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Abstract Goal programming provides an efficient technique to deal with decision
making problems with multiple conflicting objectives. This paper joins the streams
of research on goal programming by providing a so-called uncertain random goal
programming to model the multi-objective optimization problem involving uncertain
random variables. Several equivalent deterministic forms are derived on the condition
that the set of parameters consists of uncertain variables and random variables. Finally,
an example is given to illustrate the application of the approach.

Keywords Goal programming · Uncertainty theory · Uncertain random variable ·
Uncertain random programming · Uncertain random goal programming

1 Introduction

Goal programming was first introduced by Charnes and Cooper (1961) and subse-
quently developed by Ijiri (1965) to take into account simultaneously several objectives
in a decision problem. It is essentially a compromise method to search for a solution
by minimizing the deviations between the achievement level of the objectives and the
goals set for them. At present, it has become a popular tool to solve multiobjective pro-
gramming. Because of its simplicity and ease of use, goal programming has also been
actually applied to many different fields such as finance, production, transportation

B Zhongfeng Qin
qin@buaa.edu.cn

1 School of Economics and Management, Beihang University, Beijing 100191, China

2 Key Laboratory of Complex System Analysis, Management and Decision (Beihang University),
Ministry of Education, Beijing 100191, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10700-017-9277-9&domain=pdf


376 Z. Qin

and site selection, telecommunications, quality control, accounting, human resources,
production and so on.

Considering that the parameters in the practical problem are always nondeter-
ministic, goal programming with incomplete information is introduced and widely
investigated. Contini (1968) was the first one to propose the stochastic goal program-
ming with normally distributed random parameters, and then the method was applied
by Retzlaff-Roberts (1993) to solve a stochastic allocative data envelopment analy-
sis. Afterwards, the field was further developed and extended by several researchers.
Ballestero (2001) proposed a stochastic goal programming model leading to a struc-
ture of mean-variance minimization. Liu (1997) provided a theoretical framework for
dependent-chance goal programming as the third type of stochastic programming.
Aouni and Torre (2010) generalized stochastic goal programming by searching for
stochastic solutions. The interested readers can consult Aouni et al. (2012) which high-
lighted the main methodologies of the stochastic goal programming and presented an
overview of its applications in several domains.

A prerequisite for application of stochastic goal programming is that there are
enoughdata to estimate randomparameters of the problembyusing statisticalmethods.
In other words, stochastic goal programming may not work well in the case of lack
of historical data. For this case, the parameters are often estimated by experienced
experts and the estimates given by experts may be described by fuzzy variables. In
this circumstance, fuzzy goal programming was formulated in Narasimhan (1980) by
incorporating fuzzy goals and constraints within the traditional goal programming.
Hannan (1981) and Tiwari et al. (1987) continued extending the subject, and Liu
(1999) provided a spectrum of dependent-chance goal programming models with
fuzzy instead of crisp decisions. After that, fuzzy goal programming was applied to
different areas such as the optimal planning of metropolitan solid waste management
systems Chang and Wang (1997), vendor selection Kumar et al. (2004) and portfolio
selection Parra et al. (2001).

Different from randomness or fuzziness, Liu (2010a) proposed the concept of
uncertain variable and founded uncertainty theory to describe the indeterminate phe-
nomena which behaves neither randomness nor fuzziness. Surrounding the subject,
many researchers have contributed to this area. Meanwhile, uncertainty theory is also
applied to several fields such as uncertain calculus Liu (2009), uncertain control Liu
(2010b), uncertain risk analysis Liu (2010c), uncertain logic Liu (2011) and so forth.
In particular, Liu (2010a) and Liu and Chen (2015) considered uncertain goal pro-
gramming approaches and applied them to the capital budget problem.

As two types of indeterminacy, randomness and uncertainty always simultaneously
appear in a complex system. For example, in portfolio optimization, security returns
may be considered as random variables when available data are enough, or uncertain
variables when lack of data. In order to deal with such a case, Liu (2013) introduced the
concept of uncertain random variable to characterize the parameters representing the
natural status of the problem. In a sense, uncertain random variable is the extensions of
random variable and uncertain variable. Based on the concept, uncertain random pro-
gramming was introduced by Liu (2012) and extended to uncertain randommultilevel
programming (Ke et al. 2014) and multi-objective uncertain random programming
(Zhou et al. 2014). Similar to the traditional and stochastic cases, goal programming
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is a feasible and simple tool to solve multi-objective optimization problem. Inspired
by this point, the paper aims to establish uncertain random goal programming models
for the problem with multiple objectives and uncertain random parameters. In order
to facilitate the use of the approaches, the paper discusses the equivalent deterministic
forms for each model on the condition that the set of parameters consists of uncertain
variables and random variables.

The rest of the paper is organized as follows. Section 2 recalls the fundamental
concepts and conclusions on uncertainty theory. Section 3 recalls the basic form of
goal programming. Sections 4 and 5 are themain body of the paper, which first presents
expected value goal programming and chance-constrained goal programming and then
gives the corresponding equivalent forms, respectively. Section 6 illustrates the use
of the proposed approaches by an example. Finally, some conclusions are given in
“Appendix”.

2 Goal programming—basic form

Assume thatx is a decisionvector, and s is a state vector representing themodel parame-
ters in a decisionmaking problem. The return function fi (x, s) is the i th objective faced
by a decision-maker for i = 1, 2, . . . ,m. In general, these m objectives are always
conflicting with different importance. Therefore, the decision-maker may establish a
hierarchy of importance among these incompatible goals so that they are satisfied as
many as possible in the order specified. Suppose that g j (x, s) are constraint functions
for j = 1, 2, . . . , p.

For simplicity, we use the following notations in the rest of the paper.

m: the number of goal constraints;
p: the number of system constraints;
l: the number of priorities;
bi : the aspiration level (goal) associated with the objective i ;
Pj : the preemptive priority factor which shows relative importance of various goals

with Pj � Pj+1 for all j ;
ui j : the weighting factor corresponding to positive deviation for goal i with priority

j assigned;
vi j : theweighting factor corresponding to negative deviation for goal i with priority

j assigned.

Then a general form of goal programming is written as follows,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑

i=1

(
ui j d

+
i + vi j d

−
i

)

s.t. fi (x, s) − d+
i + d−

i = bi , i = 1, 2, . . . ,m
g j (x, s) ≤ 0, j = 1, 2, . . . , p
d+
i , d−

i ≥ 0, i = 1, 2, . . . ,m.

(1)

where d+
i is the positive deviation from the target of goal i , defined as d+

i = [ fi (x, s)−
bi ] ∨ 0, and d−

i is the negative deviation from the target of goal i , defined as d−
i =
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378 Z. Qin

[bi − fi (x, s)]∨0. The objective function represents the weighted deviations between
the achievement level of each objective and the goal set for it.

In general, the decision-maker does not know the values of the model parameters
s with certainty. For example, the vector s may represent the demand quantities in
supply chain management or the security returns in portfolio selection. In either case,
the realizations of s cannot be known in advance.As discussed in Introduction, the state
vector s i ever considered as random one, fuzzy one or uncertain one. Accordingly,
Model (1) was also formulated as stochastic goal programming (Charnes and Cooper
1961), fuzzy goal programming (Narasimhan 1980), uncertain goal programming (Liu
and Chen 2015), respectively.

3 Expected value goal programming

In this section, let ξ represent the state vector, which is assumed to be an uncertain
random vector to describe the quantities with human uncertainty. According to the
operational law, the return functions fi (x, ξ) and the constraint functions g j (x, ξ) are
also uncertain randomvariables, respectively, for i = 1, 2, . . . ,m and j = 1, 2, . . . , p.
Different from the situation of real numbers, there does not exist a natural order
between uncertain random variables. Moreover, the constraints g j (x, ξ) ≤ 0, j =
1, 2, . . . , p do not define a crisp feasible set. Generally, expected value is a more
popular standard to rank uncertain random variables. Therefore, we first employ the
expected value as the standard to rank uncertain random variable. The first uncertain
random expected value goal programming is formulated as follows,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑

i=1

(
ui j d

+
i + vi j d

−
i

)

s.t. E[ fi (x, ξ)] − d+
i + d−

i = bi , i = 1, 2, . . . ,m
E[g j (x, ξ)] ≤ 0, j = 1, 2, . . . , p
d+
i , d−

i ≥ 0, i = 1, 2, . . . ,m

(2)

where d+
i is the positive deviation from the target of goal i , defined as d+

i =
[E[ fi (x, ξ)] − bi ] ∨ 0, and d−

i is the negative deviation from the target of goal i ,
defined as d−

i = [bi − E[ fi (x, ξ)]] ∨ 0.
Expected value is the average value of uncertain random variable in the sense

of chance measure. Thus, it is weak that an inequality constraint E[ f (x, ξ)] ≤ b
holds only in the sense of expected value. A natural alternative is to require that
an uncertain constraint holds at a given confidence level. Therefore, the constraints
E[g j (x, ξ)] ≤ 0 in Model (2) may be replaced with Ch{g j (x, ξ) ≤ 0} ≥ α j where
α j are confidence levels for j = 1, 2, . . . , p. The second uncertain random expected
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value goal programming is formulated as follows,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑

i=1

(
ui j d

+
i + vi j d

−
i

)

s.t. E[ fi (x, ξ)] − d+
i + d−

i = bi , i = 1, 2, . . . ,m
Ch{g j (x, ξ) ≤ 0} ≥ α j , j = 1, 2, . . . , p
d+
i , d−

i ≥ 0, i = 1, 2, . . . ,m.

(3)

ForModels (2) and (3), there are other objective functions commonly used in reality.
For example, we can use the following one,

lexmin

{
m∑

i=1

(
ui1d

+
i + vi1d

−
i

)
,

m∑

i=1

(
ui2d

+
i + vi2d

−
i

)
, . . . ,

m∑

i=1

(
uild

+
i + vild

−
i

)
}

where lexmin represents lexicographicallyminimizing theobjective vector.Or, another
simpler one is to set lexmin{S} as the objective function, in which S is a subset of
{d+

i , d−
i , i = 1, 2, . . . , l} with a given order.

Model (2) is the most general case where uncertain random parameters may be any
types. Of course, it is also difficult to be solved in this situation. One of the circum-
stances in which randomness and uncertainties simultaneously appear is that some
parameters are random variables, and the other parameters are uncertain variables. It
is a simpler case and commonly faced by the decision-makers. More specifically, we
assume that uncertain random vector is written as ξ = (η1, η2, . . . , ηn, τ1, τ2, . . . , τq)

where η1, η2, . . . , ηn are independent random variables with probability distributions
�1, �2, . . . , �n , respectively, and τ1, τ2, . . . , τq are uncertain variables. In this situ-
ation, it follows from Theorem 2 that Models (2) and (3) can be converted into the
following crisp goal programming,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑

i=1

(
ui j d

+
i + vi j d

−
i

)

s.t.
∫

Rn
E[ fi (x, y1, . . . , yn , τ1, . . . , τq )]d�1(y1) . . . d�n(yn) − d+

i + d−
i = bi , i = 1, 2, . . . ,m

∫

Rn
E[g j (x, y1, . . . , yn , τ1, . . . , τq )]d�1(y1) . . . d�n(yn) ≤ 0, j = 1, 2, . . . , p

d+
i , d−

i ≥ 0, i = 1, 2, . . . ,m,

(4)
and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑

i=1

(
ui j d

+
i + vi j d

−
i

)

s.t.
∫

Rn
E[ fi (x, y1, . . . , yn, τ1, . . . , τq )]d�1(y1) . . . d�n(yn) − d+

i + d−
i = bi , i = 1, 2, . . . ,m

∫

Rn
M

{
g j (x, y1, . . . , yn, τ1, . . . , τq ) ≤ 0

}
d�1(y1) · · · d�n(yn) ≥ α j , j = 1, 2, . . . , p

d+
i , d−

i ≥ 0, i = 1, 2, . . . ,m,

(5)
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380 Z. Qin

where E[ fi (x, y1, . . . , yn, τ1, . . . , τq)] and E[g j (x, y1, . . . , yn, τ1, . . . , τq)] are the
expected values of the uncertain variables fi (x, y1, . . . , yn, τ1, . . . , τq) and g j (x, y1,
. . . , yn, τ1, . . . , τq), respectively.

Further, suppose that fi (x, η1, η2, . . . , ηn, τ1, τ2, . . . , τq) is strictly increasing with
respect to τ1, . . . , τq ′

i
and strictly decreasing with respect to τq ′

i+1, . . . , τq , and
g j (x, η1, η2, . . . , ηn, τ1, τ2, . . . , τq) is strictly increasing with respect to τ1, . . . , τq ′′

j

and strictly decreasing with respect to τq ′′
j +1, . . . , τq . Meanwhile, we assume that

τ1, τ2, . . . , τq have regular uncertainty distributions ϒ1, ϒ2, . . . , ϒq , respectively.
Then it follows from Theorem 3 that Model (2) can be converted into the follow-
ing one,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑

i=1

(
ui j d

+
i + vi j d

−
i

)

s.t.
∫

Rn

∫ 1

0
fi

(
x, y1, . . . , yn, ϒ

−1
1 (α), . . . , ϒ−1

q ′
i

(α),ϒ−1
q ′
i+1(1 − α), . . . , ϒ−1

q (1 − α)
)

dαd�1(y1) · · · d�n(yn) − d+
i + d−

i = bi , i = 1, 2, . . . ,m
∫

Rn

∫ 1

0
g j

(

x, y1, . . . , yn, ϒ
−1
1 (α), . . . , ϒ−1

q ′′
j
(α),ϒ−1

q ′′
j +1(1 − α), . . . , ϒ−1

q (1 − α)

)

dαd�1(y1) · · · d�n(yn) ≤ 0,
j = 1, 2, . . . , p

d+
i , d−

i ≥ 0, i = 1, 2, . . . ,m,

(6)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑

i=1

(
ui j d

+
i + vi j d

−
i

)

s.t.
∫

Rn

∫ 1

0
fi

(
x, y1, . . . , yn, ϒ

−1
1 (α), . . . , ϒ−1

q ′
i

(α),ϒ−1
q ′
i+1(1 − α), . . . , ϒ−1

q (1 − α)
)

dαd�1(y1) · · · d�n(yn) − d+
i + d−

i = bi , i = 1, 2, . . . ,m∫

Rn
G j (x, y1, . . . , yn)d�1(y1) · · · d�n(yn) ≥ α j , j = 1, 2, . . . , p

d+
i , d−

i ≥ 0, i = 1, 2, . . . ,m,

(7)

where G j (x, y1, . . . , yn) is the root α of the equation

g j

(

x, y1, . . . , ym, ϒ−1
1 (α), . . . , ϒ−1

q ′′
j
(α),ϒ−1

q ′′
j +1(1 − α), . . . , ϒ−1

q (1 − α)

)

= 0.

4 Chance-constrained goal programming

If the decision-makerwishes the chance of the event that the i th goal fi (x, ξ) is as close
as the target value bi is at least some given confidence level, then we can formulate
the uncertain random decision system as a chance-constrained goal programming

123
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according to the priority structure and target levels set by the decision-maker,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑

i=1

(
ui j d

+
i + vi j d

−
i

)

s.t. Ch
{
fi (x, ξ) − bi ≤ d+

i

} ≥ β+
i , i = 1, 2, . . . ,m

Ch
{
bi − fi (x, ξ) ≤ d−

i

} ≥ β−
i , i = 1, 2, . . . ,m

Ch{g j (x, ξ) ≤ 0} ≥ α j , j = 1, 2, . . . , p
d+
i , d−

i ≥ 0, i = 1, 2, . . . ,m

(8)

where d+
i is the β+

i positive deviation from the target of goal i , defined as min{d ∨
0|Ch{ fi (x, ξ) − bi ≤ d} ≥ β+

i }, and d−
i is the β−

i negative deviation from the target
of goal i , defined as min{d ∨ 0|Ch{bi − fi (x, ξ) ≤ d} ≥ β−

i }.
In a deterministic goal programming, we have d+

i · d−
i = 0 which implies at most

one of positive deviation and negative deviation takes a positive value. However, it is
possible that both d+

i and d−
i are positive in Model (8).

Next, we continue considering the situation where ξ = (η1, η2, . . . , ηn, τ1, τ2, . . . ,

τq) where η1, η2, . . . , ηn are independent random variables with probability distribu-
tions �1, �2, . . . , �q , respectively, and τ1, τ2, . . . , τn are uncertain variables. In this
case, Model (8) can be converted into the following crisp goal programming,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑

i=1

(
ui j d

+
i + vi j d

−
i

)

s.t.
∫

Rn
M

{
fi (x, y1, . . . , yn , τ1, . . . , τq ) ≤ bi + d+

i

}
d�1(y1) · · · d�n(yn) ≥ β+

i , i = 1, 2, . . . ,m
∫

Rn
M

{
fi (x, y1, . . . , yn , τ1, . . . , τq ) ≥ bi − d−

i

}
d�1(y1) · · · d�n(yn) ≥ β−

i , i = 1, 2, . . . ,m
∫

Rn
M

{
g j (x, y1, . . . , yn , τ1, . . . , τq ) ≤ 0

}
d�1(y1) · · · d�n(yn) ≥ α j , j = 1, 2, . . . , p

d+
i , d−

i ≥ 0, i = 1, 2, . . . ,m.

(9)

Assume that uncertain variables τ1, τ2, . . . , τq have regular uncertainty distribu-
tions ϒ1, ϒ2, . . . , ϒq , respectively. Further, suppose that fi (x, η1, η2, . . . , ηn, τ1, τ2,
. . . , τq) is strictly increasing with respect to τ1, . . . , τq ′

i
and strictly decreasing with

respect to τq ′
i+1, . . . , τq , and g j (x, η1, η2, . . . , ηn, τ1, τ2, . . . , τq) is strictly increasing

with respect to τ1, . . . , τq ′′
j
and strictly decreasing with respect to τq ′′

j +1, . . . , τq . In
this case, Model (8) is equivalent to the following crisp goal programming,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
l∑

j=1
Pj

m∑

i=1

(
ui j d

+
i + vi j d

−
i

)

s.t.
∫

Rn
F ′
i (x, y1, . . . , yn)d�1(y1) . . . d�n(yn) ≥ β+

i , i = 1, 2, . . . ,m
∫

Rn
F ′′
i (x, y1, . . . , yn)d�1(y1) · · · d�n(yn) ≥ β−

i , i = 1, 2, . . . ,m
∫

Rn
G j (x, y1, . . . , yn)d�1(y1) · · · d�n(yn) ≥ α j , j = 1, 2, . . . , p

d+
i , d−

i ≥ 0, i = 1, 2, . . . ,m,

(10)
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where F ′
i (x, y1, . . . , yn) is the root α of the equation

fi
(
x, y1, . . . , ym, ϒ−1

1 (α), . . . , ϒ−1
q ′
i

(α),ϒ−1
q ′
i+1(1 − α), . . . , ϒ−1

q (1 − α)
)

= bi + d+
i ,

F ′′
i (x, y1, . . . , yn) is the root α of the equation

fi
(
x, y1, . . . , ym, ϒ−1

1 (1 − α), . . . , ϒ−1
q ′
i

(1 − α),ϒ−1
q ′
i+1(α), . . . , ϒ−1

q (α)
)

= bi − d−
i ,

and G j (x, y1, . . . , yn) is the root α of the equation

g j

(

x, y1, . . . , ym, ϒ−1
1 (α), . . . , ϒ−1

q ′′
j
(α),ϒ−1

q ′′
j +1(1 − α), . . . , ϒ−1

q (1 − α)

)

= 0.

5 A numerical example

In general, the chance measure of an uncertain random event is difficult to be analyt-
ically calculated. However, in the case of mixture of random variables and uncertain
variables, the proposed models can be converted into crisp ones such as Models (6),
(7) and (10). For the case, numerical methods can be employed to calculate the chance
measures since which are essentially integrals.

Next, a simpler numerical example is presented in this part to illustrate themodelling
idea. Assume that the uncertain random vector ξ = (η1, η2, τ1, τ2) where η1 and η2
are independent random variables N (2, 1), N (4, 1), and τ1 and τ2 are independent
uncertain variables L(0, 4), L(4, 8). The return functions f1(x, ξ) = x1η1 + x2τ2 and
f2(x, ξ) = x1η2 + x2τ1. The constraint functions g1(x, ξ) = x1τ1 + x2η1 − 10 and
g2(x, ξ) = x21τ2 + x22η2 − 20. In addition, the number l of priorities is set as 1, and
b1 = 10, b2 = 15. In this situation, Model (2) is converted into the following form,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
(
u1d

+
1 + v1d

−
1

) + (
u2d

+
2 + v2d

−
2

)

s.t. 2x1 + 6x2 + d−
1 − d+

1 = 10
4x1 + 2x2 + d−

2 − d+
2 = 15

2x1 + 2x2 ≤ 10
2x21 + 2x22 ≤ 20
d+
i , d−

i ≥ 0, i = 1, 2.

(11)

It is a crisp goal programming model without uncertain random parameters. With-
out of generality, we set u1 = 0.2, v1 = 0, u2 = 0.7, v2 = 0.1. Then the above
model becomes a single-objective programming and can be solved by Lingo. The
optimal solution is x∗

1 = 1.86, x∗
2 = 1.01 and meanwhile d−

1 = 0.22, d+
1 = 0, d+

2 =
5.53, d+

2 = 0. The value of the first objective is 9.78 and the second one is 9.47.
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If the decision maker does not know how to determine the values of the
weighting factors u1, v1, u2 and v2, then we can lexicographically minimize the
subset of {d−

i , d+
i , i = 1, 2}. For example, we set the objective function as

lexmin{d−
1 , d+

1 , d−
2 , d+

2 }. Then the optimal solution is x∗
1 = 1.82, x∗

2 = 1.06 and
meanwhile d−

1 = 0, d+
1 = 0, d+

2 = 5.60, d+
2 = 0. The value of the first objective is

10 and the second one is 9.4.

6 Conclusions

In this paper, we proposed two kinds of uncertain random goal programming for
the problem simultaneously with randomness and uncertainty. The equivalent forms
are obtained for a special case in which the set of uncertain random parameters is
composed of random variables and uncertain variables. For the purpose of illustration,
a numerical example is introduced to show the use of the approach.
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Appendix: uncertainty theory

In this section, uncertainty theory Liu (2007) is briefly introduced for the better under-
standing of the paper. Let� be a nonempty set, andL a σ -algebra over�. Each element

 ∈ L is called an event. A number M{
} is assigned to each event 
 as the chance
that 
 will occur. Liu (2007) proposed the following three axioms to ensure that the
number M{
} satisfying certain mathematical properties,

Axiom 1 (Normality)M{�} = 1 for the universal set.

Axiom 2 (Duality)M{
} + M{
c} = 1 for any event 
.

Axiom 3 (Subadditivity) For every countable sequence of events {
i }, we have

M

{ ∞⋃

i=1


i

}

≤
∞∑

i=1

M{
i }. (12)

The triplet (�,L,M) is called an uncertainty space. Let (�k,Lk,Mk)be uncertainty
spaces for k = 1, 2, . . .. Then the product uncertain measure M is defined by Liu
(2010a) as an uncertain measure satisfying

M

{ ∞∏

k=1

�k

}

=
∞∧

k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.
An uncertain variable ξ is defined by Liu (2007) as a measurable function from an

uncertainty space (�,L,M) to the set of real numbers, i.e., for any Borel set B of real
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numbers, the set {ξ ∈ B} = {γ ∈ �|ξ(γ ) ∈ B} is an event. The uncertain variable ξ

can be characterized by its uncertainty distribution which is a function : R → [0, 1]
defined by Liu (2007) as (t) = M{ξ ≤ t}.
Definition 1 (Liu 2013) Let (�,L,M) × (�,A,Pr) be a chance space, and let � ∈
L × A be an event. Then the chance measure of � is defined as

Ch{�} =
∫ 1

0
Pr{ω ∈ �|M{γ ∈ �|(γ, ω) ∈ �} ≥ x}dx . (13)

Definition 2 (Liu 2013) An uncertain random variable ξ is a function from a chance
space (�,L,M) × (�,A,Pr) to the set of real numbers such that {ξ ∈ B} is an event
in L × A for any Borel set B of real numbers.

An uncertain random variable ξ(γ, ω) degenerates to a random variable and an
uncertain variable when it does not vary with γ and with ω, respectively.

Example 1 Let τ1, τ2, . . . , τn be uncertain variables and (�,A, Pr) a probability
space with � = {ω1, ω2, . . . , ωn}. Then the function

ξ(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

τ1, if ω = ω1
τ2, if ω = ω2
· · ·
τn, if ω = ωn

is just an uncertain random variable.

Theorem 1 (Liu 2012) Let η1, η2, . . . , ηn be independent random variables with
probability distributions �1, �2, . . . , �n, and τ1, τ2, . . . , τq be uncertain variables
with uncertainty distributionsϒ1, ϒ2, . . . , ϒq , respectively. Assume h is ameasurable
function. Then the uncertain random variable ξ = h(η1, η2, . . . , ηn, τ1, τ2, . . . , τq)

has a chance distribution

(x) =
∫

Rn
F(x; y1, y2, . . . , yn)d�1(y1)d�2(y2) · · · d�n(yn) (14)

where F(x; y1, y2, . . . , yn) is the uncertainty distribution of the uncertain variable
h(y1, y2, . . . , yn, τ1, τ2, . . . , τq).

Definition 3 (Liu 2013) Let ξ be an uncertain random variable. Then its expected
value is defined by

E[ξ ] =
∫ +∞

0
Ch{ξ ≥ r}dr −

∫ 0

−∞
Ch{ξ ≤ r}dr (15)

provided that at least one of the two integrals is finite.
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Theorem 2 (Liu 2012) Let τ1, τ2, . . . , τq be uncertain variables, and η1, η2, . . . , ηn
be independent random variables with probability distributions �1, �2, . . . , �n,
respectively. Assume h is a measurable function. Then the uncertain random vari-
able ξ = h(η1, η2, . . . , ηn, τ1, τ2, . . . , τq) has an expected value

E[ξ ] =
∫

Rn
E[h(y1, y2, . . . , yn, τ1, τ2, . . . , τq)]d�1(y1)d�2(y2) . . . d�n(yn) (16)

where E[h(y1, y2, . . . , yn, τ1, τ2, . . . , τq)] is the expected value of the uncertain vari-
able f (y1, y2, . . . , yn, τ1, τ2, . . . , τq) for given real numbers y1, y2, . . . , yn.
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