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Abstract
The aim of this paper is to investigate a novel approach to group decision making
based on DEA cross-efficiency with intuitionistic fuzzy preference relations, which
can avoid information distortion and obtain more credible decision making results.
An interval transform function is defined, which can transform an intuitionistic fuzzy
preference relation into an interval multiplicative preference relation. Then, an inter-
val transform function based data envelopment analysis model is developed to obtain
the ranking vector of consistent intuitionistic fuzzy preference relation, in which each
of the alternatives is viewed as a decision making unit. Moreover, for any intuition-
istic fuzzy preference relations, we propose two DEA cross-efficiency models to get
the cross-efficiency values of all alternatives, and we can calculate the normalized
intuitionistic fuzzy priority weight vector of the intuitionistic fuzzy preference rela-
tion based on the cross-efficiency values. A goal programming model is investigated
to derive the weight vector of decision makers. A step-by-step procedure for group
decision making approach based on DEA cross-efficiency with intuitionistic fuzzy
preference relations is presented. Finally, numerical examples are given to illustrate
the validity and applicability of the proposed method. This is the first attempt of
employing the DEA cross-efficiency to the group decision making with intuitionistic
fuzzy preference relations.

Keywords Group decision making · Intuitionistic fuzzy preference relation · DEA
cross-efficiency · Interval transform function

1 Introduction

Group decision making can be simplified as a group of decision makers to make a
choice from a set of alternatives for action in accordance with the opinions provided
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by the members. In group decision making process, the decision makers often need to
provide their preferences over a set of alternatives or criteria by pairwise comparison.
The analytic hierarchy process (AHP) furnishes a convenient framework to derive
multiplicative preference relations (MPRs), which uses a 1/9-9 ratio scale to measure
the intensity of the pairwise comparison (Saaty 1980). Besides, the 0–1 scale is adopted
by the fuzzy preference relation (Herrera-Viedma et al. 2004; Xu 2007a) to express
the decision maker’s preference information.

However, in many real decision making environment, it is very difficult for the
decision makers to express their preferences using a single crisp value due to that (1)
the decisionmakers are lack of knowledge and information associatedwith the problem
(Xu and Cai 2010) and (2) the decision makers are not confident about their judgment,
i.e., there exists hesitation regarding their preferences (Wu et al. 2018). To circumvent
this issue, Atanassov’s intuitionistic fuzzy set (IFS) was introduced in Atanassov
(1986), which is an extension of Zadeh’s fuzzy set and uses membership degree,
non-membership degree and hesitation degree to express decision maker’s subjective
preference. This IFS provides a powerful framework, which can not only characterize
vagueness, uncertainty, but also represent inevitably imprecise or not totally reliable
judgments well. From then on, the IFSs have been proven to be very meaningful and
practical, and attached great importance by many scholars (Xu and Liao 2015).

Based on IFS, the intuitionistic fuzzy preference relation (IFPR) was defined in Xu
(2007b), which is more powerful and useful than multiplicative preference relation
and the fuzzy preference relation. Xu (2007b) firstly defined the concepts of con-
sistent IFPR, incomplete IFPR and acceptable IFPR. How to derive priority vector
from the fuzzy preference relation has become a hot issue of study. Since then, many
prioritization methods for IFPRs have been developed. Wang (2013) proposed a lin-
ear goal programming model for deriving intuitionistic fuzzy weights from IFPR by
minimizing its deviation from the converted additive consistent IFPR. Besides, a con-
vergent iterative algorithm to improve the consistency of IFPR was developed by Xu
and Xia (2014). Liao et al. (2015) and Meng et al. (2017) introduced two consistency
adjustment methods to yield the acceptable consistent IFPRs respectively. However,
thesemethods of deriving consistent IFPRs have changed the original evaluation infor-
mation given by the decision makers, which may distort the given decision making
information and make the decision result less reliable.

In addition, Ramanathan (2006) introduced the data envelopment analytic hierarchy
process (DEAHP)model for weight derivation frommultiplicative preference relation,
but the DEAHP model is not applicable for some inconsistent MPRs. Then, Wang
et al. (2008) proposed the DEA/AR model, which can overcome the shortcoming of
the DEAHP model. Furthermore, Liu et al. (2017) developed a novel output-oriented
data envelopment analysis (DEA)model to obtain the priority vector for the consistent
fuzzy preference relation. The existing research shows that the DEA cross-efficiency
can overcome the problem of extreme weights and incomplete ranking in traditional
DEA by mutual evaluation of decision making units (DMUs) (Liang et al. 2008). In
fact, an interesting and important issue to be solved is how to develop a DEA cross-
efficiencymodel to derive the priorityweight vector from IFPR,which does not require
repairing the IFPR. Up to now, there has been no investigation about this issue.
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Recently, Wu et al. (2018) developed the definition of the multiplicative transitivity
of IFPR, and discovered the substantial relationship between interval-valued fuzzy
preference relation and IFPR. Another interesting issue is to discover the substantial
relationship between IFPR and interval multiplicative preference relations (IMPRs).

In this paper, we will propose a new approach to group decision making with IFPRs
based on DEA cross-efficiency, which can avoid information distortion and obtain
more credible decision making result. An interval transform function is defined to
establish the substantial relationship between IFPR and IMPR. Based on the interval
transform function, we develop two DEA cross-efficiency models to get the peer-
evaluation cross-efficiency values of all alternatives, in which each of the alternatives
is viewed as a decision making unit. Then, the normalized intuitionistic fuzzy weight
vector for the IFPR is derived based on the cross-efficiency values. Furthermore, a
goal programming model is investigated to yield the weights of decision makers.
Finally, a novel approach to group decision making based on DEA cross-efficiency
with IFPRs is proposed, which does not need consistency adjustments and can yield a
normalized intuitionistic fuzzy weight vector. In particular, when the IFPRs given by
the experts have a poor consistency, our method has better applicability and can derive
more reasonable ranking result than some known methods. This is the first attempt of
employing the theory of DEA cross-efficiency for the ranking of preference relations.
Hopefully, the proposed work is not only a generalization of existing theory but also
an initial step for the development of group decision making based on DEA cross-
efficiency.

The paper is organized as follows. Some basic concepts are introduced in Sect. 2,
such as the multiplicative preference relation, interval multiplicative preference rela-
tion, the intuitionistic fuzzy preference relation and the consistency of MPR, IMPR
and IFPR. In Sect. 3, we define the interval transform function, develop two DEA
cross-efficiency models to get the peer-evaluation cross-efficiency values of all alter-
natives and propose the deriving method of the normalized intuitionistic fuzzy weight
vector based on cross-efficiency values. In Sect. 4, a goal programmingmodel is inves-
tigated to yield the weights of decision makers and a step-by-step procedure for group
decision making approach is presented. There are numerical examples and compar-
ison analysis in Sect. 5 to illustrate the advantages, validity and applicability of the
proposed methods. Finally, Sect. 6 concludes the paper, and discusses some future
research directions.

2 Preliminaries

In this section, we provide a brief review on some basic concepts, includingmultiplica-
tive preference relation (MPR), interval multiplicative preference relation (IMPR), the
intuitionistic fuzzy preference relation (IFPR) and the consistency ofMPR, IMPR and
IFPR.

For a decisionmaking problem, it is assumed that X � {x1, x2, . . . , xn} is a finite set
of alternatives. In the process of decision making, the decision maker usually provides
pairwise judgments on any two alternatives over the set X.
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Definition 1 (Saaty 1980) A reciprocal multiplicative preference relation R on X is
characterized by a matrix R � (ri j )n×n ⊂ X × X with

ri j · r ji � 1, ri j ≥ 0, rii � 1, i, j � 1, 2, . . . , n,

where ri j is interpreted as the ratio of the preference intensity of alternative xi to that
of x j .

The reciprocal multiplicative preference relation is also called the multiplicative
preference relation. And the consistency of MPR has been proposed by Saaty (1977)
as follows:

Definition 2 (Saaty 1977) A MPR R � (ri j )n×n is consistent if

rik · rk j � ri j , i, j, k � 1, 2, . . . , n. (1)

For a MPR R � (ri j )n×n , and w � (w1, w2, · · · , wn)T is a normalized priority
weight vector of R, then R is consistent if and only if

ri j � wi
/

w j , i, j � 1, 2, . . . , n, (2)

where wi > 0, i � 1, 2, · · · , n, and∑n
i�1 wi � 1.

In order to express the decision makers’ uncertain preferences, Saaty and Vargas
(1987) introduced the definition of interval multiplicative preference relation.

Definition 3 (Saaty and Vargas 1987; Xia and Chen 2015) An IMPR R̃ is defined as
follows:

R̃ � (r̃i j )n×n �

⎛

⎜⎜
⎝

[1, 1] [r−
12, r

+
12] · · · [r−

1n, r
+
1n]

[r−
21, r

+
21] [1, 1] · · · [r−

2n, r
+
2n]· · · · · · · · · · · ·

[r−
n1, r

+
n1] [r

−
n2, r

+
n2] · · · [1, 1]

⎞

⎟⎟
⎠,

where r−
i j , r

+
i j > 0, such that r−

i j ≤ r+i j , r
−
i j r

+
j i � 1 and r+i j r

−
j i � 1, i, j � 1, 2, . . . , n.

When r−
i j � r+i j for all i, j � 1, 2, . . . , n, R̃ degenerates to a MPR.

The consistency of IMPR was defined as follows.

Definition 4 (Wang 2015) An IMPR R̃ � (r̃i j )n×n with r̃i j � [r−
i j , r

+
i j ] (i, j �

1, 2, . . . , n) is consistent if it satisfies the following transitivity condition:

r−
ikr

+
ikr

−
k j r

+
k j � r−

i j r
+
i j , i, j, k � 1, 2, . . . , n. (3)

According to Definition 4, it is evident that IMPR R̃ � (r̃i j )n×n with r̃i j � [r−
i j , r

+
i j ]

(i, j � 1, 2, . . . , n) is consistent if and only if
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ρ(r̃ik)ρ(r̃k j ) � ρ(r̃i j ), i, j, k � 1, 2, . . . , n, (4)

where ρ(r̃i j ) �
√
r−
i j · r+i j .

In 1986, intuitionistic fuzzy set was introduced by Atanassov (1986), which was
defined as follows.

Definition 5 (Atanassov 1986) Let X � {x1, x2, . . . , xn} be an ordinary finite non-
empty set. An IFS Ã over X is represented as Ã � {< x, μ Ã(x), ν Ã(x) > |x ∈ X},
where μ Ã : X → [0, 1], ν Ã : X → [0, 1] and μ Ã(x) + ν Ã(x) ≤ 1, for all x ∈ X .
The numbersμ Ã(x) and ν Ã(x) represent the membership degree and non-membership
degree of the element x ∈ X to Ã, respectively. π Ã(x) � 1− μ Ã(x)− ν Ã(x) is called
the hesitation degree of x to Ã. Obviously, 0 ≤ π Ã(x) ≤ 1 for all x ∈ X . If π Ã(x) � 0,
we have μ Ã(x) + ν Ã(x) � 1. Then, Ã is degraded to an ordinary fuzzy set.

For convenience, α � 〈μα, να〉 is called an intuitionistic fuzzy value (IFV) (Saaty
1977), where μα, να ∈ [0, 1] and μα + να ≤ 1.

Definition 6 (Meng et al. 2017) Let α � 〈μα, να〉 be an IFV, then the score function
and accuracy function of α are defined by S(α) � uα − vα and H (α) � uα + vα ,
respectively. Suppose α1 and α2 are two IFVs, then

(1) If S(α1) > S(α2), then α1 is larger than α2, denoted by α1 > α2;
(2) If S(α1) � S(α2), then

(a) If H (α1) > H (α2), then α1 > α2;
(b) If H (α1) � H (α2), then α1 � α2, which means that α1 is equal to α2.

Based on IFV, Xu (2007b) gave a standard definition of intuitionistic fuzzy prefer-
ence relation, which is shown as follows:

Definition 7 (Xu 2007b) An IFPR over a finite set of alternatives X �
{x1, x2, . . . , xn} is represented by a matrix P̃ � ( p̃i j )n×n , where p̃i j �<

(xi , x j ), μ(xi , x j ), ν(xi , x j ), π (xi , x j ) > for all i, j � 1, 2, . . . , n. For convenience,
let p̃i j � 〈

μi j , νi j
〉
be an IFV, where μi j defines the certainty degree that the

alternative xi is preferred to x j , νi j indicates the certainty degree that the alter-
native xi is non-preferred to x j and 0 ≤ μi j , νi j ≤ 1, 0 ≤ μi j + νi j ≤ 1,
μi j � ν j i ,μ j i � νi j ,μi i � νi i � 0.5 for all i, j � 1, 2, · · · , n.
Definition 8 (Wu et al. 2018) An IFPR P̃ � ( p̃i j )n×n with p̃i j � 〈

μi j , νi j
〉

(i, j � 1, 2, . . . , n) is multiplicative consistent (multiplicative transitive) if and only
if ∀i, j, k � 1, 2, . . . , n:

{
μi jμ jkμki � μikμk jμ j i ,

(1 − νi j )(1 − ν jk)(1 − νki ) � (1 − νik)(1 − νk j )(1 − ν j i ).

Definition 9 (Wang 2013) An intuitionistic fuzzy weight vector w̃ �
(w̃1, w̃2, · · · , w̃n)T with w̃i � 〈

w
μ
i , wν

i

〉T , 0 ≤ w
μ
i , wv

i ≤ 1 and w
μ
i + wν

i ≤ 1
for i � 1, 2, . . . , n is said to be normalized if it satisfies the following conditions:
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n∑

j�1, j ��i

w
μ
j ≤ wν

i , w
μ
i + n − 2 ≥

n∑

j�1, j ��i

wν
j , i � 1, 2, . . . , n.

3 Deriving priority vector of IFPR based on DEA cross-efficiency

In this section, we investigate a new approach of deriving the normalized intuition-
istic fuzzy priority weight vector from IFPR based on DEA cross-efficiency. Unless
otherwise mentioned, it is assumed that Ω is the set of interval values and Ψ is the set
of intuitionistic fuzzy values (IFVs).

3.1 Interval transform function of IFPR

In order to extract effective information of the intuitionistic fuzzy value sufficiently, we
propose the definition of interval transform function, which can be defined as follows.

Definition 10 Let α � 〈μα, να〉 be an IFV with μα, να > 0. Then, an interval trans-
form function of IFV is a mapping τ : Ψ + → Ω+, such that

τ (α) � τ(〈μα, να〉) �
[

μα

1 − μα

,
1 − να

να

]
, (5)

where Ψ + � {〈μα, να〉|μα > 0, να > 0, μα + να ≤ 1} is the set of IFVs, in which
both the membership degree and the non-membership degree of IFVs are all positive.

The interval transform function defined by Definition 10 can transform an IFV into
an interval value. Then, we show a characterized theorem for the interval transform
function.

Theorem 1 Let P̃ � ( p̃i j )n×n � (〈
μi j , νi j

〉)
n×n be an IFPR and μi j , νi j > 0.

(1) H̃ �
(
[h−

i j , h
+
i j ]
)

n×n
� (

τ ( p̃i j )
)
n×n is an IMPR.

(2) If P̃ is multiplicative consistent, then H̃ �
(
[h−

i j , h
+
i j ]
)

n×n
� (

τ ( p̃i j )
)
n×n is a

consistent IMPR.

Proof Let P̃ � ( p̃i j )n×n � (〈
μi j , νi j

〉)
n×n be an IFPR, μi j , νi j > 0 and H̃ �

(
τ ( p̃i j )

)
n×n . From Definition 10, we have [h−

i j , h
+
i j ] � τ ( p̃i j ) � [

μi j
1−μi j

,
1−νi j
νi j

]. Since
μi j , νi j > 0, μi j + νi j ≤ 1, μi j � ν j i , μ j i � νi j and μi i � νi i � 0.5 for all

i, j � 1, 2, . . . , n, we have h−
i j � μi j

1−μi j
,h+i j � 1−νi j

νi j
> 0, 1 − μi j ≥ νi j and

1 − νi j ≥ μi j . Thus, h
−
i j � μi j

1−μi j
≤ 1−νi j

νi j
� h+i j ,

123



Group decision making based on DEA cross-efficiency with… 351

h−
i j h

+
j i � μi j

1 − μi j
· 1 − ν j i

ν j i
� μi j

1 − μi j
· 1 − μi j

μi j
� 1,

h−
j i h

+
i j � μ j i

1 − μ j i
· 1 − νi j

νi j
� μ j i

1 − μ j i
· 1 − μ j i

μ j i
� 1, (6)

and

[
h−
i i , h

+
i i

] � τ ( p̃i i ) �
[

μi i

1 − μi i
,
1 − νi i

νi i

]
�
[

0.5

1 − 0.5
,
1 − 0.5

0.5

]
� [1, 1]. (7)

According to Eqs. (6), (7) and Definition 3, it is obvious that H̃ �
(
[h−

i j , h
+
i j ]
)

n×n
is an IMPR.

If P̃ is multiplicative consistent, from Definition 8, we have
{

μi jμ jkμki � μikμk jμ j i

(1 − νi j )(1 − ν jk )(1 − νki ) � (1 − νik )(1 − νk j )(1 − ν j i )
for all i, k, j � 1, 2, . . . , n.

(8)

Thus, one can obtain

μi jμ jkμki (1 − νi j )(1 − ν jk)(1 − νki ) � μikμk jμ j i (1 − νik)(1 − νk j )(1 − ν j i ).
(9)

Equation (9) can be rewritten as

μik

1 − νki
· 1 − νik

μki
· μk j

1 − ν jk
· 1 − νk j

μ jk
� μi j

1 − ν j i
· 1 − νi j

μ j i
. (10)

By Eq. (10), it is obvious that

h−
ik · h+ik · h−

k j · h+k j � h−
i j h

+
i j , i, k, j � 1, 2, . . . , n. (11)

According to Definition 4, H̃ � (
τ ( p̃i j )

)
n×n is a consistent IMPR. �

Theorem 1 shows that the interval transform function can not only transform the
IFPR into IMPR, but also ensure the consistency of preference relation.

3.2 DEAmodel of IFPR

DEA is a powerful tool to evaluate the relative efficiency of a set of homogenous deci-
sion making units (DMUs) with multiple inputs and multiple outputs by establishing
a nonparametric linear programming model. In this section, we propose a DEAmodel
to evaluate the relative efficiency of each alternative from IFPR.

In decision making process, decision maker offers an IFPR P̃ � ( p̃i j )n×n �(〈
μi j , νi j

〉)
n×n over the alternative set X � {x1, x2, . . . , xn}, where μi j , νi j > 0.

Each alternative xi can be viewed as an independent DMU, i � 1, 2, . . . , n. When the
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Table 1 Inputs and outputs of DEA based on P̃ � ( p̃i j )n×n � (〈
μi j , νi j

〉)
n×n

Output 1 Output 2 ··· Output n Dummy
input

x1 DMU1 τ ( p̃11) τ ( p̃12) ··· τ ( p̃1n ) τ ( p̃0)

x2 DMU2 τ ( p̃21) τ ( p̃22) ··· τ ( p̃2n ) τ ( p̃0)

··· ··· ··· ··· ··· ··· ···

xn DMUn τ ( p̃n1) τ ( p̃n2) ··· τ ( p̃nn ) τ ( p̃0)

decision maker believes that alternative xi is better than x j , for any k ∈ {1, 2, . . . , n},
the certainty degree that the alternative xi is preferred to xk is greater than the certainty
degree that the alternative x j is preferred to xk , i.e., μik ≥ μ jk , and certainty degree
that the alternative xi is non-preferred to xk is smaller than the certainty degree that the
alternative x j is non-preferred to xk , i.e., νik ≤ ν jk . Thus, we have p̃ik � 〈μik, νik〉 ≥
p̃ jk � 〈

μ jk, ν jk
〉
. Furthermore, since μik

1−μik
≥ μ jk

1−μ jk
and 1−νik

νik
≥ 1−ν jk

ν jk
, one can

obtain τ ( p̃ik) ≥ τ ( p̃ jk). Hence, each row of the IFPR corresponds to a DMU, and
each column of the IFPR can be viewed as an output. SinceDEAcalculations cannot be
made without inputs, to ensure the fairness of decision making, each decision making
unit is given the same intuitionistic fuzzy input variable p̃0 � 〈0.5, 0.5〉. Then, the
relationships between inputs, outputs and IFPR P̃ � ( p̃i j )n×n � (〈

μi j , νi j
〉)
n×n are

shown in Table 1.
Based on above analysis and the interval transform function τ given by Defini-

tion 10, we can develop an output-oriented CCR DEA model to evaluate the relative
efficiency of alternative xk (k � 1, 2, · · · , n) as follows:

Max
μ,φ

φk

s.t .

⎧
⎨

⎩

∑n
i�1 μiτ ( p̃i j ) ≥ φkτ ( p̃k j ), j � 1, 2, . . . , n,∑n
i�1 μiτ ( p̃0) ≤ τ ( p̃0),

μi ≥ 0, i � 1, 2, . . . , n.

(12)

For an IFPR P̃ � ( p̃i j )n×n � (〈
μi j , νi j

〉)
n×n withμi j , νi j > 0, ifμi j+νi j� 1, then

μi j
1−μi j

� 1−νi j
νi j

. It follows that τ ( p̃i j ) � [h−
i j , h

+
i j ] � [

μi j
1−μi j

,
1−νi j
νi j

] degenerates to a real

number. Denoting hi j � h−
i j � h+i j � μi j

1−μi j
� 1−νi j

νi j
, H̃ � (

τ ( p̃i j )
)
n×n degenerates to

a MPR H � (hi j )n×n . Based on Model (12), we have the following Theorem.

Theorem 2 Let P̃ � ( p̃i j )n×n � (〈
μi j , νi j

〉)
n×n be a multiplicative consistent IFPR

with μi j , νi j > 0, μi j+νi j� 1, and φ∗
k be the optimal objective function value of

Model (12). Then, the normalized priority vector of H̃ � (
τ ( p̃i j )

)
n×n can be derived

by

wk � (φ∗
k )

−1

/
n∑

l�1

(φ∗
l )

−1, k � 1, 2, . . . , n. (13)
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Proof Let P̃ � ( p̃i j )n×n � (〈
μi j , νi j

〉)
n×n be a multiplicative consistent IFPR

with μi j , νi j > 0, μi j+νi j� 1. According to Theorem 1, H̃ �
(
[h−

i j , h
+
i j ]
)

n×n
�

(
τ ( p̃i j )

)
n×n is a consistent IMPR. Then, we have

h−
i j h

+
j i � 1, h−

ikh
+
ikh

−
k j h

+
k j � h−

i j h
+
i j , i, j, k � 1, 2, . . . , n. (14)

Denoting hi j � h−
i j � h+i j � μi j

1−μi j
� 1−νi j

νi j
, from Eq. (14), one can obtain

hi j h ji � 1, hikhk j � hi j , i, j, k � 1, 2, . . . , n.

Consequently, H̃ � (
τ ( p̃i j )

)
n×n degenerates to consistent MPR H � (hi j )n×n ,

where hi j � τ ( p̃i j ). According to Eq. (2), the priority weight vector of H̃ �(
τ ( p̃i j )

)
n×n satisfies

hi j � τ ( p̃i j ) � wi
/

w j , i, j � 1, 2, . . . , n. (15)

From Eq. (15), Model (12) can be rewritten as

Max
μ,φ

φk

s.t .

⎧
⎨

⎩

∑n
i�1 μiwi/wk ≥ φk, j � 1, 2, . . . , n,∑n
i�1 μi ≤ 1,

μi ≥ 0, i � 1, 2, . . . , n.

(16)

Without loss of generality, it is assumed that w1 ≤ w2 ≤ · · · ≤ wn . The objective
function φk is maximal if and only if the constraint

∑n
i�1 μi ≤ 1 reduces to equality,

i.e.,
∑n

i�1 μi � 1.
For any k ∈ {1, 2, · · · , n}, by μk � 1 − μ1 − · · · − μk−1 − μk+1 − · · · − μn , the

first constraint of Model (16) becomes

1 +
n∑

i ��k,i�1

μi
(
wi
/

wk − 1
) ≥ φk . (17)

Because w1
/

wk − 1 ≤ w2
/

wk − 1 ≤ · · · ≤ wn
/

wk − 1, it follows that φk is
maximal if and only if μ1 � μ2 � · · · � μn−1 � 0, μn � 1. Thus, the optimal
objective function value of Model (12) is φ∗

k � wn
/

wk .
Furthermore, since wi > 0, i � 1, 2, . . . , n, and

∑n
i�1 wi � 1, we have wk �

(φ∗
k )

−1
/∑n

l�1 (φ
∗
l )

−1, k � 1, 2, . . . , n. �
In fact, Theorem 1 provides a method of deriving the priority weight vector of

consistent IFPR using the proposed DEA model. However, when μi j+νi j �� 1, this
method is not applicable. In order to solving this problem, basedon interval aggregation
function ρ, we propose the following CCR DEA model:
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Max
μ,φ

φk

s.t .

⎧
⎨

⎩

∑n
i�1 μiρ

(
τ ( p̃i j )

) ≥ φkρ
(
τ ( p̃k j )

)
, j � 1, 2, . . . , n,∑n

i�1 μiρ(τ ( p̃0)) ≤ ρ(τ ( p̃0)),
μi ≥ 0, i � 1, 2, . . . , n.

(18)

where τ ( p̃i j ) � [h−
i j , h

+
i j ] � [

μi j
1−μi j

,
1−νi j
νi j

] and ρ
(
τ ( p̃i j )

) �
√
h−
i j · h+i j�

√
μi j(1−νi j)
νi j(1−μi j)

.

In case of P̃ � ( p̃i j )n×n � (〈
μi j , νi j

〉)
n×n being a multiplicative consistent IFPR,

according to Theorem 1, it is evident that H̃ �
(
[h−

i j , h
+
i j ]
)

n×n
� (

τ ( p̃i j )
)
n×n is a

consistent IMPR. Moreover, by Eq. (4), we have ρ(τ ( p̃ik)) · ρ(τ ( p̃k j )) � ρ(τ ( p̃i j )),
i, j, k � 1, 2, . . . , n, which implies that Ĥ � (

ρ(τ ( p̃i j ))
)
n×n is a consistent MPR.

According to the proof of Theorem 2, we have the following proposition.

Proposition 1 Let P̃ � ( p̃i j )n×n � (〈
μi j , νi j

〉)
n×n be amultiplicative consistent IFPR

with μi j , νi j > 0 and φ∗
k be the optimal objective function value of Model (18). Then,

the priority weight vector of Ĥ � (
ρ(τ ( p̃i j ))

)
n×n can be derived by

wk � (φ∗
k )

−1

/
n∑

l�1

(φ∗
l )

−1, k � 1, 2, . . . , n. (19)

For any multiplicative consistent IFPR P̃ � ( p̃i j )n×n � (〈
μi j , νi j

〉)
n×n over the

alternative set X � {x1, x2, . . . , xn}, the inverse of optimal objective function value of
model (18), (φ∗

k )
−1, is the efficiency score of alternative xk , k � 1, 2, . . . , n.Moreover,

the corresponding priority weight vector of P̃ can be derived by Proposition 1.

3.3 Deriving the intuitionistic fuzzy weights based on DEA cross-efficiency

It isworth noting that deriving priorityweight vector basedModel (18) is not applicable
for inconsistent IFPR. To resolve this problem, we will develop a new method of
deriving the normalized intuitionistic fuzzy priority weight vector from an IFPR based
on DEA cross-efficiency. The cross-efficiency DEA uses the DMUs to evaluate each
other, and the final efficiency evaluation value of the DMU is obtained from the self-
evaluation and the peer-evaluation (Liang et al. 2008).

Based on Table 1 and interval aggregation function ρ, the input-oriented CCRDEA
model is formulated as the following linear programming:

Max αkk �
n∑

r�1

ωrkρ(τ ( p̃kr ))

s.t .

⎧
⎨

⎩

∑n
r�1 ωrkρ

(
τ ( p̃ jr )

)− ηkρ(τ ( p̃0)) ≤ 0, j � 1, 2, . . . , n,

ηkρ(τ ( p̃0)) � 1,
ωrk, ηk ≥ 0, k � 1, 2, . . . , n.

(20)
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For each alternative xk (k � 1, 2, . . . , n) under evaluation, we can obtain
the optimal objective value (efficiency value) α∗

kk and a set of optimal weights
η∗
k , ω

∗
1k, ω

∗
2k, . . . , ω

∗
nk associated with inputs and outputs.

Note that the optimalweights obtained fromModel (20)may not be unique. Inspired
by the benevolent DEA cross-efficiency model and aggressive DEA cross-efficiency
model (Doyle and Green 1994), we propose two new DEA cross-efficiency models
for IFPR. Since τ ( p̃i j ) � [h−

i j , h
+
i j ] � [

μi j
1−μi j

,
1−νi j
νi j

] and τ ( p̃0) � 1, we construct
the following two mathematical programming model for each alternative xk (k �
1, 2, · · · , n).

Max
n∑

j�1

n∑

r�1

urkh
−
jr

s.t .

⎧
⎪⎪⎨

⎪⎪⎩

vk · n � 1,∑n
r�1 urkh

+
kr − α∗

kkvk � 0,∑n
r�1 urkh

+
kr − vk ≤ 0, j � 1, 2, . . . , n; j �� k,

vk, urk ≥ 0, k � 1, 2, . . . , n.

(21)

Min
n∑

j�1

n∑

r�1

urkh
−
jr

s.t .

⎧
⎪⎪⎨

⎪⎪⎩

vk · n � 1,∑n
r�1 urkh

+
kr − α∗

kkvk � 0,∑n
r�1 urkh

+
kr − vk ≤ 0, j � 1, 2, . . . , n; j �� k,

vk, urk ≥ 0, k � 1, 2, . . . , n.

(22)

In Models (21) and (22), α∗
kk is the target efficiency of alternative xk , which is

obtained from Model (20). As can be seen, Model (21) aims to maximize the lower
bound of overall cross-efficiency values of all alternatives and Model (22) aims to
minimize the lower bound of overall cross-efficiency values of all alternatives. The
second equality constraint of Models (21) and (22),

∑n
r�1 urkh

+
kr −α∗

kkvk � 0, is used
to ensure that the upper bound efficiency value of alternative xk is equal to its optimal
efficiency α∗

kk , i.e.,
∑n

r�1 urkh
+
kr

/
vk � α∗

kk .
By solving Models (21) and (22), we can obtain the optimal weights u∗ �

(u∗
1k, u

∗
2k, . . . , u

∗
nk)

T and v∗
k , which are the associated output weights and input weight.

Thus, the cross-efficiency of alternative x j ( j � 1, 2, . . . , n) using the optimalweights
of alternative xk(k � 1, 2, . . . , n) can be calculated as in Eq. (23),

θ−
jk �

n∑

r�1

u∗
rkh

−
jr

/

v∗
k and θ+jk �

n∑

r�1

u∗
rkh

+
jr

/

v∗
k , j � 1, 2, . . . , n, (23)

where θ−
jk and θ+jk are the lower bound and upper bound of the cross-efficiency,

respectively. Therefore, we get an interval cross-efficiency value of alternative x j ,
i.e., θ̃ jk � [θ−

jk, θ
+
jk], which represents the peer-evaluation of alternative xk to alter-

native x j .
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In Models (21) and (22), while alternative xk (k � 1, 2, . . . , n) is changed, one can
get the interval cross-efficiency matrix, namely,

Θ � (θ̃ jk)n×n �

⎛

⎜⎜
⎝

[θ−
11, θ

+
11] [θ

−
12, θ

+
12] · · · [θ−

1n, θ
+
1n]

[θ−
21, θ

+
21] [θ

−
22, θ

+
22] · · · [θ−

2n, θ
+
2n]· · · · · · · · · · · ·

[θ−
n1, θ

+
n1] [θ

−
n2, θ

+
n2] · · · [θ−

nn, θ
+
nn]

⎞

⎟⎟
⎠.

Furthermore, we aggregate the cross-efficiency values of alternative x j ( j �
1, 2, . . . , n) based on Eq. (24), and obtain the average cross-efficiency value θ̃ j .

θ̃ j �
[
θ−
j , θ+j

]
�
[
1

n

n∑

k�1

θ−
jk,

1

n

n∑

k�1

θ+jk

]

, j � 1, 2, . . . , n. (24)

Based on the average cross-efficiency values of all alternatives, we can calculate
the intuitionistic fuzzy priority weight vector w̃ � (w̃1, w̃2, . . . , w̃n)T with w̃ j �〈
w

μ
j , w

ν
j

〉
( j � 1, 2, . . . , n), based on the following formulas:

w
μ
j � θ−

j

ψ
, wν

j � 1

ψ

n∑

r�1,r �� j

θ+r , j � 1, 2, . . . , n, (25)

where ψ�∑n
r�1 θ+r + 1

n−2 max
k

{
θ+k − θ−

k

}
.

It is worth noting that the intuitionistic fuzzy priority weight vector obtained from
Eq. (25) satisfies the following theorem.

Theorem 3 For any IFPR P̃ � ( p̃i j )n×n, its intuitionistic fuzzy priority weight vector
w̃ � (w̃1, w̃2, . . . , w̃n)T , which is obtained from Eq. (25), is normalized.

Proof According to Formula (25), since 0 ≤ θ−
j ≤ θ+j ≤ 1, it follows that w

μ
j ,

wν
i ∈ [0, 1] and

w
μ
j + wν

j�
θ−
j +

∑n
r�1,r �� j θ

+
r

∑n
r�1 θ+r + 1

n−2 max
k

{
θ+k − θ−

k

} ≤ θ−
j +

∑n
r�1,r �� j θ

+
r∑n

r�1 θ+r
≤ 1.

Note that
∑n

i�1,i �� j θ−
i∑n

r�1 θ+r +
1

n−2 max
k

{
θ+k −θ−

k

} ≤
∑n

r�1,r �� j θ+r∑n
r�1 θ+r +

1
n−2 max

k

{
θ+k −θ−

k

} , we have
∑n

i�1,i �� j w
μ
i ≤ wν

j .

For any j � 1, 2, . . . , n, we have

w
μ
j + n − 2 �

θ−
j + (n − 2)

∑n
r�1 θ+r + max

k

{
θ+k − θ−

k

}

∑n
r�1 θ+r + 1

n−2 max
k

{
θ+k − θ−

k

} ,

and
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n∑

i�1,i �� j

wν
i �

∑n
i�1,i �� j

∑n
r�1,r ��i θ

+
r

∑n
r�1 θ+r + 1

n−2 max
k

{
θ+k − θ−

k

} � (n − 1)
∑n

r�1 θ+r −∑n
i �� j θ

+
i∑n

r�1 θ+r + 1
n−2 max

k

{
θ+k − θ−

k

} .

Thus, on can get

w
μ
j + n − 2 −

n∑

i�1,i �� j

wν
i �

max
k

{
θ+k − θ−

k

}− (θ+j − θ−
j )

∑n
r�1 θ+r + 1

n−2 max
k

{
θ+k − θ−

k

} ≥ 0.

The Proof is completed. �
Based on the afore-mentioned discussion, we have the ranking method of IFPR

P̃ � ( p̃i j )n×n � (〈
μi j , νi j

〉)
n×n , which involves the following steps:

Step 1 For IFPR P̃ � ( p̃i j )n×n � (〈
μi j , νi j

〉)
n×n , use Model (20) to obtain α∗

kk ,
k � 1, 2, · · · , n.
Step 2 Set α∗

kk in the DEA cross-efficiency Models (21) or (22), and solve the
Model (21) or Model (22) to obtain the optimal solutions u∗

1k, u
∗
2k, . . . , u

∗
nk ,v

∗
k ,

k � 1, 2, . . . , n.
Step 3 Use Formula (23) to compute the lower bound and upper bound of the
cross-efficiency, then get the interval cross-efficiency matrix Θ � (θ̃ jk)n×n , where
θ̃ jk � [θ−

jk, θ
+
jk], j, k � 1, 2, . . . , n.

Step 4 Calculate the average cross-efficiency value θ̃ j� [θ−
j , θ+j ] of alternative x j

based on formula (24), j � 1, 2, . . . , n.
Step 5 Calculate the normalized intuitionistic fuzzy priority weight vector w̃ �
(w̃1, w̃2, . . . , w̃n)T by using formula (25), where w̃i � 〈

w
μ
i , wν

i

〉
.

Step 6 Rank the normalized intuitionistic fuzzy priority weights w̃ j in descending
order, j � 1, 2, . . . , n.
Step 7 Rank the alternatives x j ( j � 1, 2, . . . , n) according to the ranking of
w̃ j , j � 1, 2, · · · , n.
Step 8 End.

Example 1 Consider the alternative set X � {x1, x2, x3, x4}, and the IFPR P̃ given by
the decision maker is as follows.

P̃�

⎛

⎜
⎜
⎝

〈0.5, 0.5〉 〈0.6, 0.2〉 〈0.8, 0.2〉 〈0.6, 0.3〉
〈0.2, 0.6〉 〈0.5, 0.5〉 〈0.5, 0.3〉 〈0.3, 0.5〉
〈0.2, 0.8〉 〈0.3, 0.5〉 〈0.5, 0.5〉 〈0.3, 0.6〉
〈0.3, 0.6〉 〈0.5, 0.3〉 〈0.6, 0.3〉 〈0.5, 0.5〉

⎞

⎟
⎟
⎠

Step 1 According to Model (20), we can get the relative efficiency value of xk ,
k � 1, 2, 3, 4, i.e.,

α∗
11 � 1, α∗

22 � 0.4082, α∗
33 � 0.2857, α∗

44 � 0.6236.
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Step 2 Set α∗
kk in the cross-efficiency DEA Model (21), and solve the Model (21)

to obtain the optimal solutions.

u∗
11 � 0.2500, u∗

21 � 0.0000, u∗
31 � 0.0000, u∗

41 � 0.0000, v∗
1 � 0.2500;

u∗
12 � 0.0000, u∗

22 � 0.0328, u∗
32 � 0.0297, u∗

42 � 0.0000, v∗
2 � 0.2500;

u∗
13 � 0.0000, u∗

23 � 0.0000, u∗
33 � 0.0000, u∗

43 � 0.1071, v∗
3 � 0.2500;

u∗
14 � 0.1208, u∗

24 � 0.0000, u∗
34 � 0.0323, u∗

44 � 0.0000, v∗
4 � 0.2500.

Step 3 Based on formula (23), we get the interval cross-efficiency matrix

Θ �

⎛

⎜⎜
⎝

[1.0000, 1.0000] [0.6717, 1.0000] [0.6429, 1.0000] [1.0000, 1.0000]
[0.2500, 0.6667] [0.2500, 0.4082] [0.1837, 0.4286] [0.2500, 0.6236]
[0.2500, 0.2500] [0.1750, 0.2500] [0.1837, 0.2857] [0.2500, 0.2500]
[0.4286, 0.6667] [0.3093, 0.5833] [0.4286, 0.4286] [0.4009, 0.6236]

⎞

⎟⎟
⎠.

Step 4 From Θ , we can get the average cross-efficiency value of each alternative
respectively based on Formula (24), i.e.,

θ̃1 � [0.8286, 1.0000], θ̃2 � [0.2334, 0.5318],

θ̃3 � [0.2147, 0.2589], θ̃4 � [0.3918, 0.5755].

Step 5According to Formula (25),we get the normalized intuitionistic fuzzy priority
weight vector, i.e.,

w̃ � (〈0.3294, 0.5431〉, 〈0.0928, 0.7293〉, 〈0.0853, 0.8378〉, 〈0.1558, 0.7119〉)T .

Step 6 Based on Definition 6, we can get the ranking of normalized intuitionistic
fuzzy priority weight vector, which is as follows:

w̃1 > w̃4 > w̃2 > w̃3.

Step 7 Thus, the rank of the alternatives x j according to the ranking of w̃ j ( j �
1, 2, 3, 4) is as follows:

x1 > x4 > x2 > x3.

Similarly, if we use Model (22) instead of Model (21) in Step 2, we can get

Θ �

⎛

⎜⎜
⎝

[0.3750, 1.0000] [0.6124, 0.6124] [0.6429, 1.0000] [0.6771, 1.0000]
[0.2500, 0.2500] [0.1531, 0.4082] [0.1837, 0.4286] [0.2500, 0.4514]
[0.1071, 0.2500] [0.1531, 0.1531] [0.1837, 0.2857] [0.1762, 0.2500]
[0.2500, 0.5833] [0.2624, 0.4082] [0.4286, 0.4286] [0.3363, 0.6236]

⎞

⎟⎟
⎠,
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Moreover, we have the average cross-efficiency value of four alternatives

θ̃1 � [0.5768, 0.9031], θ̃2 � [0.2092, 0.3846],

θ̃3 � [0.1550, 0.2347], θ̃4 � [0.3193, 0.5109].

Further, we can get

w̃ � (〈0.2626, 0.5146〉, 〈0.0952, 0.7506〉, 〈0.0706, 0.8189〉, 〈0.1454, 0.6931〉)T .

It can be seen that we have the same ranking result of the derived intuitionistic
fuzzy priority weights, which is w̃1 > w̃4 > w̃2 > w̃3.

In a comparison of our method with some existing ranking methods of IFPR, our
proposed method has the following advantages.

First, the given IFPRs need an inconsistency repairing process to yield the accept-
able consistent IFPRs in Xu and Xia (2014), Liao et al. (2015) and Meng et al. (2017).
The inconsistency repairing have changed the original evaluation information given
by the decision maker, which can distort the given decision making information and
make the decision result less reliable. As to our ranking method, it is based entirely
on the original preference information given by decision maker and does not require
the consistency adjustment, so the result is more credible.

Second, inWu et al. (2018), Liao andXu (2014) andWang (2013), it is assumed that
there exist specific relationships between the priority weight vector and the consistent
IFPRs. Then, the optimization models are established based on these assumptions to
get the priority weight vector. Since these assumptions are based on consistent IFPR,
the obtained priority weight vectors are always unreasonable for some inconsistent
IFPRs. Besides, these assumptions are not unique. By contrast, our approach does
not need to make any assumptions in advance, so it can avoid the risk of assumption
dependent.

Third, in our ranking method, the DEA cross-efficiency models combine the results
of self-evaluation and peer-evaluation to get the final efficiency value of each alterna-
tive, which makes the ranking result fairer.

4 Group decisionmaking with intuitionistic fuzzy preference
relations

Let D � {d1, d2, . . . , dm} be the set of decision makers and X � {x1, x2, . . . , xn}
be the set of alternatives. Suppose that dl provides his/her preference on X �
{x1, x2, . . . , xn} using IFPR P̃ (l) � ( p̃(l)i j )n×n �

(〈
μ
(l)
i j , ν

(l)
i j

〉)

n×n
, l � 1, 2, . . . ,m,

and λ � (λ1, λ2, . . . , λm)T is the weight vector of decision makers satisfying λl ≥ 0
and

∑m
l�1 λl � 1, in which λl can reflect the importance degree of dl .

In order tomeasure the similarity between two IFPRs, the definition of compatibility
degree was introduced by Xu (2013) as follows.
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Definition 11 Let P̃ (l) �
(〈

μ
(l)
i j , ν

(l)
i j

〉)

n×n
and P̃ (k) �

(〈
μ
(k)
i j , ν

(k)
i j

〉)

n×n
be two

IFPRs, given by two decision makers dl and dk , k, l � 1, 2, . . . ,m. Then, we call

c(P̃ (k), P̃ (l)) �
∑n

i�1
∑n

j�1

(
μ
(k)
i j μ

(l)
i j + v

(k)
i j v

(l)
i j

)

max
{∑n

i�1
∑n

j�1 [(μ
(k)
i j )

2 + (ν(k)i j )
2],

∑n
i�1

∑n
j�1 [(μ

(l)
i j )

2 + (ν(l)i j )
2]
}

the compatibility degree of P̃ (l) and P̃ (k).

It can be seen easily that the greater the value of c(P̃ (k), P̃ (l)), the nearer the
two IFPRs P̃ (k) and P̃ (l) will be. Moreover, we have 0 ≤ c(P̃ (k), P̃ (l)) ≤ 1, and
c(P̃ (k), P̃ (l)) � 1 if and only if P̃ (k) � P̃ (l), which means that P̃ (l) and P̃ (k) are
perfectly compatible.

Besides, based on the proposed interval transform function τ , P̃ (l) � ( p̃(l)i j )n×n �
(〈

μ
(l)
i j , ν

(l)
i j

〉)

n×n
can be transformed into IMPR H̃ (l) �

(
[h(l),−i j , h(l),+i j ]

)

n×n
, where

τ ( p̃(l)i j ) �
[
h(l),−i j , h(l),+i j

]
�
[

μ
(l)
i j

1 − μ
(l)
i j

,
1 − ν

(l)
i j

ν
(l)
i j

]

, l � 1, 2, . . . ,m, i, j � 1, 2, . . . , n.

(26)

Then, the IFPRs provided by m decision makers can be aggregated into a synthetic

interval preference relation Hs �
(
[hs,−i j , hs,+i j ]

)

n×n
, where

hs,−i j �
m∏

l�1

(
h(l),−i j

)λl
and hs,+i j �

m∏

l�1

(
h(l),+i j

)λl
, i, j � 1, 2, . . . , n. (27)

It is evident that Hs is an IMPR. Note that the closer Hs and each of H̃ (l) (l �
1, 2, . . . ,m), the more representative the synthetic preference relation Hs is. Thus,
we develop the following goal programming to obtain the weight vector of decision
makers.

Min J �
n∑

i�1

n∑

j�i+1

m∑

l�1

[
ε
(l),+
i j + ε

(l),−
i j + γ

(l),+
i j + γ

(l),−
i j

]

s.t .

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ln h(l),−i j −∑m
l�1 λl ln h

(l),−
i j − ε

(l),+
i j + ε

(l),−
i j � 0, i < j, i, j � 1, 2, . . . n, l � 1, 2, . . . ,m,

ln h(l),+i j −∑m
l�1 λl ln h

(l),+
i j − γ

(l),+
i j + γ

(l),−
i j � 0, i < j, i, j � 1, 2, . . . n, l � 1, 2, . . . ,m,

∑m
l�1 λl � 1,

λl , ε
(l),+
i j , ε

(l),−
i j , γ

(l),+
i j , γ

(l),−
i j ≥ 0, i < j, i, j � 1, 2, . . . n, l � 1, 2, . . . ,m.

(28)

As can be seen, the objective function J , which reflects group consensus, can
measure the agreement between the individual preference relations and the synthetic
preference relation. Especially, when all P̃ (l) (1, 2, . . . ,m) are perfectly compatible,
the following result holds:
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Theorem 4 For any l, k ∈ {1, 2, . . . ,m}, c(P̃ (l), P̃ (k)) � 1 if and only if J ∗ � 0,
where J ∗ is the optimal objective function value of Model (28).

Proof (Sufficiency) If c(P̃ (l), P̃ (k)) � 1 for any l, k ∈ {1, 2, . . . ,m}, then P̃ (1) �
P̃ (2) � · · · � P̃ (m). According to Eq. (26), we have h(1),−i j � h(2),−i j � · · · � h(m),−

i j

and h(1),+i j � h(2),+i j � · · · � h(m),+
i j , i, j � 1, 2, . . . n. Thus, all deviation variables

ε
(l),+
i j , ε(l),−i j , γ (l),+

i j and γ
(l),−
i j are equal to 0 in Model (28), and therefore J ∗ � 0.

(Necessity) If J ∗ � 0, then it is evident that h(1),−i j � h(2),−i j � · · · � h(m),−
i j and

h(1),+i j � h(2),+i j � · · · � h(m),+
i j , i, j � 1, 2, · · · n. Based on Eq. (26), we have P̃ (1) �

P̃ (2) � · · · � P̃ (m). Thus c(P̃ (l), P̃ (k)) � 1 holds for any l, k ∈ {1, 2, . . . ,m}. �
In conclusion, the process of group decision making method based on DEA cross-

efficiency with intuitionistic fuzzy preference relations can be summarized as follows:

Step 1 Use interval transform function τ to translate P̃ (l) � ( p̃(l)i j )n×n �
(〈

μ
(l)
i j , ν

(l)
i j

〉)

n×n
into H̃ (l) �

(
[h(l),−i j , h(l),+i j ]

)

n×n
based on Eq. (26), l �

1, 2, . . . ,m;
Step 2 Solve Model (28) to get the optimal weight vector λ � (λ1, λ2, . . . , λm)T

of decision makers;
Step 3Aggregate H̃ (l) �

(
[h(l),−i j , h(l),+i j ]

)

n×n
into the synthetic preference relation

Hs �
(
[hs,−i j , hs,+i j ]

)

n×n
based on Eq. (27);

Step 4 For multiplicative preference relation Hs �
(
[hs,−i j , hs,+i j ]

)
, obtain the nor-

malized intuitionistic fuzzy priority weight vector �̃ � (�̃1, �̃2, . . . , �̃n)T based
on the rankingmethod of IFPR in Sect. 3.3, where �̃i � 〈

�
μ
i ,�ν

i

〉
, i � 1, 2, . . . , n;

Step 5 Rank the normalized intuitionistic fuzzy priority weights �̃i in the descend-
ing order based on Definition 6, i � 1, 2, . . . , n.
Step 6 Rank the alternatives xi (i � 1, 2, . . . , n) according to the ranking of �̃i ,
i � 1, 2, · · · , n.
Step 7 End.

Let P̃ (l) � ( p̃(l)i j )n×n �
(〈

μ
(l)
i j , ν

(l)
i j

〉)

n×n
(l � 1, 2, . . . ,m) be m IFPRs, which are

given bym decisionmakers respectively, over the alternative set X � {x1, x2, . . . , xn},
where μi j , νi j > 0. Generally speaking, when all the decision makers think that

alternative xi is better than x j , for any k ∈ {1, 2, . . . , n}, then μ
(l)
ik ≥ μ

(l)
jk and ν

(l)
ik ≤

ν
(l)
jk , l � 1, 2, . . . ,m. Then, we have the following theorem.

Theorem 5 Let P̃ (l) � ( p̃(l)i j )n×n �
(〈

μ
(l)
i j , ν

(l)
i j

〉)

n×n
(l � 1, 2, . . . ,m) be m IFPRs,

which are given by m decision makers respectively. If for any k ∈ {1, 2, . . . , n} and
l ∈ {1, 2, . . . ,m}, μ(l)

ik ≥ μ
(l)
jk and ν

(l)
ik ≤ ν

(l)
jk hold, then �̃i ≥ �̃ j , i, j � 1, 2, . . . , n.
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Proof Let P̃ (l) � ( p̃(l)i j )n×n �
(〈

μ
(l)
i j , ν

(l)
i j

〉)

n×n
(l � 1, 2, . . . ,m) be m IFPRs. From

Eqs. (26) and (27), we have τ ( p̃(l)ik ) � [h(l),−ik , h(l),+ik ] � [
μ
(l)
ik

1−μ
(l)
ik

,
1−ν

(l)
ik

ν
(l)
ik

], τ ( p̃(l)jk) �

[h(l),−jk , h(l),+jk ] � [
μ
(l)
jk

1−μ
(l)
jk

,
1−ν

(l)
jk

ν
(l)
jk

], hs,−ik �
m∏

l�1

(
h(l),−ik

)λl
and hs,+jk �

m∏

l�1

(
h(l),+jk

)λl
.

If μ
(l)
ik ≥ μ

(l)
jk and ν

(l)
ik ≤ ν

(l)
jk for all k ∈ {1, 2, . . . , n} and l ∈ {1, 2, . . . ,m}, it

follows that hs,−ik ≥ hs,−jk and hs,+ik ≥ hs,+jk . Assume that u∗ � (u∗
1k, u

∗
2k, . . . , u

∗
nk)

T

and v∗
k are the optimal weights obtained by Model (21) or (22), since

θ−
jk �

n∑

r�1

u∗
rkh

s,−
ik

/

v∗
k , and θ+jk �

n∑

r�1

u∗
rkh

s,+
ik

/

v∗
k , j � 1, 2, . . . , n,

we have θ−
ik ≥ θ−

jk and θ+ik ≥ θ+jk . According to Eq. (24), it is evident that θ−
i ≥

θ−
j and θ+i ≥ θ+j . From Eq. (25), we have �

μ
i � θ−

i
ψ
, �

μ
j � θ−

j
ψ
, �ν

i � 1
ψ

∑n
r�1,r ��i θ

+
r

and �ν
j � 1

ψ

∑n
r�1,r �� j θ

+
r , where ψ�∑n

r�1 θ+r + 1
n−2 max

k

{
θ+k − θ−

k

}
. Thus, the score

function of �̃i and �̃ j are S(�̃i ) � 1
ψ
(θ−

i − ∑n
r ��i θ

+
r ) and S(�̃ j ) � 1

ψ
(θ−

j −
∑n

r �� j θ
+
r ), respectively. Consequently, we have

S(�̃i ) − S(�̃ j ) � 1

ψ

[
(θ−

i − θ−
j ) + (θ+i − θ+j )

]
≥ 0,

which implies that �̃i ≥ �̃ j . �
Theorem 5 shows that the obtained priority vector from our method is in accord

with the decision makers’ preferences. In other words, the ranking result can reflect
the preference of all the decision makers.

5 Numerical examples and comparison analysis

5.1 Numerical example

In the background of knowledge economy, the competition in the market is not just the
competition between enterprises, but the competition between supply chain alliances.
The supply chain is a complex system built by interdependent organizations and pro-
cesses, and the evaluation criteria of the supply chain involve customer service level,
financial status, innovation level, production flexibility, etc. The evaluation process is
somewhat subjective as the experts may not be very familiar with all the situation of
the supply chains they evaluated. Thus, it is suitable for the decision makers to use the
IFPRs to express their evaluation information. There are five decision makers d1, d2,
d3, d4 and d5 who provide their IFPRs on four supply chains {A1, A2, A3, A4}. After
doing some pairwise comparisons, the decision makers offer five IFPRs as follows:
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P̃ (1) �

⎛

⎜⎜
⎝

〈0.50, 0.50〉 〈0.50, 0.20〉 〈0.70, 0.10〉 〈0.50, 0.30〉
〈0.20, 0.50〉 〈0.50, 0.50〉 〈0.60, 0.20〉 〈0.30, 0.60〉
〈0.10, 0.70〉 〈0.20, 0.60〉 〈0.50, 0.50〉 〈0.30, 0.60〉
〈0.30, 0.50〉 〈0.60, 0.30〉 〈0.60, 0.30〉 〈0.50, 0.50〉

⎞

⎟⎟
⎠,

P̃ (2) �

⎛

⎜⎜
⎝

〈0.50, 0.50〉 〈0.60, 0.20〉 〈0.60, 0.20〉 〈0.60, 0.30〉
〈0.20, 0.60〉 〈0.50, 0.50〉 〈0.50, 0.20〉 〈0.30, 0.50〉
〈0.20, 0.60〉 〈0.20, 0.50〉 〈0.50, 0.50〉 〈0.20, 0.60〉
〈0.30, 0.60〉 〈0.50, 0.30〉 〈0.60, 0.20〉 〈0.50, 0.50〉

⎞

⎟⎟
⎠,

P̃ (3) �

⎛

⎜
⎜
⎝

〈0.50, 0.50〉 〈0.55, 0.25〉 〈0.65, 0.20〉 〈0.35, 0.55〉
〈0.25, 0.55〉 〈0.50, 0.50〉 〈0.40, 0.25〉 〈0.55, 0.30〉
〈0.20, 0.65〉 〈0.25, 0.40〉 〈0.50, 0.50〉 〈0.60, 0.20〉
〈0.55, 0.35〉 〈0.30, 0.55〉 〈0.20, 0.60〉 〈0.50, 0.50〉

⎞

⎟
⎟
⎠,

P̃ (4) �

⎛

⎜⎜
⎝

〈0.50, 0.50〉 〈0.60, 0.30〉 〈0.70, 0.20〉 〈0.60, 0.30〉
〈0.30, 0.60〉 〈0.50, 0.50〉 〈0.50, 0.40〉 〈0.30, 0.40〉
〈0.20, 0.70〉 〈0.40, 0.50〉 〈0.50, 0.50〉 〈0.30, 0.60〉
〈0.30, 0.60〉 〈0.40, 0.30〉 〈0.60, 0.30〉 〈0.50, 0.50〉

⎞

⎟⎟
⎠,

P̃ (5) �

⎛

⎜⎜
⎝

〈0.50, 0.50〉 〈0.60, 0.30〉 〈0.75, 0.15〉 〈0.60, 0.20〉
〈0.30, 0.60〉 〈0.50, 0.50〉 〈0.45, 0.20〉 〈0.60, 0.20〉
〈0.15, 0.75〉 〈0.20, 0.45〉 〈0.50, 0.50〉 〈0.40, 0.40〉
〈0.20, 0.60〉 〈0.20, 0.60〉 〈0.40, 0.40〉 〈0.50, 0.50〉

⎞

⎟⎟
⎠.

Step 1 Based on Eq. (26), P̃ (1), P̃ (2), P̃ (3), P̃ (4) and P̃ (5) are transformed into H̃ (l)

(l � 1, 2, 3, 4, 5) respectively, where

H̃ (1) �

⎛

⎜
⎜
⎝

[1.0000, 1.0000] [1.0000, 4.0000] [2.3333, 9.0000] [1.0000, 2.3333]
[0.2500, 1.0000] [1.0000, 1.0000] [1.5000, 4.0000] [0.4286, 0.6667]
[0.1111, 0.4286] [0.2500, 0.6667] [1.0000, 1.0000] [0.4286, 0.6667]
[0.4286, 1.0000] [1.5000, 2.3333] [1.5000, 2.3333] [1.0000, 1.0000]

⎞

⎟
⎟
⎠,

H̃ (2) �

⎛

⎜⎜
⎝

[1.0000, 1.0000] [1.5000, 4.0000] [1.5000, 4.0000] [1.5000, 2.3333]
[0.2500, 0.6667] [1.0000, 1.0000] [1.0000, 4.0000] [0.4286, 1.0000]
[0.2500, 0.6667] [0.2500, 1.0000] [1.0000, 1.0000] [0.2500, 0.6667]
[0.4286, 0.6667] [1.0000, 2.3333] [1.5000, 4.0000] [1.0000, 1.0000]

⎞

⎟⎟
⎠,

H̃ (3) �

⎛

⎜
⎜
⎝

[1.0000, 1.0000] [1.2222, 3.0000] [1.8571, 4.0000] [0.5385, 0.8182]
[0.3333, 0.8182] [1.0000, 1.0000] [0.6667, 3.0000] [1.2222, 2.3333]
[0.2500, 0.5385] [0.3333, 1.5000] [1.0000, 1.0000] [1.5000, 4.0000]
[1.2222, 1.8571] [0.4286, 0.8182] [0.2500, 0.6667] [1.0000, 1.0000]

⎞

⎟
⎟
⎠,
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H̃ (4) �

⎛

⎜
⎜
⎝

[1.0000, 1.0000] [1.5000, 2.3333] [2.3333, 4.0000] [1.5000, 2.3333]
[0.4286, 0.6667] [1.0000, 1.0000] [1.0000, 1.5000] [0.4286, 1.5000]
[0.2500, 0.4286] [0.6667, 1.0000] [1.0000, 1.0000] [0.4286, 0.6667]
[0.4286, 0.6667] [0.6667, 2.3333] [1.5000, 2.3333] [1.0000, 1.0000]

⎞

⎟
⎟
⎠,

H̃ (5) �

⎛

⎜⎜
⎝

[1.0000, 1.0000] [1.5000, 2.3333] [3.0000, 5.6667] [1.5000, 4.0000]
[0.4286, 0.6667] [1.0000, 1.0000] [0.8182, 4.0000] [1.5000, 4.0000]
[0.1765, 0.3333] [0.2500, 1.2222] [1.0000, 1.0000] [0.6667, 1.5000]
[0.2500, 0.6667] [0.2500, 0.6667] [0.6667, 1.5000] [1.0000, 1.0000]

⎞

⎟⎟
⎠.

Step 2 By solving Model (28), we get the optimal weight vector of five decision
makers, i.e., λ � (0.0883, 0.3689, 0.0941, 0.2657, 0.1830)T ;
Step 3 Using Eq. (27), H̃ (l) (l � 1, 2, 3, 4, 5) are aggregated into the synthetic
preference relation

Hs �

⎛

⎜⎜
⎝

[1.0000, 1.0000] [1.4196, 3.0567] [2.0316, 4.5796] [1.3142, 2.3333]
[0.3271, 0.7044] [1.0000, 1.0000] [0.9616, 3.0000] [0.5949, 1.5000]
[0.2184, 0.4922] [0.3333, 1.0399] [1.0000, 1.0000] [0.4286, 0.9154]
[0.4286, 0.7609] [0.6667, 1.6809] [1.0924, 2.3333] [1.0000, 1.0000]

⎞

⎟⎟
⎠.

Step 4 According to the ranking method for IFPR in Sect. 3.3 with Model (21), we
obtain the normalized intuitionistic fuzzy priority weight vector

�̃ � (〈0.2798, 0.5975〉, 〈0.1036, 0.7164〉, 〈0.0694, 0.7929〉, 〈0.1318, 0.7133〉)T .

Meanwhile, if we use Model (22) instead of Model (21), we have

� ′ � (〈0.1866, 0.5155〉, 〈0.1043, 0.7059〉, 〈0.0646, 0.7889〉, 〈0.0923, 0.6918〉)T .

Step 5 Based on Definition 6, the ranking of the normalized intuitionistic fuzzy
priority weight vector �̃ in the descending order is as follows:

�̃1 � 〈0.2798, 0.5975〉 > �̃4 � 〈0.1318, 0.7133〉 > �̃ ′
2 � 〈0.1036, 0.7164〉 > �̃3 � 〈0.1318, 0.7133〉

Additionally, the ranking of � ′ is

�̃ ′
1 � 〈0.1866, 0.5155〉 > �̃ ′

4 � 〈0.0923, 0.6918〉 > �̃ ′
2 � 〈0.1043, 0.7059〉 > �̃ ′

3 � 〈0.0646, 0.7889〉

As can be seen, �̃ and � ′ have the same ranking results.
Step 6 The final ranking of the four alternative supply chains is A1 > A4 > A2 >

A3.
Step 7 Thus, A1 is the best supply chain.
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5.2 Comparison analysis

This subsection further compares our method with several existing representative
methods,whichwere developed inWang (2013),Meng et al. (2017),Xu (2012) andWu
et al. (2018). First of all, we use thesemethods to solve the above problem respectively.

(1) Using Wang (2013)’s Method. Using the linear goal programming model (4.18)
in Wang (2013), we obtain the normalized intuitionistic fuzzy weight vector:

w̃ � (〈0.4701, 0.4709〉, 〈0.0749, 0.6250〉, 〈0, 0.9034〉, 〈0.1549, 0.6626〉)T .

Moreover, the score functions of the four weights are obtained as follows:

S(w̃1) � −0.0008, S(w̃2) � −0.5501, S(w̃3) � −0.9034, S(w̃4) � −0.5077.

So, the final ranking is A1 > A4 > A2 > A3, which is the same as that derived by
our approach.

(2) Using Meng et al. (2017)’s Method. The intuitionistic fuzzy prior-
ity weight vector is derived using Meng et al. (2017)’s method, i.e.,
w̃ � (〈0.6146, 0.2560〉, 〈0.3686, 0.3861〉, 〈0.2469, 0.5385〉, 〈0.4080, 0.4286〉).
From Zhang and Xu (2012) for IFVs, we have

L(w̃1) � 0.6588, L(w̃2) � 0.4930, L(w̃3) � 0.3800, L(w̃4) � 0.4911.

Hence, the ranking is A1 > A2 > A4 > A3, which is different from the results
derived by our approach, as well as the Wang (2013)’s method as the positions of the
supply chain A2 and A4 are changed.

Furthermore, we will use the method in Wu et al. (2018) and Xu (2012) to obtain
the priority vector of synthetic IFPR, which is yielded by aggregate the five IFPRs,
i.e., P̃ (l), l � 1, 2, . . . , 5.

(3) Using Xu (2012)’s Method. We can get the priority weight vector,

w̃ � ([0.2845, 0.3059], [0.2290, 0.2597], [0.1971, 0.2251], [0.2369, 0.2617])T .

The following possibility degree matrix is construct to rank the priority weights.

P �

⎛

⎜⎜
⎝

0.5 1 1 1
0 0.5 1 0.4111
0 0 0.5 0
0 0.5889 1 0.5

⎞

⎟⎟
⎠.

By summing all elements in each line of P, we have p1 � 3.5000, p2 �
1.9111, p3 � 0.5000, p4 � 2.0889. Hence, the ranking of the four alternative supply
chains is A1 > A4 > A2 > A3, which is the same as that derived by our approach.
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(4) Using Wu et al. (2018)’s Method. The crisp priority vector is obtained by using
the arithmetic mean operator:

w1 � 0.8750, w2 � 0.4430, w3 � 0.1250, w4 � 0.5570.

And thus the final ranking of the four alternative supply chains is A1 > A4 > A2 >

A3, which is the same as that derived by our approach.
The above numerical example shows that our approach produces the same ranking

order, i.e., A1 > A4 > A2 > A3, with Xu’s, Wu et al.’s and Wang’s methods, while
Meng et al.’s method derives a slightly different order in which the positions of A2
and A4 are changed, which is a further proof of the credibility and reliability of our
approach.

We further illustrate the advantages of our method by the Example 2 compared with
the four existing representative methods.

Example 2 Let P̃ be an IFPR on alternative set X � {x1, x2, x3, x4}, and

P̃ �

⎛

⎜⎜
⎝

〈0.50, 0.50〉 〈0.35, 0.55〉 〈0.40, 0.40〉 〈0.35, 0.55〉
〈0.55, 0.35〉 〈0.50, 0.50〉 〈0.70, 0.10〉 〈0.60, 0.20〉
〈0.40, 0.40〉 〈0.10, 0.70〉 〈0.50, 0.50〉 〈0.70, 0.20〉
〈0.55, 0.35〉 〈0.20, 0.60〉 〈0.20, 0.70〉 〈0.50, 0.50〉

⎞

⎟⎟
⎠.

Using our approach, we have

w̃ � (〈0.1145, 0.7653〉, 〈0.2034, 0.5490〉, 〈0.1106, 0.6983〉, 〈0.1101, 0.7397〉)T ,

then the ranking order is x2 > x3 > x4 > x1.
Using Wang (2013)’s Method, we have

S(w̃1) � −0.6237, S(w̃2) � 0.1239, S(w̃3) � −0.6237, S(w̃4) � −0.6761,

by which the ranking order is x2 > x1 � x3 > x4.
Using Xu (2012)’s method, we have

p1 � 1.5309, p2 � 3.5000, p3 � 2.2753, p4 � 0.6938,

which means that the ranking order is x2 > x3 > x1 > x4.
Using Wu et al. (2018)’s Method, we have

w1 � 0.2250, w2 � 0.8750, w3 � 0.2750, w4 � 0.6250,

by which the ranking order is x2 > x4 > x3 > x1.
Using Meng et al. (2017)’s Method, since P̃ has poor consistency, and it can be

adjusted to a multiplicative consistent IFPR T̃ .
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T̃ �

⎛

⎜⎜
⎝

〈0.5000, 0.5000〉 〈0.2799, 0.7066〉 〈0.3747, 0.4243〉 〈0.4372, 0.3443〉
〈0.7066, 0.2799〉 〈0.5000, 0.5000〉 〈0.5906, 0.2227〉 〈0.6517, 0.1695〉
〈0.4243, 0.3747〉 〈0.2227, 0.5906〉 〈0.5000, 0.5000〉 〈0.5646, 0.4161〉
〈0.3443, 0.4372〉 〈0.1695, 0.6517〉 〈0.4161, 0.5646〉 〈0.5000, 0.5000〉

⎞

⎟⎟
⎠.

Then, from T̃ , we have

L(w̃1) � 0.4526, L(w̃2) � 0.6891, L(w̃3) � 0.4680, L(w̃4) � 0.3910.

Thus, the ranking order is x2 > x3 > x1 > x4.
Comparing the ranking of xi (i � 1, 2, . . . , 4) derived by our approach with those

of Wang (2013), Xu (2012), Wu et al. (2018) and Meng et al. (2017), we find that
these methods generate a different ranking, especially on x1 and x4. From the IFPR
matrix P̃ � ( p̃i j )4×4, we have p̃41 � 〈0.55, 0.35〉, which means the certainty degree
that x4 is preferred to x1 is 0.55, while the certainty degree of x4 is non-preferred to
x1 is 0.35. It is obvious that x1 should not be superior to x4. Therefore, the ranking
result of our method is more reasonable than that of Xu (2012), Wu et al. (2018),
Wang (2013) andMeng et al. (2017) in this case. What’s more, from the multiplicative
consistent IFPR T̃ � (t̃i j )4×4 adjusted from P̃ , we have t̃41 � 〈0.3443, 0.4372〉,
which is quite different from p̃41 � 〈0.55, 0.35〉. The distortion of the given decision
making information makes the decision result less reliable.

As can be seen, compared with Xu (2012), Wu et al. (2018), Wang (2013) and
Meng et al. (2017), our proposed method has the following advantages:

(1) InMeng et al. (2017)’smethod, the inconsistent IFPRs need to be repaired to yield
the acceptable consistent IFPRs, which can distort the given decision making
information and make the decision result less reliable. Besides, the inconsistency
repairing process is complex and tedious. As to our method, the decision making
process is based entirely on the original preference information given by decision
makers and does not require consistent improving. Thus, our method can avoid
information distortion and the result is more credible.

(2) InWu et al. (2018)’s method and Xu (2012)’s method, the priority vector of IFPR
is given in the form of interval, which is not normalized. From Theorem 3, we
find that our method can yield the normalized intuitionistic fuzzy weight vector.

(3) In Wu et al. (2018)’s method and Wang (2013)’s method, it is assumed that there
exist some relationships between priority weight vector and consistent IFPRs,
then the optimizationmodels are established based on these assumptions to get the
priority weight vector. Since these assumptions are based on consistent IFPR, the
obtained priority weight vectors are always unreasonable for some inconsistent
IFPRs. Besides, these assumptions are not unique. By contrast, our approach
does not need to make any assumptions in advance, so it can avoid the risk of
assumption dependent.

In summary, ourmethoddoes not need consistency adjustment,making any assump-
tions and can yield a normalized intuitionistic fuzzy weight vector. In particular, when
the IFPR given by the decision maker has a poor consistency, our method has better
applicability and can derivemore reasonable ranking result than some knownmethods.
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6 Conclusions

This paper has been studying group decision making based on DEA cross-efficiency
with intuitionistic fuzzy preference relations.

Firstly, the defined interval transform function has established the substantial rela-
tionship between IFPRs into IMPRs, and it has been proved that the transform function
can ensure the consistency of the relationship. Then, an interval transform function
based DEA model is developed to obtain the ranking vector of consistent IFPR, in
which each of the alternatives is viewed as a DMU. Moreover, for any IFPR, we pro-
posed two DEA cross-efficiency models to get the peer-evaluation cross-efficiency
values of all alternatives, and we can calculate the normalized intuitionistic fuzzy
weight vector of the IFPR based on the cross-efficiency values. Because the proposed
normalized intuitionistic fuzzy weight vector derivation method from IFPR does not
need repairing the given IFPR, it can avoid informationdistortion andobtainmore cred-
ible decision making results. A goal programming model is investigated to derive the
weights of decision makers. Meanwhile, a step-by-step procedure for group decision
making approach based on DEA cross-efficiency with intuitionistic fuzzy preference
relations is presented. Finally, the proposed approach is verified by numerical exam-
ples and the comparison analysis, by which one can find the advantages of the new
method.

To the best of our knowledge, employing the theory of DEA cross-efficiency to the
group decision making with IFPRs are completely new to the literature and have not
been studied elsewhere before. Probably, we also can use the DEA cross-efficiency
model to any other decision making environments, such as triangular fuzzy preference
relations, trapezoidal fuzzy preference relation.

Acknowledgements The work was supported by National Natural Science Foundation of China (Nos.
71501002, 61502003, 71871001, 71771001, and 71701001), Anhui Provincial Natural Science Foundation
(Nos. 1608085QF133, 1508085QG149), Anhui Provincial Philosophy and Social Science Planning Youth
Foundation (No. AHSKQ2016D13).

References

Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.
Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA: Derivations, meanings and uses.

Journal of the Operational Research Society, 45(5), 567–578.
Herrera-Viedma, E., Herrera, F., Chiclana, F., & Luque, M. (2004). Some issues on consistency of fuzzy

preference relations. European Journal of Operational Research, 154(1), 98–109.
Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008). The DEA game cross-efficiency model and its nash

equilibrium. Operations Research, 56(5), 1278–1288.
Liao, H., & Xu, Z. (2014). Priorities of intuitionistic fuzzy preference relation based on multiplicative

consistency. IEEE Transactions on Fuzzy Systems, 22(6), 1669–1681.
Liao, H., Xu, Z., Zeng, X., &Merigo, J. M. (2015). Framework of group decision making with intuitionistic

fuzzy preference information. IEEE Transactions on Fuzzy Systems, 23(4), 1211–1227.
Liu, J., Xu, Q., Chen, H., Zhou, L., Zhu, J., & Tao, Z. (2017). Group decision making with interval fuzzy

preference relations based on DEA and stochastic simulation. Neural Computing and Applications.
https://doi.org/10.1007/s00521-017-3254-7.

123

https://doi.org/10.1007/s00521-017-3254-7


Group decision making based on DEA cross-efficiency with… 369

Meng, F., Tang, J., & Xu, Z. (2017). A 0-1 mixed programming model based method for group deci-
sion making with intuitionistic fuzzy preference relations. Computers & Industrial Engineering, 112,
289–304.

Ramanathan, R. (2006). Data envelopment analysis for weight derivation and aggregation in the analytic
hierarchy process. Computers & Operations Research, 33(5), 1289–1307.

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical
Psychology, 15(3), 234–281.

Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.
Saaty, T. L., & Vargas, L. G. (1987). Uncertainty and rank order in the analytic hierarchy process. European

Journal of Operational Research, 32(1), 107–117.
Wang, Z. (2013). Derivation of intuitionistic fuzzyweights based on intuitionistic fuzzy preference relations.

Applied Mathematical Modelling, 37(9), 6377–6388.
Wang, Z. (2015). A note on “A goal programming model for incomplete interval multiplicative preference

relations and its application in group decision-making”. European Journal of Operational Research,
247(3), 867–871.

Wang, Y., Chin, K. S., & Poon, G. K. K. (2008). A data envelopment analysis method with assurance region
for weight generation in the analytic hierarchy process. Decision Support Systems, 45(4), 913–921.

Wu, J., Chiclana, F., & Liao, H. (2018). Isomorphic multiplicative transitivity for intuitionistic and
interval-valued fuzzy preference relations and its application in deriving their priority vectors. IEEE
Transactions on Fuzzy Systems, 26(1), 193–202.

Xia, M., & Chen, J. (2015). Studies on interval multiplicative preference relations and their application to
group decision making. Group Decision and Negotiation, 24(1), 115–144.

Xu, Z. (2007a). A survey of preference relations. International Journal of General Systems, 36(2), 179–203.
Xu, Z. (2007b). Intuitionistic preference relations and their application in group decision making. Informa-

tion Sciences, 177(11), 2363–2379.
Xu, Z. (2012). An error-analysis-based method for the priority of an intuitionistic preference relation in

decision making. Knowledge-Based Systems, 33, 173–179.
Xu, Z. (2013). Compatibility analysis of intuitionistic fuzzy preference relations in group decision making.

Group Decision and Negotiation, 22(3), 463–482.
Xu, Z., & Cai, X. (2010). Recent advances in intuitionistic fuzzy information aggregation. Fuzzy Optimiza-

tion and Decision Making, 9(4), 359–381.
Xu, Z., & Liao, H. (2015). A survey of approaches to decision making with intuitionistic fuzzy preference

relations. Knowledge-Based Systems, 80(5), 131–142.
Xu, Z., & Xia, M. (2014). Iterative algorithms for improving consistency of intuitionistic preference rela-

tions. Journal of the Operational Research Society, 65(5), 708–722.
Zhang, X., & Xu, Z. (2012). A new method for ranking intuitionistic fuzzy values and its application in

multi-attribute decision making. Fuzzy Optimization and Decision Making, 11(2), 135–146.

Affiliations

Jinpei Liu1,2 · Jingmiao Song1 ·Qin Xu3 · Zhifu Tao4 · Huayou Chen5

Jingmiao Song
1253732255@qq.com

Qin Xu
xuqin2013@aliyun.com

Zhifu Tao
zhifut_0514@163.com

Huayou Chen
huayouc@126.com

1 School of Business, Anhui University, Hefei 230601, Anhui, China

123

http://orcid.org/0000-0002-0658-6247


370 J. Liu et al.

2 Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State
University, Raleigh, NC 27695-7906, USA

3 School of Computer Science and Technology, Anhui University, Hefei 230601, Anhui, China

4 School of Economics, Anhui University, Hefei 230601, Anhui, China

5 School of Mathematical Sciences, Anhui University, Hefei 230601, Anhui, China

123


	Group decision making based on DEA cross-efficiency with intuitionistic fuzzy preference relations
	Abstract
	1 Introduction
	2 Preliminaries
	3 Deriving priority vector of IFPR based on DEA cross-efficiency
	3.1 Interval transform function of IFPR
	3.2 DEA model of IFPR
	3.3 Deriving the intuitionistic fuzzy weights based on DEA cross-efficiency

	4 Group decision making with intuitionistic fuzzy preference relations
	5 Numerical examples and comparison analysis
	5.1 Numerical example
	5.2 Comparison analysis

	6 Conclusions
	Acknowledgements
	References




