for fuzzy
vectors, and it enables us to solve the fuzzy optimization problems by solving the set
optimization problems. On the other hand, a scalarization method for set optimization
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problems is proposed in Herndandez and Rodriguez-Marin (2007) and Maeda (2012) by
using scalarizations of sets, and it enables us to solve the set optimization problems by
solving scalar optimization problems associated with the set optimization problems.

In the present paper, we consider fuzzy set optimization problems. First, the order
preserving property for fuzzy vectors is extended to that for fuzzy sets. Then, the
fuzzy set optimization problems are reduced to set optimization problems by using
the order preserving property for fuzzy sets. Next, the set optimization problems
associated with the fuzzy set optimization problems are reduced to scalar optimization
problems. It enables us to solve the fuzzy set optimization problems by solving the
scalar optimization problems.

The remainder of the present paper is organized as follows. In Sect. 2, orderings
and scalarizations of sets are discussed. In Sect. 3, properties of fuzzy sets are investi-
gated, and orderings of fuzzy sets are discussed. In Sect. 4, the fuzzy set optimization
problems are considered, and the properties are investigated. In Sect. 5, a scalarization
method for the fuzzy set optimization problems is proposed. Finally, conclusions are
presented in Sect. 6.

2 Orderings and scalarizations of sets

In this section, orderings and scalarizations of sets are discussed.

Fora,b e RU{—o00,00},weset[a,b]={x e R:a<x <b},[a,b[={x eR:
a<x<bhla,bl={xeR:a <x <b},and la,b[={x e R:a < x < b}. For
convenience, we define inf ) = oo, sup¥) = —oo, min J = oo, and min R = —oo.

For A C R”, letint(A) and cl(A) be the interior and the closure of A, respectively.
Let C(R") be the set of all compact subsets of R”, and let Co(R") be the set of all
non-empty compact subsets of R". We set R, = {x e R" : x > 0} and R” = {x €
R*:x <0}.ForA,BCR'"andl e R,weset A+ B={x+y:x €A,y € B}
and LA = {Ax : x € A}

Now, we introduce some orderings of sets.

Definition 1 (Jahn and Ha 2011; Kon 2014; Kurano et al. 2000; Kuroiwa et al. 1997,
Maeda 2008, 2012) Let A, B C R".

i) A<, BE BCA+RY;

) A<y BEACB+R",
i) A<BE A<, Band A <y B:

(iv) A<, BE B CA+in(RY):;

V) A<y BE AcCB+int®R);
vi) A<BE A<, Band A <y B.

The following lemmas provide fundamental properties of orderings given in Defi-

nition 1, and Lemma 1 can be shown easily.

Lemma1 For A, B, C, D C R", the following statements hold.
(i) A< A;
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(ii) A<y B,B<; C= A< C;
(iii) A<y B,B<yC= A<y C;
(iv) A<B,B<C=A<C;

(v) A<p B= A< B;

(vi) A<y B= A <y B;

(vii) A<B= A<B;

(viii) A<y B,C <y D= A+C <y B+ D;
(ix) A<y B,C<yD=A+C <y B+ D;
(x) A<B,C<D=A+C<B+D;

(xi) A=0,B A0 = A £, B,B<p A,A <y B,B £y A,A #1 B,B <[,

A,A <y B,B £y A;

(xii) D <0,0 <P, R" <R" R" < R";

(xiii) . >0,A <; B= AA <[ AB;

(xiv) A>0,A <y B = LA <y AB;

(xv) A>0,A < B = AA <AB.

Lemma 2 (Kon 2014, Proposition 3.3) Let A, B C R”". Assume that A € Co(R") or
B € Co(R™). If A < B, then A # B.

Let k € int(R"}), and we set

sp(A k) =inf{t e R: A < {tk}} =inf{t e R: {tk} C A+ R}, (1)
sy(A; k) =inf{r e R: A <y {tk}} =inf{r e R: A C tk +R"}, 2)
I4(k) = [sL(A; k), su(A; k)] 3)

foreach A C R". s; (A; k) and sy (A; k) are scalarizations of A, which may be —oo
or oo (Hernandez and Rodriguez-Marin 2007; Maeda 2012). 14 (k) is the interval
associated with A. It follows that

sp(A; k) =inf{t e R: AN (tk +R™) # @).

If A = (¢, then sp(A; k) = inf() = oo and sy (A; k) = inf R = —o0, and then
I4(k) = 0.
The following theorem provides properties of s; and sy .

Theorem 1 Let k € int(R)). In (i) and (ii), let A, B C R". In (iii)—(viii), let A, B €
C(R™).

(i) A# 0D < sp(A k) <sy(Ask);

(ii) AC B = sL(A; k) > s50(B; k), sy(A; k) <sy(B; k);
(iii) sp.(A; k) =min{t e R: A < {tk}} =min{r e R: {tk} C A+ R’ };
(iv) sy(A; k) =min{t e R: A <y {tk}} =min{r e R: A C tk+R"};
(v) A<y B=s1(Ak) <sp(B; k) & 1a(k) < Ip(k);

(vi) A <y B=sy(A; k) <sy(B;k) & Ir(k) <y Ig(k);
(vii) If A # W or B # (), then

A<p B=sp(Ask) <sp (B k) & 14(k) < 1p(k);

@ Springer



A scalarization method for fuzzy set optimization problems 139

(viii) If A #= @ or B # ), then
A <y B=syu(A; k) <sy(B;k) < 1ak) <y Ipk).

Proof (i) and (ii) are trivial. (iii) and (iv) are Theorem 3.1 in Maeda (2012), and then
(v) and (vi) are Theorem 3.2 in Maeda (2012). In addition, (vii) and (viii) are Theorem
3.3 in Maeda (2012). O

The following lemmas provide further properties of sy and sy .

Lemma3 Let k € int(R!}), and let A be any index set. In addition, let A, C R" for
each A € A.

(i) st ( A k) = inf s.(As; K);

reEA

(ii) su | | JAx: k| = supsy(Az: k);
reA reA

(iii) st (ﬂAx; k) > supsp (Ax; k);
rEA

reA

(iv) sy (Q}Ak, k) < inf sy (As; k).

Proof (i) First, suppose that U,c4 A, = . Then for any A € A, it follows that
A, = 0, and that s; (A,; k) = oo. Therefore, we have s; (U)cp A, k) =
infyca5.(Ax; k) = oco. Next, suppose that Upcp A, # @. Then, it follows
that sz (UpcaAs; k) < oo. Suppose that s; (UpcpAsx; k) = —oo, and fix
any t € R. Since Upepa(Ax N (tk + R™)) = (UpecaAy) N (tk + R™) # 0,
there exists A9 € A such that A;; N (tk + R") # ¢, and it follows that
infreasp(Ax; k) < sp(Axy; k) < t. By the arbitrariness of t € R, we have
s (UneaAss k) = infyen s (Ay; k) = —oo. Suppose that sp, (UjeaAn; k) >
—oo. Then for any A € A, since Ay C UueaAy, it follows that 57 (Ay; k) >
SL (UME AAL k) from Theorem 1 (ii). Now, fix any ¢ > 0. Then, there exists 7y €
[sL (UneaAni k), s (UpeaAis k) + g such that (Upea Ay) N (tok +R™) # 0.
Since Upea (A N (fok + R™)) = (UpeaAy) N (tok + R™) # (, there exists
A1 € Asuchthat Ay, N (fok + R™) # @, and it follows that 57 (A5 k) < 1y <
s1, (Uxea Ay k) + €. Therefore, we have s; (Upca Ay k) = inf)ca 51 (Ay; k).

(ii) First, suppose that UyeaAx = @. Then for any A € A, it follows that
A, = (, and that sy (A, ; k) = —oo. Therefore, we have sy (Uycpa Ay k) =
sup; ¢4 Su(Ayx; k) = —oo. Next, suppose that U c 4 A;, # 9. Then, it follows that
sy (UneaAy; k) > —oo. Suppose that si (Upcp A k) = 00, and fix any ¢t € R.
Since Uyep Ay ¢ th+R"  thereexists g € Asuchthat A, ¢ tk+R",and then
Ay € 'k +R" forany ¢’ €] — oo, t]. Thus, it follows that sup, . 4 sy (Ax; k) >
sy(Ajy; k) > t. By the arbitrariness of + € R, we have sy (UyepaAyr; k) =
sup; ¢4 Su(Ax; k) = oo. Suppose that sy (UpeaAj; k) < oo. Then for any
L€ A,since Ay, C UpeaAy, it follows that sy (Ay; k) < sy (UpeaAy; k) from
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Theorem 1 (ii). Now, fix any & > 0. Then for any ¢ €] — 00, sy (UjeaAx; k) [,
since Upep Ay ¢ thk + R, there exists A(t) € A such that Ay ¢ thk +R", it
follows that A,y ¢ 'k + R” for any ¢’ €] — o0, t], and that sy (Ay(r); k) > t.
Choose any #y €lsy (UpeaAn; k) — &, 5y (UpeaAy; k) [. Then, it follows that
A(tp) € A, and that sy (Ajyg); k) > to > sy (UpeaAs; k) — e. Therefore, we
have sy (UyeaAyx; k) = sup, 4 su(Ax; k).

(iii)) For any A € A, since NueaA, C Ay, it follows that sy (Ay; k)
s1.(NyueaAy; k) from Theorem 1 (ii). Therefore, we have sup, . 4 57 (Ay; k)
sp(Meadys k).

(iv) For any A € A, since NyeaAy, C Ay, it follows that sy (NueaAy; k)
sy(Ay; k) from Theorem 1 (ii). Therefore, we have sy(NyeaAy; k)
infcx sy (Ax; k).

IATA

m VYA

The following example shows that (iii) and (iv) in Lemma 3 do not hold with
equality.

Example1 In R, letk = (1,1) € int(R?), and set A = {(x,y) € R? : [x + 1| +
ly —3] <2}and B = {(x,y) € R? : |x — 1| + |y — 3] < 2}. Then, it follows
that s (A; k) = sp.(B; k) = 1, sy(A; k) = sy(B; k) = 5and s (AN B; k) = 2,
sy(ANB; k) =4. Thus, we have s; (AN B; k) =2 > 1 = sup{sz.(A; k), s, (B; k)}
andsy(ANB; k) =4 <5 =inf{sy(A; k), sy(B; k)}. O

Lemma4 Let k € int(R")), and let A be any index set. In addition, let A; € C(R")
foreach ) € A. Assume that A, C Ay or Ay D Ay forany A, u € A.

(i) s (ﬂAx; k) = supsp(A; k);
reA

reA

(ii) sy (QAA, k) = inf sy (A k).
Proof (i) It follows that s; (MyeaAj; k) > supyc,sp(Ax; k) from Lemma 3
(iii). Suppose that s; (MpeaAjx; k) > supyc,S.(Ay; k), and fix any 79 €
Isupyca SL(Ax; k), s, (MieaAy; k) [ Then for any A € A, since sp (A k) <
sup, e SL(Ay k) < to, it follows that Ay N (tok + R2) € Co(R"). Since
Ay N(tok+RL) C AN (tok +R™) or Ay N (tok +R™) D A, N (1ok +RL) for
any A, u € A, itfollows that (NycpA;)N(tok+R™) = Nyca(ArN(tok+R™)) €
Co(R™). It contradicts that (Nyc 4 A;)N(tok+R"™) = @sincetg < sp (NyeaAy; k).
(ii) It follows that sy (MyeaAx; k) < infyca sy (Ay; k) from Lemma 3 (iv). Sup-
pose that sy (MeaAn; k) < infueq sy (Ax; k). Fix any 19, 11 €lsy (Maca Ay
k), infueq sy(Ax; k)[ with 11 < 19. Then for any A € A, since #p <
inf easy(Ay; k) < sy(Ay; k), it follows that Ay ¢ fok + R”, and that
Ay, ¢ tok + int(R™), and that Ay N (fok + int(R"))¢ € Co(R™). Since
Ay N (tok + int(R™))° C A, N (fok + int(R™)) or A N (tok + int(R™))¢ D
A, N (tok + int(R2)) for any A, u € A, it follows that (MyeaAz) N (tok +
int(R™))¢ = NMyea (A, N (tok + int(R™))) € Co(R™). Since #; < to, it follows
that (Me A Ap) N (11k + R™ )€ £ @, and that Ny A & t1k + R” . It contradicts
that Nyc A Ay C 11k + R” since 1 > sy (MyeaAy; k). O
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Lemma5 Letk € int(R}), and let A, B € C(R").

(i) sSL(A+ B; k) <sL(A; k) +s.(B; k);
(i) sy(A+ B; k) < sy(A; k) +sy(B; k);
(iii) A > 0= sy (AA; k) = Asp (A k);

(iv) A > 0= sy(AA; k) = Asy(A; k).

Proof If A = () or B = {, then (i) and (ii) are trivial. Suppose that A # @ and B # )
in (i) and (ii).

(i) Since A < {s1.(A; k)k}and B <y {s;(B; k)k} from Theorem 1 (iii), it follows
that A + B <y {(s.(A; k) + s;(B; k))k} from Lemma 1 (viii). Therefore, we
have s;, (A + B; k) < s;(A; k) + s1.(B; k) from the definition of s; (A + B; k).

(i) Since A <y {sy(A; k)k}and B <y {sy(B; k)k} from Theorem 1 (iv), it follows
that A + B <y {(sy(A; k) 4+ sy (B; k)) k} from Lemma 1 (ix). Therefore, we
have sy (A + B; k) < sy (A; k) + sy (B; k) from the definition of sy (A + B; k).

(iii) We have s;(AA; k) = inf{t € R : LA < {tk}} = Xinf{% teR, A <
{£k}} = rinf{t' e R: A < {'k}} = AsL(A; k) from Lemma 1 (xiii).
(iv) We have sy(LA; k) = inf{t € R : LA <y {tk}} = )\inf{% teR, A <y

{tk}} = rinf{' € R: A <y {'k}} = Asy(A; k) from Lemma 1 (xiv). o

A mapping F such that F'(x) C R"™ foreachx € R" is called a set-valued mapping
from R” to R, and we denote it by F : R" ~» R™.
We define the convexity of set-valued mappings.

Definition 2 Let F : R" ~~ R™,

(1) F is called a convex mapping if
FOx+ (1 -2y =AFx)+ (1 —2)F(y) (4)

for any x, y € R" and any A €]0, 1;
(i1) F is called a strictly convex mapping if

FOx+0—=W1My) <AFXx)+ 0 —=MF(y) @)

forany x, y € R", x # y and any A €]0, 1[.

Let F : R" ~» R™. The set-valued mapping F is said to be convex-valued if F(x)
is a convex set for any x € R”. When F is convex-valued, if F is a strictly convex
mapping, then F is a convex mapping (Kon 2014, Proposition 3.5).

The following theorem provides properties of composite functions of sz, sy and
set-valued mappings. Although Theorem 2 (i) is shown in Theorem 3.5 in Maeda
(2012), we present another proof.

Theorem2 Let F : R" — Co(R™), and let k € int(R'}).

(i) If F is a convex mapping, then sy (F(-); k), sy(F(-); k) : R — R are convex
functions.
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(ii) If F is a strictly convex mapping, then s;(F(-); k), sy(F(-); k) : R" — R are
strictly convex functions.

Proof (i) The convexity of 57 (F(-); k) follows from Theorem 1 (v) and Lemma 5
(1), (iii). The convexity of sy (F(-); k) follows from Theorem 1 (vi) and Lemma 5
@ii), (iv).

(ii) The strict convexity of s (F(-); k) follows from Theorem 1 (vii) and Lemma 5
(i), (iii). The strict convexity of sy (F (-); k) follows from Theorem 1 (viii) and
Lemma 5 (ii), (iv).

O

3 Fuzzy sets

In this section, properties of fuzzy sets are investigated, and orderings of fuzzy sets
are discussed.

A function @ : R" — [0, 1] is called a fuzzy set on R". Let F(R") be the set of all
fuzzy sets on R".

Leta € F(R"). For each o €]0, 1], [d]le = {x € R" : G@(x) > «} is called the
a-level set of a. The set supp(a) = {x € R" : @(x) > 0} is called the support of @, and
[@lo = cl(supp(a)) is called the 0-level set of d. The fuzzy set @ is said to be support
bounded if supp(a) is bounded, and @ is said to be normal if there exists xg € R"
such that @(xo) = 1. The fuzzy set d is called a compact fuzzy set if [a]l, € C(R")
for any @ €]0, 1], and @ is called a convex fuzzy set if [d], is a convex set for any
a €]0, 1]. Let FC(R™) be the set of all compact fuzzy sets on R”, and let FCo(R")
be the set of all compact fuzzy sets on R” which are support bounded and normal.
The fuzzy set @ is called a fuzzy vector on R" if a € FCo(R"), and @ € FCo(R) is
called a fuzzy number if @ is convex (Jamison and Lodwick 1999). Let A/ be the set
of all fuzzy numbers. Then, it follows that FN C FCo(R) Cc FC(R) C F(R) and
FCo(R™) ¢ FCR™) c F(R™) from the definitions.

It is well-known as the decomposition theorem that @ € F(R") can be represented
as

a= sup acg, (6)
ael0,1]
where for A C R”, ¢4 : R" — {0, 1} is the indicator function defined as c4(x) = 1
ifx € A,andcq(x) = 0ifx ¢ A for each x € R” (Dubois et al. 2000; Zadeh 1975).
We set

S®R") = {{Sy}aeio.1] : Se CR", « €]0, 1], and

Sg D S, for B,y €]0, 1] with 8 < y}, (7)
and set
Mg ({Sa}aelo,1]) = sup acs, € F(R") (8)
ae]0,1]

for each {Sy}ac)o.1] € S(R™). For simplicity, MR~ is also written as M.
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The following lemma provides a property of level sets of fuzzy sets defined in Eq.

(8).

Lemma 6 (Kon 2013, Proposition 4) Let {Sylacio.)] € SMR"), and let @ =
M ({Sa}acto,1])- Then, [dle = Ngejo,a[Sp for any a €]0, 1].

Letd € F(R"), and let k € int(R"}). Since {[d]s}ac)o,1] € S(R"), it follows that
{1171, (k) }aci0,1] € S(R) from Theorem 1 (ii). We set

ar = M({Iiz), (K)}acpo, 1) € F(R). 9

The following theorem provides a property of level sets of fuzzy sets defined in Eq.

).

Theorem 3 Letd € FC(R"), and let k € int(RY). Then, [dle = Iz, (k) for any
o €]0, 1].

Proof Fix any o €]0, 1]. Since

se@oi k) =sp | (1) [@lgik | = sup sp((@lg: k).
Bel0,al pel0el

su@e; k) =sy | () [@lg: k =, inf su((@g; k)
Bel0,af

from Lemmas 4 and 6, we have
Iz, (k) = [sp([@la; k), sy ([dla; k)]
= | sup sp([alg; k), inf sy([alg; k
|:ﬂ€]01,)a[ L([alg; k) sl v(lalg )]

= [ [se@lp: k). sy ((@lg: k)]
BEI0.al

= ﬂ Iz, (k)
Bel0.af

= [dr]a
from Lemma 6. O
Next, we introduce some orderings on F (R").
Definition 3 (Kon 2014, Definition 5.1) Let @, be F(R™).

[@le < [bq for any a €]0, 1];

Q) a<b
b & [dle < [bly for any « €]0, 1].

def
<~
e~ def
>i1) a <bhS
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The order < in Definition 3 is an extension of the fuzzy max order for fuzzy numbers.
The fuzzy max order for fuzzy numbers has been primarily defined in Ramik and
Rimdnek (1985). Then, the fuzzy max order for fuzzy numbers has been extended for
fuzzy vectors in Maeda (2008), and for fuzzy sets which are closed, convex, normal,
and support bounded in Kurano et al. (2000). Thus, the orders < and < in Definition 3,
which are further extensions of them, are called the fuzzy max order and the strict fuzzy
max order on F(R™), respectively, in Kon (2014).

The following lemmas provide fundamental properties of the (strict) fuzzy max
order.

Lemma7 (Kon 2014, Proposition 5.1) Let @, b, ¢ € F(R™).

(i) a < a;
(i) a <b,b<c¢=a=¢c
(iii) d<b=ad<b

Lemma 8 (Kon 2014, Proposition 5.2) Let aberF (R™). Assume that there exists
a €10, 1] such that [d)y € Co(R™) or [bly € Co(R™). Ifd < b, then @ % b.

Next, we introduce order preserving properties for fuzzy set-valued mappings.

Definition 4 Let F : R" — F(R™), and let X C R".

@) Fis sNaid to be ozder preserving on X i}ifor any x,y € X, [f(x)]o < [f(y)]o
and [F(0)]; < [F(n)] imply F(x) < F(y); N

(i1) F~is said to bg strictly 01£ler preservin&on X ifvfor any x,y € X, [F(x)]p <
[F(¥)]o and [F(x)]1 < [F(¥)]1 imply F(x) < F(y).

Let F : R" — F(R™). The fuzzy set-valued mapping F is said to be compact-
valued if F(x) € FC(R™) for any x € R". For each « € [0, 1], we define F, : R" ~~
R™ as ~

Fy(x) = [F(x)]o (10)

for each x € R”.

4 Fuzzy set optimization

In this section, fuzzy set optimization problems are considered, and the properties are
investigated. ~
For X CR", X # @ and F : R" — F(R™), a problem

min F(x)
st. xeX (FOP)
is called a fuzzy set optimization problem, and F is called a fuzzy set-valued objective
mapping. In (FOP), Fiscalled a fuzzy number-valued objective mapping if F:R" >
FN,and F is called a fuzzy vector-valued objective mapping if F:R" > FCy (R™).
Our main problem is the fuzzy set optimization problem (FOP).

Next, we introduce some solution concepts for (FOP).
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Definition 5 (i) A point x x* e Xis called a non-dominated solution of (FOP) if for
any x € X, F(x) < F(x*) implies F(x*) < F(x)

(ii) A point x* € X is called a weak non-dominated solution of (FOP) if there is no
x € X such that F(x) < f(x*).

The following theorem provides a relationship between non-dominated and weak
non-dominated solutions of (FOP).

Theorem 4 In (FOP), assume that for any x € X, there exists a €]0, 1] such that
[F(x)]e € Co(R™). If x* € X is a non-dominated solution of (FOP), then x* is a
weak non-dominated solution of (FOP).

Proof Suppose that x* € X is not a weak non-dominated solution of (FOP). Then,
there ex1sts X0 € X such that F(xo) < F(x*) Smce F(xo) =< F(x*) it follows
that (x0) =< F (x*) from Lemma 7 (iii), and that F (x*) £ F (x¢) from Lemma 8.
Therefore, x* is not a non-dominated solution of (FOP). O

The following example shows that the assumption in Theorem 4 cannot be elimi-
nated.

Example2 In (FOP), letn = 1,m = 2,and X = R. Set A = {(x,y) € R? : |x| <
Lyl <1} B={(x,y) e R*: y = 2"}, and D = {(1, 1)}.

(i) Define F : R — F(R?) as

~ o Jea if x=0,
F@x) = {cD otherwise

for each x € R, and consider the following fuzzy set optimization problem:

min F (x)

st. xeR. (FOP1)

In this case, [F(O) ¢ Co(R?) for any « €]0, 1] since [F(O)]a = A is bounded
but not closed for each « €]0, 1]. Then, it can be verified that 0 is a non-dominated
solut10n of (FOPl) However, 0 is not a weak non-dominated solution of (FOP1)
since F (0) < F 0).

(ii) Define F : R — F(R?) as

~ . _ Jep if x=0,
F@x) = { cp otherwise
for each x € R, and consider the following fuzzy set optimization problem:
min F (x)
st. xelR. (FOP2)

In this case, [f(O)]a ¢ Co(R?) for any o €]0, 1] since [F(O)]a = B is closed but
not bounded for each « €]0, 1]. Then, it can be verified that O is a non-dominated
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solution of (FOP2). However, 0 is not a weak non-dominated solution of (FOP2)
since F(0) < F(0).

]

Let k € int(R7%). For F:R"— F(R™) in (FOP), we define G:R" — F(R) as
Gx) = F(x) (10
for each x € R”. Note that G depends on k. Then, we consider the following problem:

min 5(x) )
s.t.  x e X. (FOP”)

The following theorem provides a relationship between non-dominated and weak
non-dominated solutions of (FOP’).

Theorem 5 Let k € int(R"}). In (FOP), assume that F is compact-valued, and that
for any x € X, there exists a €]0, 1] such that [F(x)]a € Co(R™). If x* € X is
a non-dominated solution of (FOP’), then x* is a weak non-dominated solution of
(FOP’).

Proof Fix any x € X. Then, there exists @ €]0, 1] such that [F(x)]a e Co(R™). It
follows that [é(x)]a = [F(x)l]a =l Fu. (k) € Co(R) from Theorem 3. Therefore,
if x* € X is a non-dominated solution of (FOP’), then x* is a weak non-dominated
solution of (FOP’) from Theorem 4. O

The following theorem provides a relationship between weak non-dominated solu-
tions of (FOP) and (FOP’).

Theorem 6 Letk € int(R'}). In (FOP), assume that Fis compact-valued. If x* € X is
a weak non-dominated solution of (FOP’), then x* is a weak non-dominated solution
of (FOP).

Proof Suppose that x* € X is not a weak non-dominated solution of (FOP). Then,
there exists xg € X such that f(xo) =< F(x*) Fix any o €]0, 1]. Since [f(xo)]a

[F(x*)]a,ltfollows that I[F(xJ (k) < L E ) (k) from Theorem 1 (vii), (viii). Then,
it follows that [G(xo)]a = [F(xo),]a = IF(xO)] (k) < L F o)), (k) = [F(x*);]a =
[G(x*)] from Theorem 3. Since G(xo) < G(x*) by the arbitrariness of « €]0, 1],
x™ is not a weak non-dominated solution of (FOP”). O

The following example shows that we cannot prove the same result as Theorem 6
for non-dominated solutions.

Example 3 In (FOP), letn = 1,m = 2, and X = R. In addition, let k =A§1, 1) e
int(Ri). Set A =10,1] x [0, 1], B ={0} x [0, 1], and D = [0, 1]. Define F : R —
F(R?) as

~ . Jea if x=0,
Fx)= {CB otherwise
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for each x € R, and consider the following fuzzy set optimization problem:

min F (x)

st. xelR. (FOP3)

It follows that I[f(x)]m (k) = [0, 1] for any x € R and any « €]0, 1], and that é(x) =

cp for any x € R, where G:R— F(R) is defined by Eq. (11). Now, consider the
following problem:

min CN?(x)

st. xelk (FOP3")

Then, it can be verified that each x € R is a non-dominaied solugon of (FpP3’).
Ijlvowever, 0is not a non-dominated solution of (FOP3) since F'(x) < F(0) and F (0) f
F(x) for any x € R\{0}. m|

5 Scalarization method

In this section, a scalarization method for the fuzzy set optimization problems is
proposed.

Throughout this section, assume that F (x) € FCo(R™) forany x € X in (FOP). For
the fuzzy set optimization problem (FOP), we consider the following set optimization
problem:

min  Fp(x) x Fi(x)

s.t. xeX (SOP)

where Fy and F are defined by Eq. (10).
Next, we introduce some solution concepts for (SOP).

Definition 6 (Maeda 2012, Definitions 4.2 and 4.4) (i) A point x* € X is called a non-

dominated solution of (SOP) if for any x € X, Fy(x) x Fi(x) < Fy(x*) x F1(x*)

implies Fo(x*) x F1(x*) < Fy(x) x Fi(x);

(ii) A point x* € X is called a weak non-dominated solution of (SOP) if there is no
x € X such that Fy(x) x Fi(x) < Fo(x™) x Fi(x™).

The following theorem provides a relationship between non-dominated and weak
non-dominated solutions of (SOP).

Theorem7 If x* € X is a non-dominated solution of (SOP), then x* is a weak non-
dominated solution of (SOP).

Proof Suppose that x* € X is not a weak non-dominated solution of (SOP). Then,
there exists xg € X such that Fy(xg) x Fi(xg) < Fo(x*) x Fi(x™). Since Fy(xg) x
Fi(xp) < Fo(x*) x Fi(x*), it follows that Fy(xg) X Fj(xg) < Fo(x™) x Fi(x*)
from Lemma 1 (vii), and that Fp(x*) x Fi(x*) £ Fo(xo) X Fj(xo) from Lemma 2.
Therefore, x* is not a non-dominated solution of (SOP). m|
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The following theorem provides relationships between (weak) non-dominated solu-
tions of (FOP) with the (strict) order preserving property and those of (SOP).

Theorem 8 (i) In (FOP), assume that F is order preserving on X. Then, x* € X is
a non-dominated solution of (FOP) if and only if x* is a non-dominated solution
of (SOP);

(ii) In (FOP), assume that Fis strictly order preserving on X. If x* € X is a weak
non-dominated solution of (FOP), then x* is a weak non-dominated solution of
(SOP).

Proof (i) First, suppose that x* € X is a non-dominated solution of (FOP). Let
X € X, and suppose that Fo(¥) x F1(¥) < Fo(x*) x Fi(x*). It follows that
Fo(x) < Fo(x*) and Fl(x) < Fl(x*) Since F is order preserving on X, if
follows that F x) = F (x*) Since x* is a non-dominated solution of (FOP),
it follows that F(x*) =< F(x) Then, it follows that F,(x*) < F,(x) for any
o €]0, 1], and that

supp(F(x*) = ) Fax = |J Fu® = supp(F@)).

«€l0,1] a€l0,1]

Thus, it follows that

Fo(x*) = cl(supp(F (x*))) < cl(supp(F (¥))) = Fo(¥),

and we have Fy(x™) x Fi(x*) < Fo(¥) x F1(x). Therefore, x* is a non-dominated
solution of (SOP).
Next, suppose that x* € X is a non-dominated solution of (SOP). Let ¥ € X,
and suppose that F(¥) < F(x*). Since F(¥) < F(x*), it follows that Fy(¥) <
Fy(x*) forany o €]0, 1], and that Fp(¥) < Fp(x*) by the same arguments as in the
first part. Thus, it follows that Fo(X) x F1 (X) < Fp(x™*) x F}(x*). Since x* is anon-
dominated solution of (SOP), it follows that Fy(x™) x Fi(x*) < Fo(¥) x Fi(X),
and that Fo(x™) < Fp(x) and Fi(x*) < Fi(x). Since F is order preserving on
X, we have F (x*) < F (x). Therefore, x* is a non-dominated solution of (FOP).
(i) Suppose that x* € X is not a weak non-dominated solution of (SOP). Then,
there exists ¥ € X such that Fo(x) x F1(X) < Fo(x™*) x F1(x*). It follows that
Fr(x) < Fo(x*) and Fi1(x) < Fi(x*). Since Fis strictly order preserving on X,
we have F x) < F (x*). Therefore, x* is not a weak non-dominated solution of
(FOP).
O

The following example shows the necessity of strict order preserving for weak
non-dominated solutions in Theorem 8 (ii).

Example 4 In (FOP),letn = m = 1 and X = R. Define F:R— F(R) as

4(y—1) if y € [L, 5],

FO)(y) = %(y —10) ify €]6, 10],
0 otherwise
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for each y € R, and

F . { ly — 4] }
(x)(y) =max 1 — 2 ,0

for each x € R\ {0} and each y € R. Then, it follows that F is order preserving on R
but not strictly order preserving on R. We consider the following fuzzy set optimization
problem:

min  F(x)
st. xelR (FOP4)
and the following set optimization problem:
min  Fy(x) x Fi(x)
st. xeR (SOP4)

where

], 10] x {5} ifx =0,
Fox) > Fi(x) = { [0, 8] x {4}  otherwise
foreach x € R. It can be verified that each x € R is a weak non-dominated solution of
(FOP4). However, 0 is not a weak non-dominated solution of (SOP4) since Fy(x) x
F1(x) < Fp(0) x F1(0) for any x € R\ {0}. O

We consider the following scalarization problem of the set optimization problem
(SOP):

min  Asy (Fo(x) x Fi(x); k) + (1 — Msy (Fo(x) x Fi(x); k) P)
s.t. xeX,
where k € int(Ri’”) and A € [0, 1] are parameters. The problem (P) is also the
scalarization problem of the fuzzy set optimization problem (FOP).

The following theorem provides relationships between (weak) non-dominated solu-
tions of (SOP) and optimal solutions of (P).

Theorem 9 (Maeda 2012, Theorem 4.2) (i) If x* € X is a unique optimal solution of
(P), then x* is a non-dominated solution of (SOP);

(i) If x* € X is an optimal solution of (P), then x* is a weak non-dominated solution
of (SOP).

The following theorem provides a relationship between non-dominated solutions
of (FOP) and optimal solutions of (P).

Theorem 10 In (FOP), assume that X is a convex set, and that F is order preserving
on X. In addition, assume that Fy and F| are strictly convex mappings. If x* € X is
an optimal solution of (P), then x* is a non-dominated solution of (FOP).
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Proof We show that Fy x Fi : R" — Co(R?>") is a strictly convex mapping, where
(Fp x F1)(x) = Fo(x) x Fi(x) foreachx € R". Letx,y € R", x # y, and let
X €]0, 1[. Since Fy and F7 are strictly convex mappings, it follows that Fo(Ax + (1 —
Ay) < AFp(x) + (1 — A Fo(y) and Fi(Ax + (1 — 1)y) < AF1(x) + (1 — ) Fi ().
Thus, we have

(Fo x F))(Ax + (1 — 1) y)
=Fx 4+ (1 —=0y) x Fi(Ax + (1 —=A)y)
< AFo(x)+ 1 —=2)Fo(y) x AFi1(x) + (1 —2)Fi1(y))
= AFo(x) x AF1(x) + (1 = A)Fo(y) x (1 = A)F1(y)
= A (Fo(x) X F1(x)) + (1 = 2) (Fo(y) x F1(y))
= A(Fo x F1)(x) + (1 = M) (Fo x F)(y).

Therefore, Fy x Fj is a strictly convex mapping.

Since Fy x Fj is a strictly convex mapping, it follows that sy (Fo(-) x F1(-); k),
sy (Fo(-) X F1(+); k) : R" — R are strictly convex functions from Theorem 2 (ii), and
that the objective function of (P) is also a strictly convex function. Since the objective
function of (P) is a strictly convex function and X is a convex set, it can be shown
easily that x* is a unique optimal solution of (P). Therefore, x* is a non-dominated
solution of (SOP) from Theorem 9 (i). Since F is order preserving on X and x* is
a non-dominated solution of (SOP), x* is a non-dominated solution of (FOP) from
Theorem 8 (i). O

The following example shows the necessity of the assumption in Theorem 10.
However, whether or not we can weaken the assumption is a future work.

Example 5 In (FOP),letn = 1, m = 2, and X = R. In addition, letk = (1,1, 1, 1) €
int(Rﬁ_), and fix any A € [0, 1]. Set A(x) = [0, |x|] x [0, 1] for each x € R, and define
F:R— F(R?) as F(x) = ca(x) for each x € R. Then, consider the following fuzzy
set optimization problem:

min F (x)

st. xelR (FOPS)
and the following scalarization problem:
min - Asz (Fo(x) x Fi(x); k) + (1 — V)sy (Fo(x) x Fi(x): k) (P5)

st. xeR
where for each x € R, Fy(x) = F1(x) = A(x), s, (Fo(x) x F1(x); k) =0, and

1 if x e [-1, 1],

sy(Fo(x) x Fi(x); k) = { |x| otherwise.

It can be verified that F is order preserving on R, and that Fy and Fj are convex
mappings but not strictly convex mappings. Then, it follows that each x € R is an
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optimal solution of (P5) when A = 1, and thateach x € [—1, 1] is an optimail solution
Qf P5) wben A € [0, 1[. Fix any xg € [—1, 1]\ {0}. Since F(0) < F(xp) and
F(xq) ;ﬁ F(0), xo is not a non-dominated solution of (FOP5) O

Assume that F is strictly order preserving on X in (FOP), and that x* € X is an
optimal solution of (P). From Theorem 9 (ii), x* is a weak non-dominated solution
of (SOP). Then, x* is a candidate of a weak non-dominated solution of (FOP) from
Theorem 8 (ii), and x™* is also a candidate of a non-dominated solution of (FOP) from
Theorem 4. Since in general, solving (SOP) is easier than solving (FOP), and solving
(P) is easier than solving (SOP), the obtained results can be expected to enable us to
solve (FOP) much easier by solving (SOP) or (P) under adequate assumptions.

6 Conclusion

We dealt with the fuzzy set optimization problems. First, the scalarizations of sets
were introduced, and their properties were investigated. Next, the order preserving
property was introduced for fuzzy sets. Based on the order preserving property, the
set optimization problems associated with the fuzzy set optimization problems were
derived, and the scalar optimization problems associated with the set optimization
problems were derived by using the scalarizations of sets. Then, the relationships
between (weak) non-dominated solutions of the fuzzy set optimization problems and
those of the set optimization problems were investigated, and the relationships between
non-dominated solutions of the fuzzy set optimization problems and optimal solutions
of the scalar optimization problems were investigated. The obtained results enable us
to solve the fuzzy set optimization problems by solving the set optimization problems
or the scalar optimization problems under adequate assumptions.
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