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Abstract Uncertainty theory as a branch of axiomatic mathematics has been widely
used to deal with human uncertainty. The two commonly used numerical character-
istics of uncertain variables, the expected value and the variance together with their
mathematical properties have been discussed and applied to real optimization prob-
lems in an uncertain environment. As a further study, in this paper, we focus on the
covariance and correlation coefficient of uncertain variables. The definitions and cal-
culation formulae of covariance and correlation coefficient of two uncertain variables
are suggested bymeans of their inverse distributions. Thenwe show that the correlation
coefficient of uncertain variables is essentially a measure of the relevance of distribu-
tions of uncertain variables. Finally, the relation between variance and covariance is
analysed and represented with some equalities and inequalities.

Keywords Uncertain variable · Inverse distribution · Covariance · Correlation
coefficient

1 Introduction

Probability theory has been extensively applied for handling indeterminate phe-
nomena. As important numerical characteristics, the expected value, variance, and
covariance of random variables have been studied thoroughly involving their mathe-
matical properties and applications. While dealing with practical decision problems,
those indices are often used as important criteria. Additionally, in order to solve prob-
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212 M. Zhao et al.

lems appropriately via probability theory, it is often required to estimate probability
distributions by using statistical data in accordance with the law of large numbers.

However, in the real world, due to technological and economical difficulties or low
frequency of events occurring, there exists a shortage of sufficient data for deriving
precise probability distributions. In such cases, especially when there are no samples
available to evaluate probability distributions, as an alternative approach, some field
experts are asked to estimate the degrees of belief that events happen. It is widely
known that due to subjectivity human beings may overweight unlikely events, which
makes the estimated degrees of belief be very different from the real frequency. For
the purpose of tackling this kind of problems, Liu (2007) initiated uncertainty theory.
As an efficient tool for dealing with indeterminate phenomena, uncertainty theory has
been studied bymany researchers. It has been applied to many fields, such as uncertain
programming (Ke et al. 2015; Zhong et al. 2017; Zhou et al. 2014), uncertain process
(Yao and Li 2012; Yao and Zhou 2016, 2017), uncertain network (Zhang et al. 2013;
Zhou et al. 2014a, b), uncertain logic (Li and Liu 2009; Zhang and Li 2014), uncertain
finance (Chen et al. 2017; Ji and Zhou 2015b; Zhou et al. 2017), uncertain differential
equation (Ji and Zhou 2015a; Su et al. 2016), uncertain agency problem (Wu et al.
2014; Yang et al. 2014), among others.

In theoretical research onuncertainty theory,much attentionwas given to the numer-
ical characteristics of uncertain variables especially expected value and variance due to
their useful practical interpretation. The notion of expected value was first defined by
Liu (2007) as the mean value of all possible values of an uncertain variable. Concern-
ing uncertain variables whose distributions are regular, Liu (2010) further proposed a
convenient equivalent formula for expected value in terms of inverse distribution. As
an extension, Liu and Ha (2010) suggested a formula to calculate the expected value
of a strictly monotone function in regard to independent uncertain variables whose
distributions are regular. Based upon the concept of expected value, Liu (2007) intro-
duced the variance of an uncertain variable. Due to the subadditivity of an uncertain
measure, a formula for calculating the variance was shown in Liu (2007) by virtue
of its distribution. Yao (2015) then derived an equivalent formula for calculating the
variance of an uncertain variable using its inverse distribution. In the same paper,
Yao (2015) proved some inequalities for variances of uncertain variables useful in
real applications. The expected value and variance of uncertain variables have been
widely applied into practical problems. For example, Liu et al. (2014) proposed a new
uncertain expected value operator approach for determining the importance of engi-
neering characteristics and their rankings in quality function deployment. Zhou et al.
(2015, 2016) extended the concept of minimum spanning tree to its uncertain version
by using the expected value as one of judgement criteria. Qin (2015) presented the
calculation formulae for variances of hybrid portfolio returns on the basis of uncer-
tainty theory and then formulated corresponding mean-variance models to solve the
hybrid portfolio selection problem.

In probability theory, covariance and correlation coefficient are very important
measures to interpret the degree of association between two randomvariables, and have
been useful especially in the field of regression analysis. In this paper, the concepts
of covariance and correlation coefficient are initiated in the field of uncertainty theory
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involving their mathematical properties. The relationships between covariance and
variance are also investigated.

The rest of this paper is organized as follows. Some fundamental concepts of uncer-
tain variables are recalled in Sect. 2. The concepts and some calculation formulae of
covariance and correlation coefficient for uncertain variables are presented, and some
of their properties are put forward in Sect. 3. Subsequently, the relationships between
variance and covariance of uncertain variables are discussed and described by means
of some equalities and inequalities in Sect. 4. Some conclusions are drawn in Sect. 5.

2 Preliminaries

In this section, some basic definitions and theorems of uncertainty theory are briefly
recalled, as they will be used throughout this paper.

Definition 1 (Liu 2007) Let � be a nonempty set, and L a σ -algebra over �. The set
function M : L → [0, 1] is called an uncertain measure if it satisfies the following
three axioms:

Axiom 1 (Normality Axiom) M {�} = 1 for the universal set �;

Axiom 2 (Duality Axiom) M {�} + M {�c} = 1 for any event �;

Axiom 3 (Subadditivity Axiom) For every countable sequence of events �1, �2, . . .,
we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M {�i }. (1)

Liu (2009) defined the product uncertain measure as follows:

Axiom 4 (Product Axiom) Let (�k,Lk,Mk) be uncertainty spaces for k = 1, 2, . . ..
The product uncertain measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k}, (2)

where �k are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.

Definition 2 (Liu 2007) An uncertain variable is a measurable function μ from an
uncertainty space (�,L,M ) to the set of real numbers, i.e., for any Borel set B of
real numbers, the set

{μ ∈ B} = {γ ∈ �
∣∣ μ(γ ) ∈ B} (3)

is an event.

Definition 3 (Liu 2007) The uncertainty distribution � of an uncertain variable μ is
defined by

�(x) = M {μ ≤ x} (4)

for any real number x .
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Example 1 An uncertain variable μ is called linear, denoted as μ ∼ L(a, b) with
a < b, if its uncertainty distribution is

�(x) =
⎧⎨
⎩
0, if x < a
(x − a)/(b − a), if a ≤ x < b
1, if x ≥ b.

(5)

Example 2 An uncertain variable μ is called zigzag, denoted as μ ∼ Z(a, b, c) with
a < b < c, if its uncertainty distribution is

�(x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x < a
(x − a)/2(b − a), if a ≤ x < b
(x + c − 2b)/2(c − b), if b ≤ x < c
1, if x ≥ c.

(6)

Example 3 An uncertain variable μ is called normal, denoted as μ ∼ N(e, σ ) with
σ > 0, if its uncertainty distribution is

�(x) =
(
1 + exp

(
π(e − x)√

3σ

))−1

, x ∈ 	. (7)

Definition 4 (Liu 2010) If an uncertainty distribution �(x) is continuous and strictly
increasing at 0 < �(x) < 1, and lim

x→−∞ �(x) = 0, lim
x→+∞ �(x) = 1, then �(x) is

called regular.

Definition 5 (Liu 2010) If μ is an uncertain variable whose distribution �(x) is
regular, then �−1(θ) is called the inverse uncertainty distribution of μ.

From Definition 4, we know that �−1(θ) is well defined on (0, 1). If necessary,
the domain can be extended by letting �−1(0) = limθ↓0 �−1(θ) and �−1(1) =
limθ↑1 �−1(θ).

It is easy to see that the distributions of a linear uncertain variable μ1 ∼ L(a, b)
in Example 1, a zigzag uncertain variable μ2 ∼ Z(a, b, c) in Example 2, and a
normal uncertain variableμ3 ∼ N(e, σ ) in Example 3 are all regular, and their inverse
uncertainty distributions are

�−1
1 (θ) = a + (b − a)θ, (8)

�−1
2 (θ) =

{
a + 2(b − a)θ, if θ ≤ 0.5
2b − c + 2(c − b)θ, if θ > 0.5,

(9)

and

�−1
3 (θ) = e +

√
3σ

π
ln

θ

1 − θ
, (10)

respectively.
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Definition 6 (Liu 2009) The uncertain variables μ1, μ2, . . ., μn are said to be inde-
pendent if

M

{
n⋂

i=1

{μi ∈ Bi }
}

=
n∧

i=1

M {μi ∈ Bi } (11)

for any Borel sets B1, B2, . . . , Bn of real numbers.

Theorem 1 (Liu 2009) The uncertain variables μ1, μ2, . . ., μn are independent if
and only if

M

{
n⋃

i=1

{μi ∈ Bi }
}

=
n∨

i=1

M {μi ∈ Bi } (12)

for any Borel sets B1, B2, . . . , Bn of real numbers.

Theorem 2 (Liu 2010) Let μ1, μ2,. . ., μn be independent uncertain variables that
have regular distributions�1,�2,. . .,�n, respectively. If the function f (y1, y2, . . . , yn)
is strictly increasing in y1, y2, . . . , ym and strictly decreasing in ym+1, ym+2, . . . , yn,
then the uncertain variable μ = f (μ1, μ2, . . . , μn) has an inverse distribution

ϒ−1(θ) = f
(
�−1

1 (θ), . . . , �−1
m (θ),�−1

m+1(1 − θ), . . . , �−1
n (1 − θ)

)
. (13)

Theorem 3 (Liu 2010) If μ is an uncertain variable that has regular distribution �,
then

E[μ] =
∫ 1

0
�−1(θ)dθ. (14)

According to Eqs. (8)–(10) and (14), the expected value of uncertain variables
μ1 ∼ L(a, b), μ2 ∼ Z(a, b, c), and μ3 ∼ N(e, σ ) are

E[μ1] =
∫ 1

0
(a + (b − a)θ) dθ = a + b

2
, (15)

E[μ2] =
∫ 0.5

0
(a + 2(b − a)θ) dθ

+
∫ 1

0.5
(2b − c + 2(c − b)θ) dθ = a + 2b + c

4
, (16)

and

E[μ3] =
∫ 1

0

(
e +

√
3σ

π
ln

θ

1 − θ

)
dθ = e, (17)

respectively.

Theorem 4 (Liu 2010) If μ and ν are two independent uncertain variables that have
finite expected values, then we have

E[aμ + bν] = aE[μ] + bE[ν] (18)

for any real numbers a and b.
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Definition 7 (Liu 2007) If μ is an uncertain variable that has a finite expected value
E[μ], then the variance of μ is defined by

V [μ] = E[(μ − E[μ])2]. (19)

Theorem 5 (Yao 2015) If μ is an uncertain variable that has a regular distribution
� and a finite expected value E[μ], then the variance of μ is

V [μ] =
∫ 1

0

(
�−1(θ) − E[μ]

)2
dθ. (20)

Theorem 6 (Liu 2007) If μ is an uncertain variable that has a finite expected value,
then we have

V [aμ + b] = a2V [μ] (21)

for any real numbers a and b.

3 Covariance and correlation coefficient

In this section, we first give a definition for the covariance of two uncertain variables.
A method is also suggested for determining the covariance of two uncertain variables
with regular distributions via their inverse distributions. Afterwards, the definition of
the correlation coefficient of two uncertain variables is presented. The properties of
covariance and correlation coefficient are further studied and the meaning behind the
mathematical formulation is then revealed through some examples. For simplicity, an
uncertain variable with a regular distribution is called a regular uncertain variable in
the rest of this paper.

3.1 Definition and calculation formulae of covariance

Definition 8 Let μ and ν be two uncertain variables. The covariance of μ and ν is
defined by

Cov[μ, ν] = E[(μ − E[μ]) (ν − E[ν])], (22)

where E[μ] and E[ν] are the expected values of μ and ν, respectively.

Remark 1 It is known that for two random variables μ and ν, we have

Cov[μ, ν] = E [(μ − E[μ]) (ν − E[ν])]
= E [μν − E[ν]μ − E[μ]ν + E[μ]E[ν]]
= E[μν] − E[μ]E[ν].

Since E[μν] = E[μ]E[ν] if the two random variables are independent, as a conse-
quence, Cov[μ, ν] = 0 holds for any two independent random variables.
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On the other hand, if the two variables μ and ν are uncertain variables, from
Definition 8, we have

Cov[μ, ν] = E [(μ − E[μ]) (ν − E[ν])]
= E [μν − E[ν]μ − E[μ]ν + E[μ]E[ν]]
= E

[
μν − E[ν]μ − E[μ]ν]+ E[μ]E[ν].

Even though μ and ν are independent, the uncertain variables μν, E[ν]μ, and
E[μ]ν are not independent in general. Since the linearity of expected value of uncer-
tain variables is based on independence (see Theorem 4), it cannot be deduced
that E

[
μν − E[ν]μ − E[μ]ν] = E[μν] − 2E[μ]E[ν]. Furthermore, the equation

E[μν] = E[μ]E[ν] does not hold for two independent uncertain variables μ and ν.
Therefore, the conclusion Cov[μ, ν] = 0 does not follow if two uncertain variables
μ and ν are independent. The main reason is the difference between the concepts of
independence for the two types of variables. Due to this, the covariance of uncertain
variables has a completely different interpretation compared with the covariance of
random variables, and this will be explained thoroughly later in the paper.

As mentioned above, the uncertain measure is a subadditive measure. Just like the
variance, it is not easy to express the covariance of uncertain variables defined in Eq.
(22) simply by distributions. From Definitions 7 and 8, it is clear that variance can be
considered as a special type of covariance. In view of formula (20) for the variance
of uncertain variable (see Theorem 5), we provide the following stipulation for the
calculation of covariance via inverse distributions.

Stipulation 1 Let μ and ν be two regular uncertain variables with distributions �

and ϒ and finite expected values E[μ] and E[ν], respectively. Then the covariance of
μ and ν is

Cov[μ, ν] =
∫ 1

0

(
�−1(θ) − E[μ])(ϒ−1(θ) − E[ν]

)
dθ. (23)

Theorem 7 Let μ and ν be two regular uncertain variables with distributions � and
ϒ and finite expected values E[μ] and E[ν], respectively. Then

Cov[μ, ν] =
∫ 1

0
�−1(θ)ϒ−1(θ)dθ − E[μ]E[ν]. (24)

Proof From Stipulation 1, it is easy to obtain the covariance of μ and ν as

Cov[μ, ν] =
∫ 1

0

(
�−1(θ)ϒ−1(θ) − E[ν]�−1(θ) − E[μ]ϒ−1(θ) + E[μ]E[ν]

)
dθ

=
∫ 1

0
�−1(θ)ϒ−1(θ)dθ − E[ν]

∫ 1

0
�−1(θ)dθ

− E[μ]
∫ 1

0
ϒ−1(θ)dθ + E[μ]E[ν].
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Then according to (14) (see Theorem 3), we get

Cov[μ, ν] =
∫ 1

0
�−1(θ)ϒ−1(θ)dθ − E[μ]E[ν]. �

Theorem 8 Let μ be a regular uncertain variable with a finite expected value. Then

V [μ] = Cov[μ,μ]. (25)

Proof For convenience, denote the distribution of μ by �. From Stipulation 1, we
obtain

Cov[μ,μ] =
∫ 1

0

(
�−1(θ) − E[μ]

) (
�−1(θ) − E[μ]

)
dθ

=
∫ 1

0

(
�−1(θ) − E[μ]

)2
dθ.

Then from (20) (see Theorem 5), it follows that Cov[μ,μ] = V [μ]. �
Example 4 Consider the covariance of two linear uncertain variables μ ∼ L(a, b)
and ν ∼ L(c, d). Since the expected values of μ and ν are E[μ] = (a + b)/2 and
E[ν] = (c + d)/2, and the inverse distributions of μ and ν are

�−1(θ) = a + (b − a)θ

and

ϒ−1(θ) = c + (d − c)θ,

respectively, it follows from Stipulation 1 that

Cov[μ, ν] =
∫ 1

0

(
a + (b − a)θ − a + b

2

)(
c + (d − c)θ − c + d

2

)
dθ

= (b − a)(d − c)

12
.

Example 5 Consider the covariance of two zigzag uncertain variables μ ∼ Z(a1, b1,
c1) and ν ∼ Z(a2, b2, c2). Since the expected values of μ and ν are E[μ] = (a1 +
2b1 + c1)/4 and E[ν] = (a2 + 2b2 + c2)/4, and the inverse distributions of μ and ν

are

�−1(θ) =
{
a1 + 2(b1 − a1)θ, if θ ≤ 0.5
2b1 − c1 + 2(c1 − b1)θ, if θ > 0.5
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and

ϒ−1(θ) =
{
a2 + 2(b2 − a2)θ, if θ ≤ 0.5
2b2 − c2 + 2(c2 − b2)θ, if θ > 0.5,

respectively, from Stipulation 1, we obtain

Cov[μ, ν]
=
∫ 0.5

0

(
a1 + 2(b1 − a1)θ − a1 + 2b1 + c1

4

)

×
(
a2 + 2(b2 − a2)θ − a2 + 2b2 + c2

4

)
dθ

+
∫ 1

0.5

(
2b1 − c1 + 2(c1 − b1)θ − a1 + 2b1 + c1

4

)

×
(
2b2 − c2 + 2(c2 − b2)θ − a2 + 2b2 + c2

4

)
dθ

= 1

48
[(b2−a2) (5(b1−a1)+3(c1−b1)) + (c2−b2) (3(b1−a1) + 5(c1 − b1))] .

Example 6 Consider the covariance of two normal uncertain variables μ ∼ N(e1, σ1)
and ν ∼ N(e2, σ2). Since the expected values ofμ and ν are E[μ] = e1 and E[ν] = e2,
and the inverse distributions of μ and ν are

�−1(θ) = e1 +
√
3σ1
π

ln
θ

1 − θ

and

ϒ−1(θ) = e2 +
√
3σ2
π

ln
θ

1 − θ
,

respectively, following from Stipulation 1, we get

Cov[μ, ν] =
∫ 1

0

(
e1 +

√
3σ2
π

ln
θ

1 − θ
− e1

)(
e2 +

√
3σ2
π

ln
θ

1 − θ
− e2

)
dθ

= 3σ1σ2
π2

∫ 1

0

(
ln

θ

1 − θ

)2

dθ

= σ1σ2.

Example 7 Consider the covariance of two uncertain variables μ ∼ L(a, b) and ν ∼
N(e, σ ). Using the results of Examples 4 and 6, and Stipulation 1, we get
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Cov[μ, ν] =
∫ 1

0

(
a + (b − a)θ − a + b

2

)(
e +

√
3σ

π
ln

θ

1 − θ
− e

)
dθ

=
√
3(b − a)σ

π

∫ 1

0

(
θ − 1

2

)
ln

θ

1 − θ
dθ

=
√
3(b − a)σ

2π
.

Theorem 9 Assume that μ1, μ2, . . . , μn and ν1, ν2, . . . , νn are independent reg-
ular uncertain variables with distributions �1, �2, . . . , �n, and ϒ1, ϒ2, . . . , ϒn,
respectively. If f (y1, y2, . . . , yn) is strictly increasing in y1, y2, . . . , ym and strictly
decreasing in ym+1, ym+2, . . . , yn, and if g(y1, y2, . . . , yn) is strictly increasing in
y1, y2, . . . , yk and strictly decreasing in yk+1, yk+2, . . . , yn, then the uncertain vari-
ables μ = f (μ1, μ2, . . . , μn) and ν = g(ν1, ν2, . . . , νn) have a covariance

Cov[μ, ν] =
∫ 1

0

(
f
(
�−1

1 (θ), . . . , �−1
m (θ), �−1

m+1(1 − θ), . . . , �−1
n (1 − θ)

)
− τ1

)
×
(
g
(
ϒ−1
1 (θ), . . . , ϒ−1

k (θ), ϒ−1
k+1(1 − θ), . . . , ϒ−1

n (1 − θ)
)

− τ2

)
dθ,

(26)

where τ1 and τ2 are the expected values of f (μ1, μ2, . . . , μn) and g(ν1, ν2, . . . , νn),
respectively, with

τ1 =
∫ 1

0
f
(
�−1

1 (θ), . . . , �−1
m (θ),�−1

m+1(1 − θ), . . . , �−1
n (1 − θ)

)
dθ

and

τ2 =
∫ 1

0
g
(
ϒ−1
1 (θ), . . . , ϒ−1

k (θ), ϒ−1
k+1(1 − θ), . . . , ϒ−1

n (1 − θ)
)
dθ.

Proof By the operational law (see Theorem 2), the inverse distributions of μ and ν

are

�−1(θ) = f
(
�−1

1 (θ), . . . , �−1
m (θ),�−1

m+1(1 − θ), . . . , �−1
n (1 − θ)

)
,

and

ϒ−1(θ) = g
(
ϒ−1
1 (θ), . . . , ϒ−1

k (θ), ϒ−1
k+1(1 − θ), . . . , ϒ−1

n (1 − θ)
)

,

respectively. Then according to Stipulation 1 and formula (14) (see Theorem 3), the
theorem is easily proved. �
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3.2 Correlation coefficient

The normalized version of the covariance of uncertain variables, called the correlation
coefficient, is a dimensionless quantity, defined by dividing the covariance by the
product of the square roots of the variances of μ and ν.

Definition 9 Letμ and ν be two regular uncertain variableswith finite expected values
and non-zero variances. The correlation coefficient of μ and ν is defined by

Corr [μ, ν] = Cov[μ, ν]√
V [μ]√V [ν] . (27)

Theorem 10 Let μ and ν be two regular uncertain variables with finite expected
values. Then

|Corr [μ, ν]| ≤ 1. (28)

Proof First denote the distributions of μ and ν as � and ϒ , respectively. Then by
Stipulation 1 and Definition 9, we only need to prove the inequality

∣∣∣∣
∫ 1

0

(�−1(θ) − E[μ])(ϒ−1(θ) − E[ν])√
V [μ]√V [ν] dθ

∣∣∣∣ ≤ 1. (29)

It is known that | ∫ ba f (x)dx | ≤ ∫ b
a | f (x)|dx and |ab| ≤ (a2 + b2)/2, so we have

∣∣∣∣
∫ 1

0

(�−1(θ) − E[μ])(ϒ−1(θ) − E[ν])√
V [μ]√V [ν] dθ

∣∣∣∣
≤
∫ 1

0

∣∣∣∣ (�−1(θ) − E[μ])(ϒ−1(θ) − E[ν])√
V [μ]√V [ν]

∣∣∣∣ dθ (30)

and ∣∣∣∣∣
(
�−1(θ) − E[μ]) (ϒ−1(θ) − E[ν])√

V [μ]√V [ν]

∣∣∣∣∣
≤ 1

2

(
�−1(θ) − E[μ])2

V [μ] + 1

2

(
ϒ−1(θ) − E[ν])2

V [ν] . (31)

It follows from Inequalities (30) and (31) that∣∣∣∣∣
∫ 1

0

(
�−1(θ) − E[μ]) (ϒ−1(θ) − E[ν])√

V [μ]√V [ν] dθ

∣∣∣∣∣
≤
∫ 1

0

∣∣∣∣ (�−1(θ) − E[μ])(ϒ−1(θ) − E[ν])√
V [μ]√V [ν]

∣∣∣∣ dθ
≤ 1

2

∫ 1

0

(
�−1(θ) − E[μ])2

V [μ] dθ + 1

2

∫ 1

0

(
ϒ−1(θ) − E[ν])2

V [ν] dθ.
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Using formula (20) (see Theorem 5), it follows that

1

2

∫ 1

0

(
�−1(θ) − E[μ])2

V [μ] dθ + 1

2

∫ 1

0

(
ϒ−1(θ) − E[ν])2

V [ν] dθ = 1

2
+ 1

2
= 1.

�
Remark 2 Notice that the equality in Inequality (28) holds if and only if the equalities
in Inequalities (30) and (31) hold concurrently, which means

�−1(θ) − E[μ]√
V [μ] = ϒ−1(θ) − E[ν]√

V [ν] , 0 ≤ θ ≤ 1.

Example 8 Consider the correlation coefficient of two linear uncertain variables μ ∼
L(a, b) and ν ∼ L(c, d). According to the calculation formula for variance and the
result of Example 4, we have

V [μ] = (b − a)2

12
, V [ν] = (d − c)2

12
, Cov[μ, ν] = (b − a)(d − c)

12
.

Then the correlation coefficient of μ and ν is

Corr [μ, ν] =
(b − a)(d − c)

12
b − a

2
√
3

× d − c

2
√
3

= 1.

In summary, the correlation coefficient of any two linear uncertain variables is
equal to 1. Figure 1 shows the distributions of four linear uncertain variables
L(0, 3),L(1, 3),L(3, 4) and L(2, 6). It is clear that the correlation coefficients of
any two of them are all equal to 1.

Example 9 Consider the correlation coefficient of two zigzag uncertain variablesμ ∼
Z(a1, b1, c1) and ν ∼ Z(a2, b2, c2). According to the calculation formula for variance
and the result of Example 5, we have

V [μ] = 1

48

[
5(b1 − a1)

2 + 6(b1 − a1)(c1 − b1) + 5(c1 − b1)
2
]
,

V [ν] = 1

48

[
5(b2 − a2)

2 + 6(b2 − a2)(c2 − b2) + 5(c2 − b2)
2
]
,

and

Cov[μ, ν] = 1

48
[(b2 − a2)(5(b1 − a1)

+ 3(c1 − b1)) + (c2 − b2)(3(b1 − a1) + 5(c1 − b1))].
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0 1 2 3 4 5 6

1

L(0, 3) L(1, 3) L(3, 4) L(2, 6)

x

Ψ(x)

Fig. 1 The distributions of four linear uncertain variables

Then the correlation coefficient of μ and ν is

Corr [μ, ν]
= (b2 − a2)[5(b1 − a1) + 3(c1 − b1)] + (c2 − b2)[3(b1 − a1) + 5(c1 − b1)]√∏2

i=1[5(bi − ai )2 + 6(bi − ai )(ci − bi ) + 5(ci − bi )2]
.

Denoting
c1 − b1
b1 − a1

= m,
c2 − b2
b2 − a2

= n, and
m

n
= k, we get

Corr [μ, ν] = 5 + 3m + 3n + 5mn√
5 + 6m + 5m2

√
5 + 6n + 5n2

= 5kn2 + 3(k + 1)n + 5√
5k2n2 + 6kn + 5

√
5n2 + 6n + 5

. (32)

FromEq. (32), we know that the value ofCorr [μ, ν] changeswith different values of k
and n. As a further investigation, numerical experiments of calculating the correlation
coefficientCorr [μ, ν]with different combinations (n, k) are performed and the results
are shown in Table 1, in whichCorr [μ, ν] = 1̃ represents the correlation coefficient of
μ and ν is approximately equal to the supremum 1 (the absolute difference is less than
10−4), and Corr [μ, ν] = 0.6 indicates that the correlation coefficient of μ and ν is
approximately equal to the infimum 0.6. Table 1 shows that the correlation coefficient
of any two zigzag uncertain variables μ and ν takes the value in (0.6, 1]. Moreover,
Corr [μ, ν] = 1 if k = 1, and Corr [μ, ν] < 1 if k �= 1.

Figure 2 shows the distributions of four zigzag uncertain variables Z(0, 2, 6),
Z(1, 2, 4),Z(1, 3, 7), and Z(3, 4, 6). It is easy to see that the correlation coeffi-
cients between each other are all equal to 1 since k = 1 holds. Figure 3 shows the
distributions of four zigzag uncertain variables Z(0, 2, 5),Z(1, 2, 5),Z(1, 3, 4), and
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Table 1 Correlation coefficients of zigzag uncertain variables

n k

10−20 10−10 10−5 10−1 1 10 105 1010 1020

10−10 1̃ 1̃ 1̃ 1̃ 1 1̃ 1̃ 0.8944 0.6

10−5 1̃ 1̃ 1̃ 1̃ 1 1̃ 0.8944 0.6 0.6

10−3 1̃ 1̃ 1̃ 1̃ 1 1̃ 0.607 0.6006 0.6006

10−2 1̃ 1̃ 1̃ 1̃ 1 0.9977 0.607 0.6063 0.6063

1 0.8944 0.8944 0.8944 0.9255 1 0.9255 0.8944 0.8944 0.8944

102 0.6063 0.6063 0.607 0.9977 1 1̃ 1̃ 1̃ 1̃

103 0.6006 0.6006 0.607 1̃ 1 1̃ 1̃ 1̃ 1̃

105 0.6 0.6 0.8944 1̃ 1 1̃ 1̃ 1̃ 1̃

1010 0.6 0.8944 1̃ 1̃ 1 1̃ 1̃ 1̃ 1̃

0 1 2 3 4 5 6 7

0.5

1

Z(1, 2, 4) Z(1, 3, 7)

Z(0, 2, 6)

Z(3, 4, 6)

x

Ψ(x)

Fig. 2 The distributions of four zigzag uncertain variables with correlation coefficient 1

Z(2, 4, 6). It can also be seen that the correlation coefficients between each other are
all less than 1.

Example 10 Consider the correlation coefficient of two normal uncertain variables
μ ∼ N(e1, σ1) and ν ∼ N(e2, σ2). According to the calculation formula for variance
and the result in Example 6, we have

V [μ] = σ 2
1 , V [ν] = σ 2

2 , Cov[μ, ν] = σ1σ2.

Correspondingly, the correlation coefficient of μ and ν is

Corr [μ, ν] = σ1σ2

σ1σ2
= 1.
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0 1 2 3 4 5 6

0.5

1

Z(0, 4, 5)Z(1, 2, 5)

Z(1, 3, 4) Z(2, 4, 6)

x

Ψ(x)

Fig. 3 The distributions of four zigzag uncertain variables with correlation coefficient less than 1

0 2 31 4

0.5

1

x

Ψ(x)

N (2, 5) N (3, 2)N (1, 4) N (4, 3)

Fig. 4 The distributions of four normal uncertain variables

In other words, the correlation coefficient of any two normal uncertain variables
is equal to 1. Figure 4 shows the distributions of four normal uncertain variables
N(1, 4),N(2, 5),N(3, 2), and N(4, 3). The correlation coefficients between any two
of them are equal to 1.

Example 11 Consider the correlation coefficient of two uncertain variables μ ∼
L(a, b) and ν ∼ N(e, σ ). According to the calculation formula for variance and
the result of Example 7, we obtain

V [μ] = (b − a)2

12
, V [ν] = σ, Cov[μ, ν] =

√
3(b − a)σ

2π
.
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Then the correlation coefficient of μ and ν is

Corr [μ, ν] =

√
3(b − a)σ

2π
(b − a)σ

2
√
3

= 3

π
.

In probability theory, the correlation coefficient is a measure to describe the
degree of linear dependence. That the absolute value of correlation coefficient equals
to 1 implies that the two random variables have a linear relationship. That is, if
|Corr [μ, ν]| = 1 holds for two random variables μ and ν, then we have μ = aν + b
for real numbers a �= 0 and b. However, the understanding of the correlation coef-
ficient of two uncertain variables is different from its probability counterpart. From
Examples 8–11, it can be seen that the correlation coefficient of two uncertain vari-
ables is equal to 1 if the two uncertain variables have the same type of distributions,
for instance, two linear uncertain variables, two normal uncertain variables, or two
zigzag uncertain variables that have a proportional relation as described in Example 9.
As a reasonable deduction, the correlation coefficient of two uncertain variables can
be used as an effective tool for measuring the degree relevance (similarity) between
their distributions, which also explains why Cov[μ, ν] = 0 does not hold for two
independent uncertain variables μ and ν as mentioned in Remark 1.

3.3 Properties of covariance and correlation coefficient

In the following, it is proved that the covariance and correlation coefficient of uncertain
variables have some important properties including symmetry, linearity, and distribu-
tivity.

Theorem 11 Let μ and ν be two regular uncertain variables with finite expected
values. Then

Cov[μ, ν] = Cov[ν, μ], (33)

and
Corr [μ, ν] = Corr [ν, μ]. (34)

Proof The proof is elementary,and will be omitted. �
Theorem 12 Let μ and ν be two regular uncertain variables with finite expected
values. Then

Cov[aμ, bν] = abCov[μ, ν] (35)

and
Corr [aμ, bν] = Corr [μ, ν] (36)

for any real numbers a and b with ab > 0.
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Proof Let us denote the distributions ofμ and ν by� andϒ , respectively. If a > 0 and
b > 0, on the basis of formula (26) for the covariance of strictly monotone functions
(see Theorem 9) and the linearity of expected value (see Theorem 4), it follows that

Cov[aμ, bν] =
∫ 1

0
(a�−1(θ) − E[aμ])(bϒ−1(θ) − E[bν])dθ

=
∫ 1

0
(a�−1(θ) − aE[μ])(bϒ−1(θ) − bE[ν])dθ

= ab
∫ 1

0
(�−1(θ) − E[μ])(ϒ−1(θ) − E[ν])dθ

= abCov[μ, ν].

Similarly, if a < 0 and b < 0, we have

Cov[aμ, bν] =
∫ 1

0
(a�−1(1 − θ) − aE[μ])(bϒ−1(1 − θ) − bE[ν])dθ

= ab
∫ 1

0
(�−1(θ) − E[μ])(ϒ−1(θ) − E[ν])dθ

= abCov[μ, ν].

In conclusion, (35) holds for any real numbers a and b with ab > 0. In addition, based
on Definition 9 and Eq. (35), we have

Corr [aμ, bν] = Cov[aμ, bν]√
V [aμ]√V [bν] = abCov[μ, ν]√

V [aμ]√V [bν] .

According to the linearity of variance (see Theorem 6), we get V [aμ] = a2V [μ] and
V [bν] = b2V [ν]. Then we immediately obtain

Corr [aμ, bν] = abCov[μ, ν]
ab

√
V [μ]√V [ν] = Corr [μ, ν]. �

Remark 3 It should be noted that following from the original definition of covariance
(see Definition 8) and the linearity of expected value (see Theorem 4), it can be quickly
deduced that Eq. (35) holds for any real numbers a and b without the assumption
ab > 0.

Theorem 13 Let μ, ν and δ be independent regular uncertain variables with finite
expected values. Then

Cov[μ + ν, δ] = Cov[μ, δ] + Cov[ν, δ]. (37)
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Proof Denote the distributions of μ, ν and δ by �, ϒ and , respectively. From
formula (26) (see Theorem 9), we get

Cov[μ + ν, δ] =
∫ 1

0

(
�−1(θ) + ϒ−1(θ) − E[μ + ν]

) (
−1(θ) − E[δ]

)
dθ.

Next, based on the linearity of expected value (see Theorem 4), we obtain that

Cov[μ + ν, δ] =
∫ 1

0

(
�−1(θ) + ϒ−1(θ) − E[μ] − E[ν]

) (
−1(θ) − E[δ]

)
dθ

=
∫ 1

0

(
�−1(θ) − E[μ]

) (
−1(θ) − E[δ]

)
dθ

+
∫ 1

0

(
ϒ−1(θ) − E[ν]

) (
−1(θ) − E[δ]

)
dθ.

Finally, according to Stipulation 1,

Cov[μ + ν, δ] = Cov[μ, δ] + Cov[ν, δ].

�
Theorem 14 Let μ1, μ2, . . . , μn and ν be independent regular uncertain variables
with finite expected values. Then

Cov

[
n∑

i=1

μi , ν

]
=

n∑
i=1

Cov[μi , ν]. (38)

Proof The proof follows from Theorem 13, by induction. �
Theorem 15 Let μ1, μ2, . . . , μn and ν1, ν2, . . . , νm be independent regular uncer-
tain variables with finite expected values. Then

Cov

⎡
⎣ n∑

i=1

μi ,

m∑
j=1

ν j

⎤
⎦ =

n∑
i=1

m∑
j=1

Cov[μi , ν j ]. (39)

Proof It follows immediately from Theorem 14. �

4 Relation between variance and covariance

From Theorem 8, we know that variance can be considered as a special type of covari-
ance, that is, V [μ] = Cov[μ,μ]. In this section, we further discuss and analyze the
relation between the variance and covariance of uncertain variables including some
equalities and inequalities.
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Theorem 16 Let μ1, . . . , μn be independent regular uncertain variables with finite
expected values. Then

V [μ1 + · · · + μn] =
n∑

i=1

V [μi ] + 2
n−1∑
i=1

n∑
j=i+1

Cov[μi , μ j ]. (40)

Proof Let us denote the distributions of μ1, . . . , μn by �1, �2, . . . , �n , respectively.
It follows from the operational law (see Theorem 2) and formula (20) (see Theorem 5)
that

V [μ1 + · · · + μn] =
∫ 1

0

(
�−1

1 (θ) + · · · + �−1
n (θ) − E[μ1 + · · · + μn]

)2
dθ.

Then based on the linearity of the expected value (see Theorem 4), we obtain

V [μ1 + · · · + μn]
=
∫ 1

0

(
�−1

1 (θ) + · · · + �−1
n (θ) − (E[μ1] + · · · + E[μn])

)2
dθ

=
∫ 1

0

(
(�−1

1 (θ) − E[μ1]) + · · · + (�−1
n (θ) − E[μn])

)2
dθ

=
∫ 1

0

(
n∑

i=1

(
�−1

i (θ) − E[μi ]
)2

+ 2
n−1∑
i=1

n∑
j=i+1

(
�−1

i (θ) − E[μi ]
) (

�−1
j (θ) − E[μ j ]

)⎞⎠ dθ

=
∫ 1

0

n∑
i=1

(
�−1

i (θ) − E[μi ]
)2

dθ

+ 2
n−1∑
i=1

n∑
j=i+1

∫ 1

0

(
�−1

i (θ) − E[μi ]
) (

�−1
j (θ) − E[μ j ]

)
dθ.

Finally, according to formula (20) and Stipulation 1, we get

V [μ1 + · · · + μn] =
n∑

i=1

V [μi ] + 2
n−1∑
i=1

n∑
j=i+1

Cov[μi , μ j ].

�
Example 12 Let μ and ν be two independent regular uncertain variables with finite
expected values. Then according to Theorem 16, it follows that

V [μ + ν] = V [μ] + V [ν] + 2Cov[μ, ν].
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Theorem 17 Let μ and ν be two regular uncertain variables with finite expected
values. Then

|Cov[μ, ν]| ≤ √
V [μ] ×√V [ν]. (41)

Proof It follows immediately from Theorem 10. �
Example 13 Consider two uncertain variables μ ∼ L(a, b) and ν ∼ N(e, σ ). On the
basis of the calculation formula of variance and the result of Example 7, we have

V [μ] = (b − a)2

12
, V [ν] = σ 2, Cov[μ, ν] = (b − a)

√
3σ

2π
.

Then

|Cov[μ, ν]| =
√
3(b − a)σ

2π
<

√
3(b − a)σ

6
= √

V [μ] ×√V [ν].

Furthermore, if μ and ν are two normal uncertain variables μ ∼ N(e1, σ1) and ν ∼
N(e2, σ2), by Example 6, it follows that

|Cov[μ, ν]| = σ1σ2 = √
V [μ] ×√V [ν].

A similar conclusion can be derived for two linear uncertain variables by Example 4.

Remark 4 It is obvious that the equality in (41) holds if and only if Corr [μ, ν] = 1.
Examples 8–11 have provided some special cases through which the underlying
meaning of the covariance and correlation coefficient can be better understood.
An interesting problem would be to derive sufficient and necessary conditions for
Corr [μ, ν] = 1; this needs to be studied further.

5 Conclusions

Numerical characteristics, like expected value and variance, contain important infor-
mation about uncertain variables, which can be used in decision-making processes
under uncertain environments. On account of the concepts of expected value E[μ]
and variance V [μ] of an uncertain variable μ introduced by Liu (2010), we defined
in this paper the covariance of two uncertain variables μ and ν as Cov[μ, ν] =
E[(μ − E[μ]) (ν − E[ν])], which is similar with the covariance in probability theory.
However, since the uncertain measure is subadditive, the covariance of two uncertain
variables cannot be calculated directly by using their distributions. For the sake of tack-
ling this problem, we proposed a formula for computing the covariance inspired by
the formula for variance given in Liu (2010). Subsequently, based upon this formula,
we derived the covariance by means of inverse distributions.

As another important concept, the correlation coefficient of two uncertain variables
was also introduced in this paper as the normalized version of the covariance. Although
the forms of covariance and correlation coefficient of uncertain variables are similar
with those in probability theory, their practical meanings are different. Through the
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calculation results of the correlation coefficient in some specific examples (see Exam-
ples 8–11), we can conclude that the correlation coefficient of two uncertain variables
indicates the degree of relevance between their distributions. In other words, the larger
the correlation coefficient Corr [μ, ν] is, the higher the degree of similarity between
the distributions of μ and ν is. One consequence is that the covariance of two inde-
pendent uncertain variables is not equal to zero. Such results are different from those
for random variables, and the essential reason is the difference between an uncertain
measure and a probability measure. As a future theoretical study of the covariance and
correlation coefficient, necessary and sufficient conditions forCorr [μ, ν] = 1 should
be investigated.

Moreover, the results and conclusions proposed in this paper shouldmake an impor-
tant contribution to practical applications of the covariance. For instance, in order to
evaluate the value at risk (VaR) of portfolio investment with uncertain returns and
control investment risk, the covariance as well as variance should be analyzed based
upon the calculation formulae for the covariance of uncertain variables suggested in
this paper. In addition, the analysis of covariance can also be used to examine the
result of uncertain regression. More applications related to covariance and correlation
coefficient will be carried out in future work.
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