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Abstract
With the wide applications of fuzzy theory in optimization, fuzzy arithmetic attracts
great attention due to its inevitability in solution process. However, the complex-
ity of the Zadeh extension principle significantly reduces the practicability of fuzzy
optimization technology. In this paper, we prove some important properties on pos-
itive L-R fuzzy numbers, and propose a new calculation method for the product of
multiple positive L-R fuzzy numbers. Furthermore, a numerical integral-based sim-
ulation algorithm (NISA) is proposed to approximate the expected value, variance
and skewness of the product of positive L-R fuzzy numbers. As applications, a fuzzy
multi-period utility maximization model for portfolio selection problem is considered.
For handling the large number of multiplications on L-R fuzzy numbers during the
optimization process, a genetic algorithm integrating NISA is designed. Finally, some
numerical experiments are presented to demonstrate the advantages of NISA. The
results greatly enrich the fuzzy arithmetic methods and promote the practicability of
fuzzy optimization technology.

Keywords Fuzzy sets · Fuzzy arithmetic · Positive L-R fuzzy number · Multi-period
portfolio selection

1 Introduction

Fuzzy theory has been widely applied in optimal control, liner optimization, nonlin-
ear optimization, integer optimization and many other fields of optimization since it
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was proposed in 1965. As an important component of fuzzy theory, fuzzy arithmetic
attracts great attention for its inevitability in solution process. Various fuzzy arithmetic
rules were proposed in the past few years. For example, Zadeh (1978) proposed the
basic fuzzy arithmetic rules based on the extension principle. Dimitar and Ronald
(1997) pointed out that the binary fuzzy arithmetic could be represented as fuzzy
reasoning, and proposed some simple expressions for operations on fuzzy numbers.
The above arithmetic rules are all based on the Zadeh extension principle, which are
computationally expensive in solving complex optimization problems.

Based on the fuzzy representation theorem, some arithmetic rules were established
by treating fuzzy numbers as a collection of γ -level sets. For example, Chou (2003)
studied the product arithmetic of two triangular fuzzy numbers by proposing L-R
inverse function arithmetic principle, and presented an effectivemethod to compute the
canonical representation of product on two triangular fuzzy numbers. Chang andHung
(2006) studied the γ -level fuzzy arithmetic by employing vertexmethod, and proposed
some simplifying rules to reduce the computation cost. More γ -level fuzzy arithmetic
rules could be found in Anile et al. (1995). Although those rules can reduce the
computational complexity, they cannot preserve some important algebraic properties
that are naturally valid for the arithmetics of real numbers. In view of this, Holčapek
and Štěpnička (2014) presented a novel framework for arithmetic of extensional fuzzy
numbers by introducingMI-algebras structures, which imposed an improvement from
a theoretical as well as a practical perspective.

To simplify arithmetics on fuzzy numbers, some approximation methods are pro-
posed by approximating the general fuzzy numbers with special fuzzy numbers, such
as interval, triangular and trapezoidal fuzzy numbers. The current approximationmeth-
ods can be classified into Euclidean distance basedmethod and non-Euclidean distance
basedmethod. The representative studies on Euclidean distance based approximations
include Abbasbandy andAsady (2004), Grzegorzewski (2002) andMa et al. (2000). In
details, Abbasbandy and Asady (2004) proposed the nearest trapezoidal approxima-
tion to a fuzzy number from the perspective of distance metric. Grzegorzewski (2002)
proposed the nearest interval approximation operator to approximate fuzzy numbers.
Ma et al. (2000) introduced an approach of approximating a general fuzzy number by
using symmetric triangular fuzzy number. The non-Euclidean distance based methods
include weighted Euclidean distance (Zeng and Li 2007), Hamming distance (Chanas
2001) and source distance (Abbasbandy and Amirfakhrian 2006). Zeng and Li (2007)
applied the weighted distance between two fuzzy numbers to investigate the triangular
approximations, and discussed continuity, translation invariance, scale invariance and
identity in approximation process. Chanas (2001) introduced the interval approxima-
tion by minimizing the Hamming distance between the interval fuzzy number and the
approximated fuzzy number. Abbasbandy and Amirfakhrian (2006) defined a source
distance on the set of fuzzy numbers and applied it to approximate the generalized
L-R fuzzy numbers with trapezoidal fuzzy numbers.

Although various fuzzy arithmetic rules are proposed, there are still some limita-
tions on product operations arithmetic. Thefirst is theweak practicability. For example,
Chou (2003) computed the canonical representation of the product of two triangular
fuzzy numbers. However, the product of two triangular fuzzy numbers is not a trian-
gular fuzzy number anymore. Therefore, this fuzzy arithmetic rule cannot be used in
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real applications where arithmetics on more than two fuzzy numbers are required. The
second issue is the information loss. The approximation methods take special type
of fuzzy numbers to approximate the general fuzzy numbers based on some distance
metric. Although most of the important information are preserved, some personalized
properties contained in themembership function are neglected. To overcome the above
limitations, in this paper, we study the product arithmetic of multiple positive L-R
fuzzy numbers, which is meaningful on completing the fuzzy arithmetic rules, and is
helpful on developing fuzzy optimization technology.

All the above studies focus on the basic fuzzy arithmetics including addition, sub-
traction, multiplication and division, of which the arithmetic result is still a fuzzy
number. In applications, some real valued functions of fuzzy numbers need to be calcu-
lated to rank fuzzy numbers, e.g., “mathematical expectation”. One popular computing
method is fuzzy simulation, whichwas first proposed by Liu and Iwamura (1998). Fur-
thermore, Liu and Liu (2002) designed a stochastic discretization-based simulation
algorithm to derive the expected value of functions of fuzzy variables. Based on the
proposed product arithmetic methods, we develop a numerical integral-based sim-
ulation algorithm (NISA) for the product arithmetic among multiple positive L-R
fuzzy numbers to calculate the expected value of product in an acceptable computa-
tion time. As applications, we apply NISA in fuzzy portfolio selection problem, where
L-R fuzzy numbers are commonly accepted to denote the returns of risky assets due to
their membership functions are convex and closer to the real return distributions. The
results greatly promote the practical applications of fuzzy optimization technology.

Compared with previous fuzzy arithmetics, our proposed NISA exhibits higher
practicability in solving complicated fuzzy optimization issues due to its capability
of dealing with the arithmetic among large-scale fuzzy numbers without information
loss. In the meanwhile, NISA outperforms some other popular fuzzy optimization
techniques such as fuzzy simulation from the perspective of accuracy and running
speed. The explicit contributions of this paper can be summarized as follows:

• The product of multiple positive L-R fuzzy numbers is studied and some of its
mathematical properties are proved, which assists in overcoming the limitation of
information loss in the approximation arithmetics.

• The NISA is proposed to approximate the expected value, variance and skewness
of fuzzy numbers, achieving a better performance than fuzzy simulation in both
accuracy and running speed.

• The NIGA is firstly designed by integrating the NISA and genetic algorithm,
which is able to efficiently tackle the complicated portfolio selection problems
and exhibits higher practicability than fuzzy simulation-based genetic algorithm.

The rest of this paper is structured as follows. Section 2 reviews the preliminaries
about fuzzy numbers. In Sect. 3, we discuss the product arithmetic of positive L-R
fuzzy numbers and present some lemmas. Section 4 proposes a NISA to approximate
the expected values, variances and skewness of fuzzy numbers. Section 5 introduces
a multi-period portfolio selection problem and proposes a genetic algorithm inte-
grating NISA to tackle with multi-period portfolio selection. Section 6 provides two
numerical experiments to demonstrate the effectiveness and efficiency of our proposed
algorithms. Finally, Sect. 7 concludes the paper.
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2 Preliminaries

In this section, we briefly introduce some fundamental concepts on fuzzy numbers,
fuzzy expected value, fuzzy variance and fuzzy skewness.

Definition 1 (Zadeh 1965) A fuzzy subset ˜A in X is defined as ˜A = {〈x, μ(x)〉 :
x ∈ X}, where μ : X → [0, 1] and the real value μ(x) represents the degree of
membership of x in ˜A. The γ -level set of ˜A is defined as [˜A]γ = {x ∈ X : μ(x) ≥ γ }
for any γ ∈ (0, 1].
Remark 1 The γ -level set of ˜A is usually expressed as [˜A]γ = [a1(γ ), a2(γ )] with
γ ∈ (0, 1], where a1(γ ) and a2(γ ) represent the infimum and supremum of [˜A]γ ,
respectively.

Definition 2 (Dubois and Prade 1980) A fuzzy number ξ is a normal and convex fuzzy
subset of �. Here, normality implies that there is a point x0 such that μ(x0) = 1, and
convexity means that μ(αx1 + (1 − α)x2) ≥ min{μ(x1), μ(x2)} for any α ∈ [0, 1]
and x1, x2 ∈ �.

As regard to the L-R fuzzy number, various definitions have been proposed. In this
paper, we employ the most commonly used definition given by Triesch (1993).

Definition 3 (Triesch1993)A fuzzynumber ξ is a L-R fuzzynumber if itsmembership
function satisfies

μ(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

L
(

x−a
b−a

)

, if a ≤ x ≤ b

R
(

c−x
c−b

)

, if b ≤ x ≤ c

0, otherwise,

(1)

where L and R are increasing and continuous functions: [0, 1] → [0, 1] with L(0) =
R(0) = 0 and L(1) = R(1) = 1. Here b is the peak of ξ , b − a and c − b are the left
and right spread, respectively.

Definition 4 (Li et al. 2015) Let ξ be a fuzzy number with differentiable membership
function μ(x). Then its expected value is defined as

E[ξ ] =
∫ +∞

−∞
xμ(x)|μ′(x)|dx . (2)

Definition 5 (Li et al. 2015) Let ξ be a fuzzy number with differentiable membership
function μ(x) and finite expected value E[ξ ]. Then its variance is defined as

V [ξ ] =
∫ +∞

−∞
(x − E[ξ ])2μ(x)|μ′(x)|dx . (3)

Definition 6 (Li et al. 2015) Let ξ be a fuzzy number with differentiable membership
function μ(x) and finite expected value E[ξ ]. Then its skewness is defined as

S[ξ ] =
∫ +∞

−∞
(x − E[ξ ])3μ(x)|μ′(x)|dx . (4)
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Remark 2 For any L-R fuzzy number with differentiable membership function, its
expected value, variance and skewness can be calculated following from Eqs. (2), (3)
and (4). Here μ′(x) represents the first order derivative of μ(x) and the differentia-
bility refers to the almost everywhere differentiability. For example, the membership
function of a triangular fuzzy number (a, b, c) is almost everywhere differentiable
except the peak point b.

In addition, Li et al. (2015) proposed some equivalents of Eqs. (2), (3) and (4) by
using γ -level set. Suppose that ξ has γ -level set

[

ξ
]γ =[a1(γ ), a2(γ )], then its expected

value, variance and skewness are

E[ξ ] =
∫ 1

0
γ (a1(γ ) + a2(γ ))dγ, (5)

V [ξ ] =
∫ 1

0
γ [(a1(γ ) − E[ξ ])2 + (a2(γ ) − E[ξ ])2]dγ, (6)

S[ξ ] =
∫ 1

0
γ [(a1(γ ) − E[ξ ])3 + (a2(γ ) − E[ξ ])3]dγ. (7)

3 Product on positive L-R fuzzy numbers

In this section, we study the product arithmetic of two positive L-R fuzzy numbers
and extend it to n L-R fuzzy numbers. Suppose that ξ1 and ξ2 are two positive L-R
fuzzy numbers with membership functions μ1(x) and μ2(x). Denote the peak point
as bi , and the left and right spreads as bi − ai and ci − bi with i = 1, 2. Assume
that ξ = ξ1 × ξ2 has membership function μ(x). It is obvious that ξ takes values in
[a1a2, c1c2]. Based on the Zadeh extension principle, μ(a1a2) = μ(c1c2) = 0 and
μ(b1b2) = 1. In addition, denote S = {(x1, x2)|a1 ≤ x1 ≤ c1, a2 ≤ x2 ≤ c2}. For
any x0 ∈ (a1a2, c1c2), we have

μ(x0) = sup
(x1,x2)∈S

{min{μ1(x1), μ2(x2)}|x1x2 = x0}. (8)

There are four scenarios on the locations of x1 and x2 satisfying x1x2 = x0:

L1 = {(x1, x2)|a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2},
L2 = {(x1, x2)|a1 ≤ x1 ≤ b1, b2 ≤ x2 ≤ c2},
R1 = {(x1, x2)|b1 ≤ x1 ≤ c1, b2 ≤ x2 ≤ c2},
R2 = {(x1, x2)|b1 ≤ x1 ≤ c1, a2 ≤ x2 ≤ b2}.

It is obvious that S = L1 ∪ L2 ∪ R1 ∪ R2 (See Fig. 1). We can prove the following
properties:

(i) for any x0 ∈ (a1a2, b1b2), we have μ(x0) = sup
(x1,x2)∈L1

{min{μ1(x1), μ2(x2)}|
x1x2 = x0} and there exist x1 ∈ [a1, b1] and x2 ∈ [a2, b2] satisfying x1x2 = x0
such that μ(x0) = μ1(x1) = μ2(x2).
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Fig. 1 Scenarios for x1, x2 with x1x2 = x0, x0 ∈ (a1a2, c1c2)

(ii) for any x0 ∈ (b1b2, c1c2), we have μ(x0) = sup
(x1,x2)∈R1

{min{μ1(x1), μ2(x2)}|
x1x2 = x0} and there exist x1 ∈ [b1, c1] and x2 ∈ [b2, c2] satisfying x1x2 = x0
such that μ(x0) = μ1(x1) = μ2(x2).

The proof can be found in “Appendix A”.

Lemma 1 Suppose that ξ1, ξ2, . . . , ξn are positive L-R fuzzy numbers with differen-
tiable membership function μ1(x), μ2(x), . . . , μn(x), then ξ = ξ1 × ξ2 × · · · × ξn is
also a positive L-R fuzzy number with differentiable membership function.

Proof We prove this lemma by using mathematical induction. The argument breaks
down into two steps.

Step 1 We prove this lemma holds when n = 2.
As is known from previous description, ξ = ξ1 × ξ2 takes values in [a1a2, c1c2],

μ(a1a2) = μ(c1c2) = 0 and μ(b1b2) = 1. First, we prove the monotonicity, conti-
nuity and differentiability of μ(x) when x ∈ [a1a2, b1b2]. Denote the γ -level set of ξ

as [a1(γ ), a2(γ )] and the γ -level sets of ξi as [ai1(γ ), ai2(γ )], i = 1, 2, γ ∈ (0, 1],
where a1(γ ) ∈ [a1a2, b1b2] and a2(γ ) ∈ [b1b2, c1c2]. It can be found that ai1(γ )

is the inverse function of μi (x) with x ∈ [ai , bi ] and ai2(γ ) is the inverse func-
tion of μi (x) with x ∈ [bi , ci ]. According to property (i), for any x ∈ [a1a2, b1b2]
with a1(γ ) = x , there exist x1 ∈ [a1, b1] and x2 ∈ [a2, b2] such that x1x2 = x
and μ(x) = μ1(x1) = μ2(x2) = γ , then a1(γ ) = a11(γ ) · a21(γ ). Since a11(γ )

and a21(γ ) are increasing, continuous and differential for γ ∈ (0, 1], then a1(γ ) is
monotonic increasing, continuous and differential. Furthermore,μ(x) representing the
inverse function of a1(γ ) is differentiable when x ∈ [a1a2, b1b2]. Similarly, according
to property (ii), for any x ∈ [b1b2, c1c2] with a2(γ ) = x , there exist x1 ∈ [b1, c1]
and x2 ∈ [b2, c2] such that x1x2 = x and μ(x) = μ1(x1) = μ2(x2) = γ , then
a2(γ ) = a12(γ ) ·a22(γ ), where a12(γ ) and a22(γ ) are decreasing and continuous dif-
ferentiable. It can be proved thatμ(x) is differentiable for x ∈ [b1b2, c1c2]. According
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to Definition 3, ξ1×ξ2 is a L-R fuzzy number with differentiablemembership function
μ(x).

Step 2 We prove this lemma holds when n > 2.
Suppose that ξ1 × ξ2 × · · · × ξk is a positive L-R fuzzy number with differentiable

membership function. Similar to Step 1, we can prove that ξ = ξ1×ξ2×···×ξk×ξk+1
is a L-R fuzzy number with differentiable membership function. The proof is then
complete. �

Following from Lemma 1, the membership function of the product of any positive
L-R fuzzy numbers with differentiable membership functions is differentiable and
therefore the product’s expected value, variance and skewness can be well defined.

Example 1 Suppose that the membership functions of positive triangular fuzzy num-
bers ξ1 = (s1, s2, s3) and ξ2 = (t1, t2, t3) are

μ1(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x−s1
s2−s1

, if s1 ≤ x < s2
s3−x
s3−s2

, if s2 ≤ x < s3

0, otherwise,

μ2(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x−t1
t2−t1

, if t1 ≤ x < t2
t3−x
t3−t2

, if t2 ≤ x < t3

0, otherwise.

Set the γ -level sets for ξ1 and ξ2 as [a11(γ ), a12(γ )] and [a21(γ ), a22(γ )], respectively.
Then for any γ ∈ (0, 1], we have

a11(γ ) = s1 + (s2 − s1)γ, a12(γ ) = s3 − (s3 − s2)γ,

a21(γ ) = t1 + (t2 − t1)γ, a22(γ ) = t3 − (t3 − t2)γ.

Suppose that the γ -level set for ξ = ξ1 × ξ2 is [a1(γ ), a2(γ )]. From properties (i) and
(ii), we have

μ(a1(γ )) = μ1(a11(γ )) = μ2(a21(γ )), μ(a2(γ )) = μ1(a12(γ )) = μ2(a22(γ )).

Therefore, we can obtain

a1(γ ) = a11(γ )a21(γ ) = (s1 + (s2 − s1)γ )(t1 + (t2 − t1)γ ),

a2(γ ) = a12(γ )a22(γ ) = (s3 − (s3 − s2)γ )(t3 − (t3 − t2)γ ).

According to Lemma 1, ξ is a L-R fuzzy number with differentiable membership
function. Then its expected value, variance and skewness can be calculated as follows:

E[ξ ] = s1t1 + s1t2 + s2t1 + 6s2t2 + s2t3 + s3t2 + s3t3
12

,

V [ξ ] = (s1t1 + 2s2t2)2 + (s3t3 + 2s2t2)2 + (s1t2 + s1t1)2 + (s3t2 + s3t3)2

60

+ (s2t3 + 2s2t2)2 + 4t22 (s22 + s1s2 + s2s3) + 2s2(s1t21 + s3t23 )

60
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+ (s2t1 + 2s2t2)2 − 60E[ξ ]2
60

,

S[ξ ] = 3(s1t2 + s2t1 + s1t1)3 + 5(s1t2 + s2t1 + s2t2)3 + 3(s1t1 + s2t2)3 + 9s31 t
3
1

840

+ 3(s3t2 + s2t3 + s3t3)3 + 5(s3t2 + s2t3 + s2t2)3 + 3(s3t3 + s2t2)3 + 9s33 t
3
3

840

+ s22 t
2
2 (6s1t1 + 30s1t2 + 30s2t1 + 194s2t2 + 30s3t2 + 30s2t3 + 6s3t3)

840

+ 18s2s3t2t3(s3t2 + s2t3) − 5(s1t2 + s2t1)3 − 5(s3t2 + s2t3)3

840

+ 6s21 t
2
1 (s1t2 + s2t1) + 6s23 t

2
3 (s3t2 + s2t3) + 18s1s2t1t2(s1t2 + s2t1)

840
− 3E[ξ ]V [ξ ] − E[ξ ]3.

For example, set ξ1 = (1, 2, 3) and ξ2 = (2, 3, 6), then E[ξ ] = 7, V [ξ ] = 311/30
and S[ξ ] = 1079/35. In particular, if ξ1 = ξ2 with si = ti , i = 1, 2, 3, we have

E[ξ ] = s21 + 2s1s2 + 6s22 + 2s2s3 + s23
12

,

V [ξ ] = s41 + 10s42 + s43 + 4(s1 + s3)s32 + 3(s21 + s23 )s
2
2 + 2(s31 + s33)s2 − 30E[ξ ]2

30
,

S[ξ ] = s61 + 14s62 + s63 + 6(s1 + s3)s52 + 5(s21 + s23 )s
4
2 + 4(s31 + s33)s

3
2 + 3s41s

2
2

56

+ 3s43s
2
2 + 2(s51 + s53)s2 − 168E[ξ ]V [ξ ] − 56E[ξ ]3

56
.

4 Numerical integral-based simulation algorithm

This section proposes a NISA to approximate the expected value, variance and skew-
ness of the product and sum of multiple positive L-R fuzzy numbers. A comparison
between the approximated values and the exact values is performed to illustrate the
effectiveness of NISA.

Suppose that ξi is a positive L-R fuzzy number taking values in interval [ai , ci ]
with membership function μi (x), i = 1, 2, . . . , n. According to Lemma 1, ξ =
ξ1 × ξ2 × · · · × ξn is a L-R fuzzy number in interval [a1a2 · · · an, c1c2 · · · cn] with
membership function μ(x). Denote the γ -level set of ξ as [a1(γ ), a2(γ )] and the γ -
level sets of ξi as [ai1(γ ), ai2(γ )], i = 1, 2, . . . , n, γ ∈ (0, 1]. For any γ ∈ (0, 1], it
follows from properties (i) and (ii) that

a1(γ ) = a11(γ )a21(γ ) · · · an1(γ ), a2(γ ) = a12(γ )a22(γ ) · · · an2(γ ). (9)

Based on the above analysis, we design NISA to approximate the expected
value, variance and skewness of ξ . Firstly, uniformly select N discrete points
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Fig. 2 Membership function of ξ

γ1, γ2, . . . , γN ∈ (0, 1] (See Fig. 2) and compute the γi -level sets [a1(γi ), a2(γi )]
following from Eq. (9) with i = 1, 2, . . . , N . Secondly, approximate E[ξ ] by using
the following numerical integration formula

e =
N

∑

i=1

γi
[

a1(γi ) + a2(γi )
]

(γi − γi−1)

where γ0 = 0. Finally, approximate V [ξ ] and S[ξ ] as follows

v =
N

∑

i=1

γi [(a1(γi ) − e)2 + (a2(γi ) − e)2](γi − γi−1),

s =
N

∑

i=1

γi [(a1(γi ) − e)3 + (a2(γi ) − e)3](γi − γi−1).

The core mechanism of NISA is generating a certain number of sample points and
simulate the Riemann integrals of the expected values, variances and skewness. The
steps are presented in Algorithm 4.1.

The relative errors of expected value, variance and skewness are subject to parameter
N . Therefore, the optimal parameter N needs to be determined to obtain a satisfactory
approximation by varying the number of sample points in NISA.

Example 2 In this example, we consider the expected value, variance and skewness
of ξ = ξ1 × ξ2 with ξ1 = (1, 2, 3) and ξ2 = (2, 3, 6). According to Example 1, the
exact values are E[ξ ] = 7, V [ξ ] = 311/30 and S[ξ ] = 1079/35. By running NISA
20 times with N varying from 10 to 200, the approximated values and relative errors
are obtained (See Table 1). The relative error is defined as

δ = |r − r∗|
max{|r |, |r∗|} × 100%, (10)

where r is the approximated value and r∗ is the exact value.
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Algorithm 4.1 NISA

Step 1.Initialize parameter N .
Step 2.Uniformly generate point sequence γi = i/N in interval (0, 1], i = 1, 2, . . . , N . Compute

the γi -level sets: a1(γi ) = a11(γi )a21(γi ) · · · an1(γi ), a2(γi ) = a12(γi )
a22(γi ) · · · an2(γi ).

Step 3.Set e = 0, v = 0, s = 0 and i = 1.
Step 4.e = e + γi a1(γi )/N + γi a2(γi )/N . Set i = i + 1.
Step 5.If i ≤ N , go to Step 4.
Step 6.Set j = 1.
Step 7.v = v + γ j (a1(γ j ) − e)2/N + γ j (a2(γ j ) − e)2/N , s = s + γ j (a1(γ j )−

e)3/N + γ j (a2(γ j ) − e)3/N . Set j = j + 1.
Step 8.If j ≤ N , go to Step 7.
Step 9.Return e, v and s.

Table 1 Approximated values and relative errors as N varies

N Approximated values for e/v/s Relative errors for e/v/s (%) Times (s)

10 7.5900/10.8662/11.0531 7.77/4.60/64.15 0.0071

20 7.2975/10.5125/21.2117 4.08/1.39/31.19 0.0088

30 7.1989/10.4420/24.4723 2.76/0.72/20.62 0.0067

40 7.1494/10.4151/26.0813 2.09/0.47/15.40 0.0068

50 7.1196/10.4016/27.0402 1.68/0.34/12.29 0.0062

60 7.0997/10.3937/27.6768 1.40/0.26/10.22 0.0154

70 7.0855/10.3885/28.1301 1.21/0.21/8.75 0.0149

80 7.0748/10.3850/28.4695 1.06/0.18/7.65 0.0163

90 7.0665/10.3824/28.7330 0.94/0.15/6.80 0.0083

100 7.0599/10.3804/28.9436 0.85/0.13/6.11 0.0130

110 7.0545/10.3788/29.1157 0.77/0.12/5.56 0.0128

120 7.0499/10.3776/29.2590 0.71/0.11/5.09 0.0143

130 7.0461/10.3765/29.3802 0.65/0.09/4.70 0.0173

140 7.0428/10.3757/29.4840 0.61/0.09/4.36 0.0145

150 7.0400/10.3750/29.5739 0.57/0.08/4.07 0.0077

160 7.0375/10.3744/29.6526 0.53/0.07/3.81 0.0129

170 7.0353/10.3738/29.7220 0.50/0.07/3.59 0.0158

180 7.0333/10.3734/29.7836 0.47/0.06/3.39 0.0073

190 7.0316/10.3730/29.8387 0.45/0.06/3.21 0.0083

200 7.0300/10.3726/29.8883 0.43/0.06/3.05 0.0114

The variation tendency of relative errorswith regard to N is depicted in Fig. 3,which
shows that the relative errors for expected value, variance and skewness decrease with
respect to N . When N exceeds 160, the relative errors of expected value and variance
are both less than 1% and the relative error of skewness is less than 4%, which verifies
that NISA is able to converge to the exact value with a certain size of sample points. In
addition, it follows from Table 1 that the average running time for different parameters
is 0.0113 seconds, justifying the high running speed of NISA.

123



On product of positive L-R fuzzy numbers and its… 63

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N

R
el

at
iv

e 
er

ro
r

Expected value
Variance
Skewness

Fig. 3 An illustration on convergence of NISA

Example 3 Taking N = 2000, we perform NISA on 12 fuzzy numbers to obtain their
approximated expected values, variances and skewness and make comparisons with
the exact values. The results are shown in Table 2, where the second column lists the
approximated values for expected value/variance/skewness (e/v/s), the third column
lists the exact values (E[ξ ]/V [ξ ]/S[ξ ]), and the last column records the relative errors
(δ(e)/δ(v)/δ(s)).

The results show that the relative errors range from 0.00 to 2.57% and the average
errors for expected values, variances and skewness are 0.48%, 0.01%, and 1.26%,
which implies that NISA can obtain satisfactory approximations for the expected
values, variances and skewness of fuzzy numbers.

5 Fuzzymulti-period portfolio selectionmodel and numerical
integral-based genetic algorithm

This section presents the application of NISA in portfolio selection. A fuzzy multi-
period portfolio selection model considering different risk preferences is introduced
to deal with the financial investment issues, and a hybrid algorithm integrating NISA
and genetic algorithm (NIGA) is designed to solve the above model.

5.1 Fuzzymulti-period portfolio selectionmodel

Portfolio selection studies the method of allocating the investor’s initial capital among
multiple risky assets to maximize the investment return and/or minimize the invest-
ment risk. The pioneer work of portfolio selection theory was proposed by Markowitz
(1952), which inspires many subsequent portfolio selection studies (Lai et al. 2006;
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Yu et al. 2012). The above portfolio selection studies are based on probability theory,
where the returns of risky assets are treated as random variables with known proba-
bility distributions derived by historical data. In case of there is no enough data, fuzzy
numbers are used to characterize the asset returns. With the development of fuzzy
theory, an increasing number of research works on fuzzy portfolio selection problem
can be found in literature (Huang 2011; Li and Peter 2011; Li et al. 2015; Wang and
Zhu 2002; Wu and Liu 2012; Zhang et al. 2017; Zhou et al. 2017), which reflect
the successful applications of fuzzy theory in practical financial issues. In terms of
investment horizon, the portfolio selection studies can be divided into single-period
portfolio selections (Lai et al. 2006; Li and Peter 2011; Li et al. 2015; Markowitz
1952) and multi-period portfolio selections (Guo et al. 2016; Zhou et al. 2017). The
representative single-period portfolio selection is Markowitz’s mean-variance model,
which aspires to find the best tradeoff between the return and risk in one single period.
Only one decision making is required at the beginning of this short-term investment.
However, for the long-term investment, it is better to adjust the investment strategies
constantly since the performances of risky assets change over different periods. There-
fore, multi-period portfolio selection is attracting attention from both the academic
researchers and practitioners. For example, Guo et al. (2016) studied a multi-period
portfolio selection model where the investment horizons of risky assets were assumed
to be different. In this paper, we consider a fuzzy multi-period portfolio selection
problem.

Consider a portfolio selection problem among n risky assets and a risk-free asset
over an investment horizon of T periods. The initial wealth isW1, and returns obtained
at each period are reallocated in the next period. To facilitate our discussion, we
introduce the following notations (See Table 3).

Various criteria are considered to achieve a high flexibility in portfolio selection,
such as return, risk, skewness and transaction cost. The investment process is assumed
to be self-financing, which means additional capital infusion or withdrawal is forbid-
den. The transaction cost is considered as a V-shaped function of differences between
the t th period portfolio xt and the (t − 1)th period portfolio xt−1. Hence the unit
transaction cost at period t is Dt = ∑n+1

i=1 dti |xti − x(t−1)i | with x0i = 0 for all

Table 3 List of notations

Notations

i Index for risky asset, i = 1, 2, . . . , n

t Index for investment period, t = 1, 2, . . . , T

r f Constant return for risk-free asset

dti Unit transaction cost of asset i (i = 1, 2, . . . , n + 1) at period t
(t = 1, 2, . . . , T )

Wt Available wealth at the beginning of period t (t = 1, 2, . . . , T + 1)

ξti Return of risky asset i (i = 1, 2, . . . , n) at period t (t = 1, 2, . . . , T ),
which are fuzzy variables

xti Investment proportion on asset i (i = 1, 2, . . . , n + 1) at period t
(t = 1, 2, . . . , T ), which are decision variables

123



66 X. Li et al.

i = 1, 2, . . . , n+1. Then the available wealth at the end of period T can be expressed
as

WT+1 = W1

T
∏

t=1

(

n
∑

i=1

ξti xti + r f xt(n+1) − Dt

)

. (11)

In portfolio selection, the return, risk and skewness are three objectives that an
investor concerns most, which are quantified by E[WT+1], V [WT+1] and S[WT+1],
respectively. Although higher moments of return distributions, e.g., kurtosis, are rele-
vant to the investment decisions, their influence on the optimal portfolio is negligible
comparedwith the first threemoments. In addition, the introduction of highermoments
in portfolio selection will significantly increase the calculation burden. Therefore, in
this paper, we focus on the return, risk and skewness. A good portfolio is generally able
to maximize the return and skewness, and minimize the investment risk. Accordingly,
the mean-variance-skewness model is formulated as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max E[WT+1]
min V [WT+1]
max S[WT+1]
s.t. xt1 + xt2 + · · · + xt(n+1) = 1, t = 1, 2, . . . , T ,

0 ≤ xti ≤ 1, t = 1, 2, . . . , T , i = 1, 2, . . . , n + 1.

(12)

The return, risk and skewness are of different importance for different individu-
als. For example, aggressive investors tend to maximize the total return rather than
avert risk. However, conservative investors may exert a tremendous fascination on
minimizing the total risk. In case that the return and risk are the same, both of the
aggressive and conservative investors prefer a better skewness. The key to tackle with
the above multi-objective portfolio selection model is to find a balance satisfying the
three objectives simultaneously. To achieve this, utility function is employed to trans-
form the multi-objective programming model into a single-objective programming
problem.

Utility function of portfolio selection represents satisfaction degree of the investors
with regard to the given portfolio, which differ among different individuals (See Fig.
4). The expected utility model (EUM) is employed to obtain the optimal investment
strategy, which is expressed as

⎧

⎪

⎨

⎪

⎩

max E[u(WT+1)]
s.t. xt1 + xt2 + · · · + xt(n+1) = 1, t = 1, 2, . . . , T ,

0 ≤ xti ≤ 1, t = 1, 2, . . . , T , i = 1, 2, . . . , n + 1,

(13)

where the first constraint represents that the proportions sum to one, ensuring all the
available wealth is allocated to (n + 1) assets at the beginning of each period. The
second constraint means that no short sales or borrowings is allowed.
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Fig. 4 Utility functions of different investors

As is illustrated in Liu et al. (2003), it is assumed that the utility function u(WT+1)

can be approximated by the third-order Taylor’s expansion around the expected value
E(WT+1). Thus, a connection between utility function, mean, variance and skewness
can be established, which is beneficial to incorporate three criteria together to reduce
computational complexity. The extension process is shown as follows:

u(WT+1) = u(E[WT+1]) + u′(E[WT+1])(WT+1 − E[WT+1])
+1

2
u′′(E[WT+1])(WT+1 − E[WT+1])2

+1

6
u′′′(E[WT+1])(WT+1 − E[WT+1])3,

where u′(·), u′′(·) and u′′′(·) represent the first, second and third order derivatives of
u(·), respectively.

Taking the expectation in both sides of the equation, one can obtain

E[u(WT+1)] = u(E[WT+1]) + 1

2
u′′(E[WT+1])E[(WT+1 − E[WT+1])2]

+ 1

6
u′′′(E[WT+1])E[(WT+1 − E[WT+1])3]

= u(E[WT+1]) + 1

2
u′′(E[WT+1])V [WT+1]

+ 1

6
u′′′(E[WT+1])S[WT+1].

Example 4 Consider a 6-period portfolio selection problem with 6 risky assets, of
which the returns are characterized by fuzzy numbers, and a risk-free asset with con-
stant return r f . According to Eq. (11), the available wealth at the end of period 6
is
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Table 4 EUMs for different risk preferences

Risk preferences Risk appetite Risk neutral Risk averse

Utility function u(x) = x3 u(x) = x u(x) = √
x

Objective E[W7]3 + 3E[W7]V [W7] + S[W7] E[W7] E[W7] +
1

8
E[W7]−

3
2 V [W7]

− 1

16
E[W7]−

5
2 S[W7]

Constraint xt1 + xt2 + · · · + xt7 =
1, 0 ≤ xti ≤ 1, t =
1, 2, . . . , 6, i = 1, 2, . . . , 7.

W7 = W1

6
∏

t=1

(

6
∑

i=1

ξti xti + r f xt7 −
7

∑

i=1

dti |xti − x(t−1)i |
)

.

Based on different risk preferences, the EUMs can be formulated as follows (Table 4).

5.2 Numerical integral-based genetic algorithm

Genetic algorithm (GA) is a stochastic searchmethod for optimization problemswhich
is inspired by the Darwinian process of evolution. It starts by randomly generating an
initial population consisting of multiple individuals, where each individual denotes a
feasible solution, and then constantly update these individuals in each generation by
mimicking the gene inheritance andmutation in the process of evolution. After several
generations, the fittest individual survives as the optimal solution.

GA can be integrated with other optimization algorithms easily due to its strong
practicability and scalability. One good illustration is the fuzzy simulation-based
genetic algorithm (FSGA), which was widely applied in optimization. For example,
Guo et al. (2016) employed FSGA to tackle with the multi-period portfolio selection
problem with different investment horizons. Although FSGA is able to tackle with
complex optimization issues, it has a significant drawback of expensive running cost.
The first reason is the random selection of data points. It is theoretically reasonable to
randomly select a certain number of data points to cover the whole interval such that
the simulated value is closer to the exact value, but this random selection mechanism
only works when the number of data points is large enough, which is caused by the
complexity of the Zadeh extension principle. This explains why the number of data
points N in fuzzy simulation is usually larger than 2500. However, in our proposed
NISA, we uniformly select the data sequence γi in interval (0, 1] so that the γi -level
sets cover every subinterval of [a, c] (See Algorithm 4.1), which demonstrates a much
looser constraint on N . As shown in Example 2, NISA can achieve a satisfactory
approximation when N is more than 160. The second reason is the high computa-
tional complexity of fuzzy simulation. According to the computation procedure of
fuzzy simulation (See “Appendix B”), N circles are performed to compute E[ξ ]. In
each circle, whether max{νk |yk ≥ r} or max{νk |yk ≤ r} is computed, which involves
N arithmetic operations. Then the computational complexity for fuzzy simulation is
O(N 2). For NISA, although there are also N circles performed, only one arithmetic
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operation is needed in each circle, so its computational complexity is O(N ). Since
the running speed of NISA is much faster than fuzzy simulation, we adopt NIGA to
solve the multi-period portfolio selection problem. The whole solving process con-
sists of five key procedures including initialization, evaluation, selection, crossover
and mutation.

Initialization Initialization is operated to generate the initial population. First, ran-
domly generate a chromosome c = (c11, c12, . . . , c1(n+1); c21, c22, . . . , c2(n+1); . . . ;
cT 1, cT 2, . . . , cT (n+1)), where cti ∈ [0, 1], t = 1, 2, . . . , T , i = 1, 2, . . . , n + 1.
Second, denote the solution x = (x11, x12, . . . , x1(n+1); x21, x22, . . . , x2(n+1);
. . . ; xT 1, xT 2, . . . , xT (n+1)) by xti = cti/(ct1 + ct2 + · · · + ct(n+1)), which ensures
the constraint xt1 + xt2 + · · · + xt(n+1) = 1 is satisfied. Repeat the above process
pop−si ze times to generate an initial population consisting of pop−si ze feasible
solutions: x1, x2, . . . , xpop−si ze.

Evaluation Evaluation is used for assigning a reproduction probability to each chro-
mosome. The chromosome ci will have more chance to produce offspring when
E[u(WT+1(xi ))] is larger, i = 1, 2, . . . , pop_si ze. Therefore, we first calculate the
value of E[u(WT+1(xi ))] by NISA. Then, realign these chromosomes in a descending
order such that

E[u(WT+1(x1))] ≥ E[u(WT+1(x2))] ≥ · · · ≥ E[u(WT+1(xpop−si ze))].

Finally, calculate the fitness of chromosome ci as follows:

Eval(ci ) = α(1 − α)i−1, i = 1, 2, . . . , pop_si ze,

where α ∈ (0, 1) is a real number.

Remark 3 NISA is extremely crucial in this stage for its computation accuracy deter-
mines whether GA can obtain the optimal solution, and its high computation speed
can significantly reduce the running time of GA.

Selection Selection is intended for updating the population by spinning the roulette
wheel. Set qi = ∑i

j=1 Eval(ci ) for all i = 1, 2, . . . , pop−si ze and q0 = 0. Then,
randomly generate a number r ∈ (0, qpop−si ze]. If r ∈ (qi−1, qi ], select the i th chro-
mosome ci . Repeat the above procedure pop−si ze times.

Crossover Crossover is employed to reproduce the offspring by taking the arithmetic
average of two selected chromosomes. Take pc as the crossover probability. For each
chromosome ci , randomly generate a real number r ∈ [0, 1]. If r ∈ [0, pc], select ci .
When the number of selected chromosomes u is odd, delete the last one to make it an
even number. Divide all of the selected chromosomes into pairs: (v1, v2), (v3, v4), . . . ,
(vu−1, vu). Conduct a crossover operator on each pair of chromosomes as follows

v′
i = λvi + (1 − λ)vi+1, v′

i+1 = λvi+1 + (1 − λ)vi ,

where v′
i denotes the updated chromosome, λ ∈ (0, 1] is a random number and odd

number i satisfying 1 ≤ i ≤ u − 1 .
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Mutation Mutation is designed to ensure the diversity of population and prevent the
local convergence arising from crossover operation. Defined as themutation direction,
pm as mutation probability, and β as an approximate large positive number. For each
chromosome ci , randomly generate a number r ∈ [0, 1]. If r ∈ [0, pm], generate a
feasible chromosome ci +βd by selecting an appropriate β and d, and replace ci with
ci + βd.

The steps for NIGA are summarized in Algorithm 5.1.

Algorithm 5.1 NIGA

Step 1. Input the parameters: G, pop−si ze, pc , pm , d, α and β.
Step 2. Initialize pop−si ze chromosomes.
Step 3. Compute the objective value E[u(WT+1(xi ))] for each chromosome by using

NISA, reorder these chromosomes and calculate their fitness values.
Step 4. Select the chromosomes by the roulette wheel selection method.
Step 5. Renew the chromosomes by crossover operation.
Step 6. Renew the chromosomes by mutation operation.
Step 7. Repeat the third to sixth steps for G cycles.
Step 8. Take the best chromosome as the optimal solution.

6 Numerical examples

This section proposes two numerical examples to verify the effectiveness and practi-
cability of our proposed NISA. In Example 5, we consider a 6-year portfolio selection
problem with 8 risky assets and a risk-free asset, and obtain the optimal investment
strategy by NIGA. In Example 6, we solve a real-world portfolio selection problem
by NIGA and FSGA respectively. The advantages of NIGA over FSGA are analysed
from the perspective of robustness and running speed.

Example 5 Suppose that there are 8 risky assets with triangular fuzzy returns, and the
risk-free asset return is r f = 1.0300. An investor is prepared to construct a 6-year
portfolio with the initial wealth W1 = 1 unit (1 unit represents 10000 dollars). The
unit transaction cost matrix is given by

d =

⎛

⎜

⎜

⎝

0.0010 0.0009 0.0030 0.0021 0.0019 0.0012 0.0025 0.0015 0.0005
0.0018 0.0008 0.0019 0.0024 0.0021 0.0040 0.0020 0.0019 0.0005
0.0022 0.0008 0.0012 0.0023 0.0021 0.0030 0.0017 0.0021 0.0005
0.0025 0.0007 0.0011 0.0021 0.0023 0.0056 0.0020 0.0021 0.0005
0.0014 0.0009 0.0014 0.0024 0.0022 0.0040 0.0018 0.0020 0.0005
0.0012 0.0007 0.0011 0.0020 0.0021 0.0031 0.0016 0.0023 0.0005

⎞

⎟

⎟

⎠

,

where dti denotes the transaction cost of asset i in the t th year. For example, d26 =
0.0040 means that trading one unit of asset 6 in the second year costs 0.0040 unit (40
dollars). The fuzzy returns of risky assets, expected values, variances and skewness
in different periods are shown in Table 5 (The left column includes assets 1, 3, 5 and
7, and the right column refers to assets 2, 4, 6 and 8). Suppose that the investor is risk
appetite with utility function u(x) = x3. According to Table 4, the EUM is
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⎧

⎪

⎨

⎪

⎩

max E[W7]3 + 3E[W7]V [W7] + S[W7]
s.t. xt1 + xt2 + · · · + xt9 = 1, t = 1, 2, . . . , 6,

0 ≤ xti ≤ 1, t = 1, 2, . . . , 6, i = 1, 2, . . . , 9.

(14)

The optimal investment strategy is obtained by running the NIGA (See Table 6),
where the parameters are set as follows: pop−si ze = 200, G = 130, pm = 0.1 and
pc = 0.9. Take the first year as an example. The best investment proportions for the 9
assets are 5.02%, 4.79%, 11.07%, 9.76%, 18.52%, 18.98%, 11.85%, 18.88%, 1.13%,
respectively. Asset 6 has the highest proportion for its high return and largest skewness.
Asset 8 has a comparatively high proportion for its return is the highest. For a risk
appetite investor, high return is more preferable compared with low risk. Therefore,
due to the lowest return and relatively small skewness, the investment proportion of
asset 2 is only 1.72%, which is the smallest among the 8 risky assets. In addition, it is
seen fromTable 6 that assets 5 and 6 are superior assets for their investment proportions
stably fluctuate between 15.00% and 21.00%. While asset 2 is a typical inferior asset
with its investment proportion varying greatly in different periods. Therefore, when
dealing with this type of inferior asset, the investor needs to consider carefully before
making the investment decision. The final expected return, variance, skewness and
expected utility are 2.7728, 4.0603, 13.0982 and 68.1915, respectively.

Example 6 Consider a 3-year portfolio selection consisting of 8 stocks selected from
the Shanghai Stock Exchange: China Vanke Company (000002), BOE Technol-
ogy Group Company (000725), Shanghai Pudong Development Bank (600000),
CITIC Securities Company (600030), China United Telecommunications Company
(600050), Chinese Universe Publishing and Media Company (600373), HNA Inno-
vation Company (600555) and Metallurgical Corporation of China (601618). At the
beginning of each year, the investor allocates part of the available wealth to the 8
stocks and deposits the rest in the bank with interest rate r f = 1.0300. According to
Shanghai Stock Exchange trading rules, the transaction costs for different stocks are
the same (Guo et al. 2016), then the unit transaction cost matrix is

d =
(

0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0000
0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0000
0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0000

)

where dt9 = 0.0000, t = 1, 2, 3, which means no trading fee is charged when deposit-
ing or withdrawing money in the bank. Assume the returns of stocks as triangular
fuzzy numbers, which are derived from analyzing the historical data. We collect the
daily opening prices from January 2014 to December 2016 in the iFinD database
(https://data.mendeley.com/datasets/fckp89tff7/1). The daily returns for each stock
are obtained by equation:

ri j = pi j/pi( j−1), i = 1, 2, . . . , 8, j = 1, 2, . . . , ni

where pi j represents the opening price of the j-th trading day for stock i , pi0 denotes
the initial price and ni is the total number of trading days for stock i . Remark that
the number of trading days for different stocks may differ due to the possibility of
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Table 6 The optimal portfolios of Example 5

Period Asset Risk-free
asset

1 2 3 4 5 6 7 8

1 0.0502 0.0479 0.1107 0.0976 0.1852 0.1898 0.1185 0.1888 0.0113

2 0.0667 0.1040 0.1089 0.1714 0.1537 0.1832 0.1184 0.0667 0.0270

3 0.0534 0.0531 0.0726 0.1313 0.1569 0.1584 0.1750 0.1448 0.0545

4 0.0935 0.0536 0.0652 0.0545 0.1850 0.1767 0.1774 0.1862 0.0079

5 0.1369 0.2022 0.0110 0.0406 0.2024 0.1286 0.1492 0.1124 0.0167

6 0.1483 0.1048 0.0089 0.1422 0.1578 0.1797 0.0924 0.1550 0.0109

Table 7 The fuzzy returns of stocks in Example 6

Stock code Period

1 2 3

000002 (0.9454, 1.0021, 1.0851) (0.9020, 1.0024, 1.1124) (0.9000, 1.0002, 1.1442)

000725 (0.9094, 1.0019, 1.0579) (0.9841, 1.0002, 1.1302) (0.9091, 0.9999, 1.1179)

600000 (0.9320, 1.0022, 1.1012) (0.9072, 1.0010, 1.0710) (0.8933, 0.9995, 1.0525)

600030 (0.8961, 1.0044, 1.1734) (0.9576, 0.9985, 1.1355) (0.8709, 0.9994, 1.0704)

600050 (0.9271, 1.0018, 1.0838) (0.8829, 1.0018, 1.1838) (0.8973, 1.0012, 1.1262)

600373 (0.8274, 0.9995, 1.1315) (0.8489, 1.0037, 1.2587) (0.9261, 0.9997, 1.1017)

600555 (0.9376, 1.0037, 1.2127) (0.9584, 1.0032, 1.1532) (0.8398, 0.9989, 1.1159)

601618 (0.8919, 1.0048, 1.1798) (0.8288, 1.0025, 1.1605) (0.8555, 0.9994, 1.1114)

trade suspension. By employing the granular computing method (Zhou et al. 2017),
the fuzzy returns are obtained, see for instance, Table 7.

Assume the utility function is u(x) = √
x . The optimal solution can be obtained

easily by running NIGA. Due to the stochastic searching mechnism of GA, diverse
solutions can be obtained when the parameters are different. In terms of this, the
robustness is commonly applied to measure the relative stability and reliability of
algorithm. To verify the robustness of NIGA, 6 sets of parameters are adopted and
their corresponding relative errors are obtained by equation

δi = (|max{ f1, f2, . . . , f6} − fi |/max{ f1, f2, . . . , f6}) × 100%, i = 1, 2, . . . , 6

where fi represents the expected utility value of the i th parameter set. In the mean-
while, for each set of parameters, we obtain the relative error and running time of
NIGA and compare them with FSGA (See Table 8).

According to Table 8, the average error and running time for NIGA are 0.12% and
102.35s, respectively. In contrast, the average error and running time for FSGA are
0.52% and 35578.74s. It is obvious that NIGA has a smaller relative error compared
with FSGA, which illustrates that NIGA performs better in terms of stability and
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Table 9 The optimal portfolios of Example 6

Period Stock Risk-free
asset

000002 000725 600000 600030 600050 600373 600555 601618

1 0.0176 0.0123 0.0511 0.1766 0.1005 0.0172 0.2721 0.1250 0.2275

2 0.0248 0.1547 0.0510 0.0755 0.1081 0.1513 0.1559 0.0628 0.2160

3 0.1573 0.1315 0.0169 0.0832 0.1465 0.1310 0.0627 0.1030 0.1635

reliability. As for the running time, NIGAhas better performance. The data reveals that
the running speed of NIGA is 350 times faster than FSGA. This significant difference
is due to NISA costs much less time in computing the expected utility values than
fuzzy simulation (See Sect. 5.2). Since calculations of multiple individuals in different
generations are involved in GA, the gap in running speed is amplified significantly.
In real financial applications, timely decision making is extremely important for the
investment opportunity fleets soon in fast-changing financial markets. In addition,
more risky assets are considered in real investment, requiring a large computation
capacity to obtain the optimal investment strategy in a short time. Therefore, NIGA
performs better in dealing with real financial optimization issues for its advantages in
accuracy, stability and running speed. This reflects the strong practicability of NISA.
The optimal portfolio strategy is shown in Table 9.

7 Conclusions

Fuzzy arithmetic is inevitable in both modeling and solution processes for fuzzy opti-
mization. Currently, some fuzzy arithmetics are restricted by the weak practicability
and information loss in arithmetic process. In this paper, we study the product arith-
metic of multiple positive L-R fuzzy numbers and prove some important properties
on membership functions. Based on the proposed arithmetic rules and properties, we
design the NISA to approximate the expected values, variances and skewness of L-R
fuzzy numbers and proved its effectiveness from the perspective of accuracy and run-
ning speed. As an application, we consider a fuzzy multi-period utility maximization
model. To solve the proposed model, we integrate the NISA and GA and analyze its
advantages over the FSGA. The results promote the completion of fuzzy arithmetic,
improve the practicability of fuzzy optimization technology, and assist the investors to
achieve the optimal investment strategy timely in the fast-changing financial markets.

Frankly speaking, this study only studies the product arithmetic on positive L-R
fuzzy numbers. To widen the practicability, in the future, we can extend the study
to generalized fuzzy numbers. This is challenging for the difficulty in determining
the shape of the membership function of the product and proving its continuity and
differentiability. The second extension is studying the division arithmetic on fuzzy
numbers. Currently, there are few studies on the rules and properties of fuzzy division
arithmetic, and some proposed division arithmetics are only theoretically invalid. For
example, some fuzzy analytic hierarchy process related studies treat the reciprocal of

123



76 X. Li et al.

triangular fuzzy number (a, b, c) as (1/c, 1/b, 1/a) (Ahmed and Kilic 2019), which
actually contradicts with the Zadeh extension principle. Therefore, it is attractive to
extend the studies to the above cases and apply them tomore optimization and decision
making problems.
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Research Fund from Faculty of Science, the University of Hong Kong.

Appendices

In this section, we present a proof on properties (i) and (ii), give the computation
procedure of fuzzy simulation, and introduce a granular computing method to derive
fuzzy returns based on historical data.

Appendix A

Proof (i): If x0 ∈ (a1a2, b1b2), according to the Zadeh extension principle, we have

μ(x0) = sup
(x1,x2)∈L1∪L2∪R2

{min{μ1(x1), μ2(x2)}|x1x2 = x0}. (15)

For any (x1, x2) ∈ L2 with x1x2 = x0, take x∗
1 = x0/b2 and x∗

2 = b2. It is obvious that
x1 ≤ x∗

1 ≤ b1 and (x∗
1 , x

∗
2 ) ∈ L1. Since ξ1 is a L-R fuzzy number, μ1(x) is increasing

when x ∈ (a1, b1) with μ1(x∗
1 ) ≥ μ1(x1) and μ2(x∗

2 ) ≥ μ2(x2), which implies that

min{μ1(x
∗
1 ), μ2(x

∗
2 )} ≥ min{μ1(x1), μ2(x2)}.

Taking all (x1, x2) ∈ L2 into consideration, we have

sup
(x1,x2)∈L1

{min{μ1(x1), μ2(x2)}|x1x2 = x0} ≥
sup

(x1,x2)∈L2

{min{μ1(x1), μ2(x2)}|x1x2 = x0}.

Similarly, we can prove that

sup
(x1,x2)∈L1

{min{μ1(x1), μ2(x2)}|x1x2 = x0} ≥
sup

(x1,x2)∈R2

{min{μ1(x1), μ2(x2)}|x1x2 = x0}.

According to Eq. (15), we have

μ(x0) = sup
(x1,x2)∈L1

{min{μ1(x1), μ2(x2)}|x1x2 = x0}.
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Fig. 5 Iteration process for min(μ1(x1), μ2(x2)) approaching μ(x0)

Now, we employ the reduction to absurdity to prove that there exist x1 ∈ [a1, b1]
and x2 ∈ [a2, b2] such that x1x2 = x0 and μ1(x1) = μ2(x2) = μ(x0). Denote the
γ -level sets of ξi as [ai1(γ ), ai2(γ )], i = 1, 2. Suppose that (x∗

1 , x
∗
2 ) ∈ L1 satisfying

x∗
1 x

∗
2 = x0, and min{μ1(x∗

1 ), μ2(x∗
2 )} = μ(x0). If μ1(x∗

1 ) �= μ2(x∗
2 ), without loss of

generalization, assume μ1(x∗
1 ) = γ1, μ2(x∗

2 ) = γ2 and γ1 < γ2. Then take x∗∗
1 =

(1+ε)x∗
1 and x

∗∗
2 = x∗

2/(1+ε), where ε is a small enough positive number satisfying

0 < ε < min{−1 + a11((γ1 + γ2)/2)/x
∗
1 ,−1 + x∗

2/a21((γ1 + γ2)/2)}

which ensures (x∗∗
1 , x∗∗

2 ) ∈ L1 and μ2(x∗∗
2 ) > (γ1 + γ2)/2 > μ1(x∗

1 ). Since μi (x)
is increasing in interval (ai , bi ), i = 1, 2, then we have min{μ1(x∗∗

1 ), μ2(x∗∗
2 )} >

min{μ1(x∗
1 ), μ2(x∗

2 )}, which contradicts with min{μ1(x∗
1 ), μ2(x∗

2 )} = μ(x0) for the
reason that μ(x0) is the supremum of min{μ1(x1), μ2(x2)} over L1. This process
illustrates that the value of min{μ1(x1), μ2(x2)} can be increased by getting μ1(x1)
close to μ2(x2) with the above operations (See Fig. 5). If and only if μ1(x1) =
μ2(x2), min{μ1(x1), μ2(x2)} arrives at its supremum over L1. Hence, for any x0 ∈
(a1a2, b1b2), μ(x0) = μ1(x1) = μ2(x2).

(ii) If x0 ∈ (b1b2, c1c2), the conclusion can be proved in the similar way. The proof
is complete. �

Appendix B

This appendix gives a basic computation procedure of fuzzy simulation (Guo et al.
2016). Suppose that ξ = (a, b, c) is a triangular fuzzy number with credibility
function ν(x), where ν(x) = μ(x)/2. The steps for computing E[ξ ] is shown as
follows. Firstly, randomly select N points y1, y2, . . . , yN in [a, c] and calculate
their credibilities ν1, ν2, . . . , νN . Then, set e = 0, s = min{y1, y2, . . . , yN } and
t = max{y1, y2, . . . , yN }. Secondly, randomly select a number r from [a, c]. If r > 0,
set e → e + Cr{ξ ≥ r}. Otherwise, set e → e − Cr{ξ ≤ r}. Here Cr{ξ ≥ r} and
Cr{ξ ≤ r} are credibility measure given by

Cr{ξ ≥ r} =
{

max{νk |yk ≥ r}, if max{νk |yk ≥ r} < 0.5

1 − max{νk |yk < r}, if max{νk |yk ≥ r} ≥ 0.5,
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Cr{ξ ≤ r} =
{

max{νk |yk ≤ r}, if max{νk |yk ≤ r} < 0.5

1 − max{νk |yk > r}, if max{νk |yk ≤ r} ≥ 0.5.

Thirdly, repeat the second operation N times to update e constantly and finally output
E[ξ ] = max{s, 0} + min{t, 0} + e · (t − s)/N .

Appendix C

This appendix introduces a granular computing method to derive fuzzy returns from
historical data (Zhou et al. 2017). Denote r1, r2, . . . , rN as the historical returns.
We employ the following methods to generate the triangular fuzzy number (a, b, c).
Firstly, set b = ∑N

i=1 ri/N , and calculate the membership degree of ri by μ(ri ) =
1(−∞,b)(ri )·(ri−a)/(b−a)+(1−1(−∞,b)(ri ))·(b−ri )/(c−b), where1(−∞,b)(ri ) = 1
if ri < b, 1(−∞,b)(ri ) = 0 otherwise. Secondly, assume α is a given positive number,
then determine a by maximizing the value of

∑

a≤ri<b μ(ri ) · exp(−α|b− a|), where
∑

a≤ri<b μ(ri ) is intended for covering most of the data points with ri < b, while
exp(−α|b−a|) is applied to minimize the support length |b−a|. Finally, determine c
bymaximizing

∑

b≤ri≤c μ(ri ) ·exp(−α|c−b|),where∑

b≤ri≤c μ(ri ) is used to cover
most of the data points with ri > b and exp(−α|c − b|) is intended for minimizing
|c − b|.
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