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Abstract
Parameter estimation is a critical problem in the wide applications of uncertain differ-
ential equations. The method of moments is employed for the first time as an approach
for estimating the parameters in uncertain differential equations. Based on the differ-
ence form of an uncertain differential equation, a function of the parameters is proved
to follow a standard normal uncertainty distribution. Setting the empirical moments
of the functions of the parameters and the observed data equal to the moments of the
standard normal uncertainty distribution, a system of equations about the parameters
is obtained whose solutions are the estimates of the parameters. Analytic examples
and numerical examples are given to illustrate the proposed method of moments.

Keywords Uncertain differential equation · Method of moments · Uncertainty
theory · Parameter estimation

1 Introduction

The stochastic differential equations have been widely applied to modeling time evo-
lution of dynamic systems which are influenced by random noises. The coefficients of
these models sometimes contain parameters whose values are to be estimated based on
some observed data of the systems. So far, many useful methods have been proposed
for the task of parameter estimation in stochastic differential equations, which mainly
could be divided into two categories, namely likelihood-based methods (Taraskin
1974; Kutoyant 1978) and methods of moments (Chan et al. 1992). Interested readers
may consult Bishwal (2008).

With the Wiener processes describing the white noises, the stochastic differential
equations may fail to model many time-varying systems. For example, two paradoxes
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were pointed out by Liu (2013)whenmodeling stock priceswith stochastic differential
equations. Hence, alternative approaches are required to describe the dynamic systems
with noises. Within the framework of uncertainty theory which was founded by Liu
(2007) and perfected by Liu (2009) based on the normality, duality, subadditivity
and product axioms, Liu process was designed as a counterpart of Wiener process.
The uncertain differential equations, which aim to model the dynamic systems with
human uncertainty, are a type of differential equations driven by Liu processes. Chen
and Liu (2010) showed an uncertain differential equation has a unique solution if its
coefficients satisfy the linear growth condition and the Lipschitz condition, and Yao
et al. (2013) showed the solution is stable in measure if the coefficients satisfy the
strong Lipschitz condition. The numerical methods for solving uncertain differential
equations were first designed by Yao and Chen (2013) and later extended by Yang and
Ralescu (2015), Wang et al. (2015), Gao (2016), Zhang et al. (2017), etc.

The uncertain differential equations have been widely applied to the financial
markets. For example, Liu (2009) assumed the short-term stock price follows the
exponential Liu process, and calculated the prices of European options, and Chen
(2011) calculated the prices of American options. Chen and Gao (2013) described the
interest rate in the ideal market with an uncertain differential equation, and calculated
the price of a zero-coupon bond. These works were later extended by other researchers
such as Jiao and Yao (2015), Zhang et al. (2016), Ji and Zhou (2015), etc. In addi-
tion, the uncertain differential equations have also found many applications in optimal
control (Zhu 2019), differential game (Yang and Gao 2016), population model (Sheng
et al. 2017), epidemic model (Li et al. 2017), and so on.

With so many applications of uncertain differential equations, how to estimate their
coefficients based on the observations is a core problem in practice. In this paper, we
undertake the issue by applying the method of moments to the difference forms of
the uncertain differential equations. The rest of this paper is organized as follows.
In the next section, we introduce some basic concepts and theorems about uncertain
variables and uncertain differential equations. Then in Sect. 3, we introduce themethod
of moments for the parameter estimation problems in uncertain differential equations,
and give some analytic examples to illustrate the method. After that, we give some
numerical examples in Sect. 4. Finally, some remarks are made in Sect. 5.

2 Preliminary

In this section, we introduce some basic concepts and formulas about uncertain vari-
ables and uncertain differential equations.

Definition 2.1 (Liu 2007, 2009) Let L be a σ -algebra on a nonempty set �. A set
function M : L → [0, 1] is called an uncertain measure if it satisfies the following
axioms:

Axiom 1 (Normality Axiom) M{�} = 1 for the universal set �.

Axiom 2 (Duality Axiom) M{�} + M{�c} = 1 for any event �.
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Axiom 3 (Subadditivity Axiom) For every countable sequence of events �1,�2,

· · · , we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M {�i } .

Axiom 4 (Product Axiom) Let (�k,Lk,Mk) be uncertainty spaces for k = 1, 2, · · ·
Then the product uncertain measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
= min

k≥1
Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.
An uncertain variable ξ is a measurable function from the uncertainty space

(�,L,M) to the set of real numbers. The uncertain variables ξ1, ξ2, . . . , ξn are said
to be independent if

M

{
n⋂

i=1

(ξi ∈ Bi )

}
= min

1≤i≤n
M {ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bn of real numbers.

Definition 2.2 (Liu 2007) Let ξ be an uncertain variable. Then its uncertainty distri-
bution is defined by

�(x) = M{ξ ≤ x}

for any real number x .

An uncertain variable ξ is called normal if it has an uncertainty distribution

�(x) =
(
1 + exp

(
π(μ − x)√

3σ

))−1

, x ∈ �

denoted byN(μ, σ ). If μ = 0 and σ = 1, then ξ is called a standard normal uncertain
variable. The inverse uncertainty distribution of a standard normal uncertain variable
is

�−1(α) =
√
3

π
ln

α

1 − α
, α ∈ (0, 1).

Definition 2.3 (Liu 2007) Let ξ be an uncertain variable, and k be a positive integer.
Then the k-th moment of ξ is defined by

E[ξ k] =
∫ +∞

0
M

{
ξ k ≥ r

}
dr −

∫ 0

−∞
M

{
ξ k ≤ r

}
dr
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provided that at least one of the two integrals is finite.

Liu (2015) proved that if ξ has an inverse uncertainty distribution �−1(α), then

E[ξ k] =
∫ 1

0

(
�−1(α)

)k
dα.

Hence, for a standard normal uncertain variable ξ ∼ N(0, 1), we have

E[ξ k] =
(√

3

π

)k ∫ 1

0

(
ln

α

1 − α

)k

dα.

Specially, we have E[ξ k] = 0 for any positive odd number k, and

E[ξ2] = 1, E[ξ4] = 21

5
, E[ξ6] = 279

7
.

An uncertain process is a sequence of uncertain variables indexed by the time. As
an uncertain counterpart of Wiener process, Liu process is one of the most frequently
used uncertain processes.

Definition 2.4 (Liu 2009) An uncertain process Ct is called a Liu process if

(i) C0 = 0 and almost all sample paths are Lipschitz continuous,

(ii) Ct has stationary and independent increments,

(iii) the increment Cs+t − Cs has a normal uncertainty distribution

�t (x) =
(
1 + exp

(
− πx√

3t

))−1

, x ∈ �.

Let Xt be an uncertain process. Then the uncertain integral of Xt with respect to
the Liu process Ct is

∫ b

a
XtdCt = lim

	→0

k∑
i=1

Xti · (Cti+1 − Cti )

provided that the limit exists almost surely and is finite for any partition of closed
interval [a, b] with a = t1 < t2 < · · · < tk+1 = b and

	 = max
1≤i≤k

|ti+1 − ti |.
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Definition 2.5 (Liu 2008) Suppose that Ct is a Liu process, and f and g are two
measurable real functions. Then

dXt = f (t, Xt )dt + g(t, Xt )dCt (1)

is called an uncertain differential equation.

An uncertain process Xt is called the solution of the uncertain differential equation
(1) if it satisfies

Xt = X0 +
∫ t

0
f (s, Xs)ds +

∫ t

0
g(s, Xs)dCs .

A real-valued function Xα
t is called the α-path of the uncertain differential equation

(1) if it solves the corresponding ordinary differential equation

dXα
t = f (t, Xα

t )dt + |g(t, Xα
t )|�−1(α)dt

where

�−1(α) =
√
3

π
ln

α

1 − α
, α ∈ (0, 1)

is the inverse uncertainty distribution of a standard normal uncertain variable. For
example, the uncertain differential equation

dXt = (μ1 − μ2Xt )dt + σdCt , μ2 
= 0

has a solution

Xt = μ1

μ2
+

(
X0 − μ1

μ2

)
· exp(−μ2t) + σexp(−μ2t) ·

∫ t

0
exp(μ2s)dCs

and an α-path

Xα
t = X0 · exp(−μ2t) +

(
μ1

μ2
+ σ

μ2
·
√
3

π
ln

α

1 − α

)
(1 − exp(−μ2t)).

3 Parameter estimation

Consider an uncertain differential equation

dXt = f (t, Xt ;μ)dt + g(t, Xt ; σ )dCt (2)
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where μ and σ are unknown parameters to be estimated. Note that the Eq. (2) has a
difference form

Xti+1 = Xti + f (ti , Xti ;μ)(ti+1 − ti ) + g(ti , Xti ; σ )(Cti+1 − Cti )

which can be rewritten as

Xti+1 − Xti − f (ti , Xti ;μ)(ti+1 − ti )

g(ti , Xti ; σ )(ti+1 − ti )
= Cti+1 − Cti

ti+1 − ti
.

According to Definition 2.4 of Liu process, the right term

Cti+1 − Cti

ti+1 − ti
∼ N(0, 1)

is a standard normal uncertain variable with expected value 0 and variance 1, which
has an uncertainty distribution

�(x) =
(
1 + exp

(−πx√
3

))−1

.

Hence, the estimates of the parametersμ and/or σ are supposed to follow the standard
normal uncertainty distribution, i.e.,

Xti+1 − Xti − f (ti , Xti ;μi)(ti+1 − ti )

g(ti , Xti ; σ )(ti+1 − ti )
∼ N(0, 1). (3)

Assume that there are n observations xt1 , xt2 , · · · , xtn of the solution Xt at the times
t1, t2, · · · , tn with t1 < t2 < · · · < tn , respectively. Substituting Xti and Xti+1 with
the observations xti and xti+1 in the Eq. (3), we write

hi (μ, σ ) = xti+1 − xti − f (ti , xti ;μ)(ti+1 − ti )

g(ti , xti ; σ )(ti+1 − ti )
, i = 1, 2, . . . , n − 1

which are real functions of the parameters μ and σ . For the estimates of μ and σ ,
denoted by μ∗ and σ ∗, it follows from the Eq. (3) that the values of these functions
h1(μ∗, σ ∗), h2(μ∗, σ ∗), · · · , hn−1(μ

∗, σ ∗) can be regarded as n − 1 samples of a
standard normal uncertainty distributionN(0, 1). The sample moments would provide
good estimates of the corresponding population moments. Note that the k-th sample
moments are

1

n − 1

n−1∑
i=1

(hi (μ
∗, σ ∗))k, k = 1, 2, . . .
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and the k-th population moments are

(√
3

π

)k ∫ 1

0

(
ln

α

1 − α

)k

dα, k = 1, 2, . . .

Hence, we set

1

n − 1

n−1∑
i=1

(hi (μ
∗, σ ∗))k =

(√
3

π

)k ∫ 1

0

(
ln

α

1 − α

)k

dα, k = 1, 2, . . . , K (4)

where K is the number of unknown parameters. The solutionsμ∗ and σ ∗ of the system
(4) of equations are the estimates of the parameters μ and σ , respectively. The above
method to estimate the parameters in uncertain differential equations is called the
method of moments.

Example 1 Consider the uncertain differential equation

dXt = μdt + σdCt (5)

with two parameters μ and σ > 0 to be estimated. Assume we have n observations
xt1 , xt2 , · · · , xtn of the solution Xt at the times t1, t2, · · · , tn with t1 < t2 < · · · < tn ,
respectively. Then

hi (μ, σ ) = xti+1 − xti − μ(ti+1 − ti )

σ (ti+1 − ti )

for i = 1, 2, . . . , n − 1, and the system (4) of equations becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

n − 1

n−1∑
i=1

xti+1 − xti − μ∗(ti+1 − ti )

σ ∗(ti+1 − ti )
= 0

1

n − 1

n−1∑
i=1

(
xti+1 − xti − μ∗(ti+1 − ti )

σ ∗(ti+1 − ti )

)2

= 1.

Solving the above system of equations, we have

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ∗ = 1

n − 1

n−1∑
i=1

xti+1 − xti
ti+1 − ti

,

σ ∗ =

√√√√√ 1

n − 1

n−1∑
i=1

(
xti+1 − xti
ti+1 − ti

)2

−
(

1

n − 1

n−1∑
i=1

xti+1 − xti
ti+1 − ti

)2

,

which are the estimates of μ and σ in the Eq. (5).
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Example 2 Consider the uncertain differential equation

dXt = μXtdt + σ XtdCt (6)

with two parameters μ and σ > 0 to be estimated. Assume we have n observations
xt1 , xt2 , . . . , xtn of the solution Xt at the times t1, t2, . . . , tn with t1 < t2 < · · · < tn ,
respectively. Then

hi (μ, σ ) = xti+1 − xti − μxti (ti+1 − ti )

σ xti (ti+1 − ti )

for i = 1, 2, · · · , n − 1, and the system (4) of equations becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

n − 1

n−1∑
i=1

xti+1 − xti − μ∗xti (ti+1 − ti )

σ ∗xti (ti+1 − ti )
= 0

1

n − 1

n−1∑
i=1

(
xti+1 − xti − μ∗xti (ti+1 − ti )

σ ∗xti (ti+1 − ti )

)2

= 1.

Solving the above system of equations, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ∗ = 1

n − 1

n−1∑
i=1

xti+1 − xti
xti (ti+1 − ti )

,

σ ∗ =

√√√√√ 1

n − 1

n−1∑
i=1

(
xti+1 − xti

xti (ti+1 − ti )

)2

−
(

1

n − 1

n−1∑
i=1

xti+1 − xti
xti (ti+1 − ti )

)2

,

which are the estimates of μ and σ in the Eq. (6).

4 Numerical examples

In this section, we give two numerical examples to illustrate the method of moments
in estimating the parameters in uncertain differential equations.

Example 3 Consider the uncertain differential equation

dXt = (μ1 − μ2Xt )dt + σdCt

with three parameters μ1, μ2 and σ > 0 to be estimated. Assume that we have 15
groups of observed data as shown in Table 1. According to the system (4) of equations,
the estimates μ∗

1, μ
∗
2 and σ ∗ solve the following system of equations
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Table 1 Observed data in Example 3

i 1 2 3 4 5 6 7 8

ti 0.4 0.7 0.9 1.2 1.5 1.9 2.1 2.4

xti 1.33 2.20 1.52 2.30 2.37 2.49 1.90 1.65

i 9 10 11 12 13 14 15

ti 2.8 3.2 3.4 3.7 4.0 4.2 4.6

xti 1.45 2.82 1.50 2.65 2.07 2.99 1.88

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

14

14∑
i=1

xti+1 − xti − (μ∗
1 − μ∗

2xti )(ti+1 − ti )

σ ∗(ti+1 − ti )
= 0

1

14

14∑
i=1

(
xti+1 − xti − (μ∗

1 − μ∗
2xti )(ti+1 − ti )

σ ∗(ti+1 − ti )

)2

= 1

1

14

14∑
i=1

(
xti+1 − xti − (μ∗

1 − μ∗
2xti )(ti+1 − ti )

σ ∗(ti+1 − ti )

)3

= 0,

which are

μ∗
1 = 6.4357, μ∗

2 = 3.1190, σ ∗ = 2.1735.

Hence, the uncertain differential equation is

dXt = (6.4357 − 3.1190Xt )dt + 2.1735 dCt . (7)

As shown in Fig. 1, all the observed data fall in the area between the 0.17-path and
the 0.93-path of the uncertain differential equation (7), so the estimates

μ∗
1 = 6.4357, μ∗

2 = 3.1190, σ ∗ = 2.1735

are acceptable.

Example 4 Consider the uncertain differential equation

dXt = cos(μ1t + μ2Xt )dt + sin(σ Xt )dCt

with three parameters μ1, μ2 and σ > 0 to be estimated. Assume that we have 12
groups of observed data as shown in Table 2.
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Fig. 1 Observed data and α-paths of Xt in Example 3

Table 2 Observed Data in Example 4

i 1 2 3 4 5 6 7 8 9 10 11 12

ti 0.27 0.92 1.47 1.99 2.53 3.05 3.50 4.55 5.12 6.36 6.88 7.60

xti 1.40 1.60 1.71 1.83 1.76 1.67 1.49 1.24 1.03 1.56 1.47 0.15

According to the system (4) of equations, the estimates μ∗
1, μ

∗
2 and σ ∗ solve the

following system of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

11

11∑
i=1

xti+1 − xti − cos(μ∗
1t + μ∗

2xti ) · (ti+1 − ti )

sin(σ ∗xti ) · (ti+1 − ti )
= 0

1

11

11∑
i=1

(
xti+1 − xti − cos(μ∗

1t + μ∗
2xti ) · (ti+1 − ti )

sin(σ ∗xti ) · (ti+1 − ti )

)2

= 1

1

11

11∑
i=1

(
xti+1 − xti − cos(μ∗

1t + μ∗
2xti ) · (ti+1 − ti )

sin(σ ∗xti ) · (ti+1 − ti )

)3

= 0,

which are

μ∗
1 = 0.4209, μ∗

2 = 0.3699, σ ∗ = 1.6618.

Hence, the uncertain differential equation is

dXt = cos(0.4209t + 0.3699Xt )dt + sin(1.6618Xt )dCt . (8)

123



Parameter estimation in uncertain differential equations 11

Fig. 2 Observed Data and α-paths of Xt in Example 4

As shown in Fig. 2, all the observed data fall in the area between the 0.25-path and
the 0.81-path of the uncertain differential equation (8), so the estimates

μ∗
1 = 0.4209, μ∗

2 = 0.3699, σ ∗ = 1.6618

are acceptable.

5 Conclusion

The method of moments was employed in this paper to estimate the parameters in
uncertain differential equations based on some observations. As an approximation of
the uncertain differential equation, a difference equationwas obtained and transformed
to a special expression in order to derive a systemof the equations about the parameters.
By solving the system of the equations, the estimates of the parameters could be found.
Some analytic examples as well as numerical examples were given to illustrate the
methodofmoments in uncertain differential equations. Future researchesmay consider
the hypothesis test and interval estimation of the parameters in uncertain differential
equations.
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