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Abstract In this paper, we propose a new kernel-based fuzzy clustering algorithm
which tries to find the best clustering results using optimal parameters of each ker-
nel in each cluster. It is known that data with nonlinear relationships can be separated
using one of the kernel-based fuzzy clusteringmethods. Two common fuzzy clustering
approaches are: clustering with a single kernel and clustering with multiple kernels.
While clustering with a single kernel doesn’t work well with “multiple-density” clus-
ters, multiple kernel-based fuzzy clustering tries to find an optimal linear weighted
combination of kernels with initial fixed (not necessarily the best) parameters. Our
algorithm is an extension of the single kernel-based fuzzy c-means and the multiple
kernel-based fuzzy clustering algorithms. In this algorithm, there is no need to give
“good” parameters of each kernel and no need to give an initial “good” number of
kernels. Every cluster will be characterized by a Gaussian kernel with optimal param-
eters. In order to show its effective clustering performance, we have compared it to
other similar clustering algorithms using different databases and different clustering
validity measures.

Keywords Fuzzy · Clustering · Kernel · FCM · Gaussian · Validity measure

1 Introduction

Clustering is the process of separating the data into different groups on the basis
of some similarity measure; data belonging to the same cluster should be similar to
each other while data belonging to different clusters should not. Mainly two cluster-
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160 I. Dagher

ing approaches exist: hard clustering and fuzzy clustering. In hard clustering, data
is divided into distinct clusters, where each data point can only belong to exactly
one cluster (Likas et al. 2003; Pelleg and Moore 2000; Kanungo et al. 2002). How-
ever, when clusters overlap, objects should belong to different clusters with different
degrees. In this case a fuzzy clustering is more appropriate. Data points can poten-
tially belong to multiple clusters. Membership grades are assigned to each of the data
points. These membership grades indicate the degree to which data points belong to
each cluster. One of the most widely used fuzzy clustering algorithms is the fuzzy c-
means (FCM) algorithm (Bezdek 1981; Hoppner and Klawonn 1999; Gustafson and
Kessel 1979; Babuska et al. 2002; Dunn 1973; Gath and Geva 1989). This algorithm
works well for spherical-like clusters. When dealing with non-spherical shape and
much overlapped data, kernel methods are best suited. They map data points from
the input space to a high dimensional feature space. Thus the original non-linearly
separable data structure in the input space becomes linearly separable in the fea-
ture space. There are two major variations of the FCM: Kernel-FCM (KFCM) and
Multiple-Kernel-FCM (MKFCM). KFCM (Schölkopf and Smola 2002; Xie et al.
2003) transforms the data into a high-dimensional feature space and then performs
clustering. It uses a single kernel which doesn’t fit with multiple-density clusters.
Instead of using a single fixed kernel, multiple kernels may be used. MKFCM (Baili
and Frigui 2012, 2011) tries to find an optimal linear weighted combination of kernels
with initial fixed (not necessarily the best) parameters. The disadvantage of that
approach is twofold: Giving the number of kernels M and giving “good” parameters
of each kernel.

Ourmotivation in this paper is to do an extension of the KFCM and the MKFCM
algorithms. This is done by achieving the following:

• Characterizing every cluster by a different Gaussian kernel (extension of the
KFCM).

• Trying to find the optimal parameters of each kernel in each cluster without the
need to give “good” parameters of each kernel and no need to give an initial “good”
number of kernels (extension of the MKFCM).

It should be noted that the originality and the novelty of our work stem from the fact
that we achieved a new method that achieves better clustering. Our contribution and
innovation can be summarized by an extended kernel-based fuzzy clustering algorithm
which is more effective than previous techniques. And the benefits of this work are
found in numerous applications which require clustering algorithms.

We have used the followingnomenclature: FCM: Fuzzy c-means, KFCM: kernel-
Fuzzy c-means, MKFCM: Multiple-Kernel-Fuzzy c-means, and OKFCM: our new
algorithm.

The rest of the paper is organized as follows. In Sect. 2 we review the c-means,
the FCM, and the MKFCM algorithms. In Sect. 3 we present our new algorithm. To
validate our approach, different validation measures were shown in Sect. 4. Section5
shows the databases used for comparisons and the results obtained. And we conclude
in Sect. 6.
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2 Related works

2.1 C-means clustering

Given the data X1, X2, . . . , XN , where each datum is a n-dimensional real vector,
then c-means clustering (Likas et al. 2003; Pelleg and Moore 2000; Kanungo et al.
2002) aims to partition the N data into C clusters G1,G2, ...,GC in order to minimize
the following function:

J (V ) =
C∑

i=1

∑

j∈Gi

∥∥X j − vi
∥∥2 (1)

Here vi is the center of the cluster Gi , which consists of Ni data. It is given by:

vi =
∑Ni

j=1 X j

Ni
, 1 ≤ i ≤ C,

C∑

i=1

Ni = N (2)

Each cluster Gi will be characterized by the prototype vi (real center).

2.2 FCM clustering

Let U be the fuzzy membership matrix (Bezdek 1981; Hoppner and Klawonn 1999)
where μik ∈ [0, 1] , 1 ≤ i ≤ c, 1 ≤ k ≤ N is the degree of membership of data Xk to
the cluster with prototype vi .

Uc×n =

⎡

⎢⎢⎢⎣

μ11 μ12 . . . μ1N
μ21 . . . . . . μ2N
...

...
...

...

μc1 . . . . . . μcN

⎤

⎥⎥⎥⎦ (3)

Dunn defined a fuzzy objective function:

JD (U, V ) =
c∑

i=1

N∑

j=1

μ2
ij

∥∥X j − vi
∥∥2 (4)

Then, (Bezdek 1981) extended it to:

Jm (U, V ; X) =
c∑

i=1

N∑

j=1

μm
ij

∥∥X j − vi
∥∥2 , 1 ≤ m < ∞ (5)
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For getting the minimum (U, V) and using the following Lagrangian objective
function:

min

⎧
⎨

⎩Jm (U, V, λ; X) =
c∑

i=1

N∑

j=1

μm
ij

∥∥X j − vi
∥∥2 +

N∑

k=1

λk

c∑

i=1

(μik − 1)

⎫
⎬

⎭ (6)

By doing
(

∂ Jm
∂vi

= 0 ∂ Jm
∂μij

= 0 ∂ Jm
∂λk

= 0
)
, we get:

vi =
∑N

j=1 (μij)
mX j

∑N
j=1 (μij)m

, 1 ≤ i ≤ c (7)

And

μij =
(

c∑

k=1

(∥∥X j − vi
∥∥2

/∥∥X j − vk
∥∥2

)1/m−1
)−1

, 1 ≤ i ≤ c, 1 ≤ j ≤ N (8)

Each cluster i will be characterized by the prototype vi (real center) and the fuzzy
membership vector μij.

2.3 Kernel FCM

It uses the following objective (Xie et al. 2003) function:

Jm (U, V ; X) =
c∑

i=1

N∑

j=1

μm
ij

∥∥φ(X j ) − φ(vi )
∥∥2 , 1 ≤ m ≤ ∞ (9)

where φ(X) is a transformation from the nonlinear data space to a higher dimensional
space called feature space (Eschrich et al. 2003).

In that space, every dot product is replaced by a non linear kernel function K (kernel
trick) (Eschrich et al. 2003).

φT (X1) · φ(X2) = K (X1, X2) (10)

In the feature space, the kernel function measures the similarity of vector X1 and
the vector X2. The Gaussian kernel that we have used in this paper is given by:

K (X1, X2) = exp

(
−

N∑

i=1

1

N

(X1i − X2i )
2

2σ 2
i

)
(11)

where we assume we have N n-dimensional data.
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It should be noted also that the Euclidian distance in the feature space is given by:

∥∥φ(X j ) − φ(vi )
∥∥2 = k(X j , X j ) + k(vi , vi ) − 2k(X j , vi ) (12)

And the update formulas for the kernel FCM are given by:

vi =
∑N

j=1 μm
ij k(X j , vi )X j∑n

j=1 μm
ij k(X j , vi )

(13)

μij =
(

c∑

k=1

(
1 − k(X j , vi )

1 − k(X j , vk)

) 1
m−1

)−1

. (14)

2.4 Multiple kernel-based clustering

In multiple kernel-based clustering (Baili and Frigui 2011), each cluster is character-
ized by a linear combination of M kernels with known parameters. The similarity of
the data X to the center v is given by:

k(x, v) =
M∑

i=1

wi Ki (X, v) (15)

Every kernel is multiplied by a weight wi ∈ {0, 1} and ∑M
i=1 wi = 1 reflecting the

importance of that kernel. The disadvantage of that approach is twofold:

• Giving the number of kernels M.
• And giving “good” parameters of each kernel.

It uses the following objective function:

Jm (U, V ; X) =
N∑

i=1

C∑

c=1

μm
ij (φ(Xi ) − vc)

T (φ(Xi ) − vc) =
N∑

i=1

C∑

c=1

μm
ij D

2
ic

(16)

where:

D2
ic =

M∑

k=1

w2
k Kk(Xi , Xi ) − 2

N∑

j=1

M∑

k=1

μ jcw
2
k Kk(Xi , X j )

+
N∑

j=1

N∑

i=1

M∑

k=1

μ jcμicw
2
k Kk(X j , Xi ) (17)
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And

μic = 1

∑c
k=1

(
D2
ic

Dik

) 1
m−1

(18)

The optimization problem can be solved now using:

dJm
dw

= 0. (19)

3 Fuzzy clustering using multiple Gaussian kernels with
optimized-parameters

3.1 Problem formulation

In MKFCM, a weighted linear combination of kernels with given variances is used.
This weighted linear combination will approximate the true kernel. Every cluster will
be characterized by a set of weights which approximates best the true kernel.

M∑

i=1

wi ki (X, vi ) ≈ 1√
2πσ 2

i

exp

(
− (x − vi )

2

2σ 2
i

)
(20)

It should be noted that 4 kernels are chosen and the weight of each kernel will be the
output of the MKFCM algorithm.

Our algorithm (OKFCM) tries to characterize every cluster by a different optimal
Gaussian kernel.

3.2 Optimal Gaussian kernel and the EM approach

In our algorithm, clustering in the new high-dimensional (feature) space is based on
minimizing the following objective function:

Jm (U, V ; X) =
N∑

i=1

C∑

c=1

μm
ij (φ(Xi ) − vc)

T (φ(Xi ) − vc) =
N∑

i=1

C∑

c=1

μm
ij D

2
ic

The distance D2
ic of the data Xi to the center vk in that space is given using by:

D2
ic = (φ(Xi ) − vc)

T (φ(Xi ) − vc)

wherevc =
∑N

i=1 μm
icφ(Xi )

∑N
i=1 μm

ic

is the center in the feature space.
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E step:
Calculates 2

icD (Equation 21) using the current values of 
the means and variances.

M step:
Re-estimate U (Equation 18), the 

means, and the variances. 
Until convergence

Initialize U 
Calculate the mean and the variance of each cluster
accordingly (equations 23,24, and 25).

E step:
Evaluate the responsibilities 
using the current parameter 

values

M step:
RE-estimate the parameters using the 

current responsibilities
Until convergence

Initialize the parameters

Fig. 1 Flow chart of our algorithm compared to the EM method

Which Can be written as:

D2
ic = K (Xi , Xi ) − 2

N∑

j=1

μ jcK (Xi , X j ) +
N∑

j=1

N∑

i=1

μ jcμicK (X j , Xi ) (21)

We have used the Gaussian kernel which is given by:

K (x, vk) = 1√
2πσ 2

k

exp

(
− (x − vk)

2

2σ 2
k

)

The above equation shows that similarity in the feature space depends on the variance
of the data in the original space. Our approach in determining the optimal kernel is
very similar to the Expectation-Maximization (EM) method given by the following
flowchart.

It should be noted that our algorithm as the other clustering algorithms which are
similar to the EMmethod are not guaranteed to reach the global minimum (see Fig. 1).
They might reach Local minimum or Saddle point (Zhou et al. 2013).

3.3 Methodology

Our method is described by the following algorithm:

• Step 1: Given the N n-dimensional data X1, X2, . . . , XN and small positive toler-
ance ε.

• Step 2: Initialize the membership function matrix which indicates in the feature
space how much each datum is close to each center.

Initialize Uc×N =

⎡

⎢⎢⎢⎣

μ11 μ12 . . . μ1N
μ21 . . . . . . μ2N
...

...
...

...

μc1 . . . . . . μcN

⎤

⎥⎥⎥⎦ such that
c∑

i=1
μik = 1 k = 1 . . . N

123



166 I. Dagher

• Step 3: The mean and the variance of each cluster are given by the following
formulas:

vi =
∑N

j=1 (μij)
mx j∑n

j=1 (μij)m
1 ≤ i ≤ c (22)

δ2i =
∑N

j=1 (μij)
m(x j − vi )

2

∑n
j=1 (μij)m

1 ≤ i ≤ c (23)

Step 3: emphasizes that every cluster c is characterized by the mean vc and the
variance δ2c .

• In Step 4, the variance of each data is given by the following formula:

σ 2
i =

c∑

j=1

(μ j i )
mδ2i i = 1, ..., N (24)

Now every data is characterized by the n-dimensional variance vector.

{Xi } ↔ σ 2
i =

⎡

⎢⎣
σ 2
i1
...

σ 2
in

⎤

⎥⎦ i = 1, ..., N

It should be noted that data from the same class c will have almost similar variance
which is δ2c .

• Step 5: Calculates the similarity between all the data using the kernel matrix K:

for i = 1 : N
for j = i : N
K (i, j) = exp

(
−

n∑
i=1

1
N

(X1i−X2i )
2

2σ 2
i

)

K ( j, i) = exp

(
−

n∑
i=1

1
N

(X1i−X2i )
2

2σ 2
j

)

end
end
K = 1

2 (K + KT );%Make the matrix K symmetric

In order for the matrix K to be a similarity matrix, it should be a symmetric matrix
K (Xi , X j ) = K (X j , Xi ) for all i, j = 1, . . . , N .

There are 2 cases:
Case1: Xi and X j belong to the same cluster and eventually have approximately
the same variances:

σ 2
i ≈ σ 2

j ⇒ K (Xi , X j ) ≈ K (X j , Xi )

⇒ 1

2
(K (Xi , X j ) + K (X j , Xi )) ≈ K (X j , Xi )
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Case2: Xi and X j belong to different clusters and eventually have different vari-
ances:

σ 2
i �= σ 2

j ⇒ K (Xi , X j ) �= K (X j , Xi ) ⇒ do averaging

K (Xi , X j ) = K (X j , Xi ) = 1

2
(K (Xi , X j ) + K (X j , Xi ))

• Step 6: Calculates in the feature space the distance of each data to each center
using the similarity matrix found in Step 5 and updates the membership matrix
according to those distances.

for all i and c

D2
ic = K (Xi , Xi ) − 2

N∑
j=1

μ jcK (Xi , X j ) +
N∑
j=1

N∑
i=1

μ jcμicK (X j , Xi )

μic = 1

∑c
k=1

(
D2
ic

Dik

) 1
m−1

• Step7: Stopping Criterion. If the membership matrix doesn’t change (all the data
are remaining in their assigned clusters) then stop else go to Step 3 for another
epoch.

||Unew −Uold|| < ε

4 Validation measures

In order to show the effectiveness of our clustering algorithm, we have used different
validity measures (Bensaid et al. 1996; Xie and Beni 1991; Eschrich et al. 2003;
Balasko et al.). The Partition Coefficient (PC) measures the amount of “overlapping”
between clusters. TheClassificationEntropy (CE)measures the fuzziness of the cluster
partitions. The Partition Index (SC) denotes the ratio of the sum of compactness and
separation of the clusters. And the Separation Index (S) uses a minimum-distance
separation for partition validity.

The validity measures used have the following formulas:

• Partition coefficient (PC): PC(c) = 1
N

c∑
i=1

N∑
j=1

μ2
ij

• Classification entropy (CE): CE(c) = −1
N

N∑
i=1

c∑
j=1

μij log(μij)

• Partition index (SC): SC(c) =
c∑

i=1

∑N
j=1 μ2

ij(xi−v j )
2

Ni
∑c

k=1 (vk−vi )
2

• Separation index (S): S(c) =
∑c

i=1
∑N

j=1 μ2
ij(x j−vi )

2

N (mini,k (vk−vi )
2)
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Fig. 2 The 4cluster dataset

It should be noted that the abovemeasures can be applied to fuzzy clustering algorithms
due to the presence of the membership values μij.

In all the experiments for the MKFCM, we have followed (Baili and Frigui 2011)
in choosing the 4 kernels. This is done by calculating:

D =
(

N∑

k=1

(max(Xk) − min(Xk))
2

)0.5

Then σ1 = 0.1∗D, σ2 = 0.2∗D, σ3 = 0.3∗D, and σ4 = 0.4∗D

It should be noted that the weight of each kernel will be the output of the MKFCM
algorithm.

For the KFCM we have repeated the algorithm 4 times. Each time the KFCM is
initialized with one of the 4 variances. We have shown the results of the KFCMwhich
gave the best results.

Figures 2, 3 show the 2 artificial datasets (4clusters dataset and the Spiral dataset)
that we have used in our simulations.

It should be noted that higher values of the PC and lowest values of SC, S, and
CE imply better clustering performance.

Figures 4, 5, 6, and 7 show the PC, S, CE, and SC validation results vs. the number
of clusters for the 4cluster dataset. We have applied the FCM, KFCM, MKFCM, and
the OKFCM with different number of clusters (2, 3, … 10). And we have plotted the
obtained validation results.

We have repeated the same procedure for the Spiral dataset. The validation results
vs. The number of clusters was plotted in Figs. 8, 9, 10, and 11.
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Fig. 3 The 2 Spiral dataset

Fig. 4 The PC validation results for different number of clusters for the 4cluster dataset

5 UCI-datasets simulation results

We have also compared the performance of the 4 algorithms on real datasets. These
datasets were chosen from the UCI repository [19]. They are summarized as follows:
Iris database The dataset contains 3 classes of 50 instances each. The number of
features for each instance are the sepal length, the sepal width, the petal length, and
the petal width.
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Fig. 5 The S validation results for different number of clusters for the 4cluster dataset

Fig. 6 The CE validation results for different number of clusters for the 4cluster dataset

Wine database The data contains 3 classes. The number of features is 13. The number
of instances is 178 belonging to class1, 59 belonging to class2, and 48 belonging to
class3.
Sonar database These data contain 111 instances of patterns obtained by bouncing
off sonar signals off a metal cylinder at various angles and under various conditions.
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Fig. 7 The SC validation results for different number of clusters for the 4cluster dataset

Fig. 8 The PC validation results for different number of clusters for the Spiral dataset

It also contains 97 instances of patterns obtained from rocks under similar conditions.
Each input pattern is a set of 60 features.
Diabetes database The database consists of 500 instances of patients that did not have
the disease and 268 instances of patients that have the disease. The number of features
is 8.
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Fig. 9 The S validation results for different number of clusters for the Spiral dataset

Fig. 10 The CE validation results for different number of clusters for the Spiral dataset

Breast databaseThedatabase contains 458 instances of patients that hadbenign cancer,
and 241 instances of patients that had malignant cancer. The number of features is 9.
Table1 shows the validation results for the FCM, the KFCM, the MKFCM, and the
OKFCM. The number of clusters C is the number of classes of each database.

Another typical validationmeasure is theNormalizedMutual Information (NMI)
[20]. Given the knowledge of the ground truth class assignments and the clustering
algorithm assignments of the same samples, the NMI is a function that measures the
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Fig. 11 The SC validation results for different number of clusters for the Spiral dataset

agreement of the two assignments.Bigger values of theNMI imply better agreements.
The following table shows the NMI values for different databases, and for different
percentages of training data. We have compared the performances of the c-means, the
FCM, the KFCM, the MKFCM, and the OKFCM on the chosen datasets.

5.1 Discussion

Table 1 shows that theOKFCMalgorithm gave the highest values (better performance)
compared to the other algorithms for the PC and the lowest values (better performance)
for the SC, S and CE validity measures.

Table 2 shows theNMI validation results for different databases and different per-
centages of training data.We have used 90%, 80%, 70%, 60%, 50%, and 40% training
data. The OKFCM gave the highest value (better performance) for theNMI validation
results.

6 Conclusions

In this paper, fuzzy clustering using Multiple-Gaussian-Kernels-With-Optimized-
Parameters (OKFCM) is introduced. The c-means is best fitted for non-overlapped
clusters. The FCM works well for spherical-like clusters. The KFCM uses a single
kernel which doesn’t well work with multiple-density clusters. The MKFCM tries to
find an optimal linear weighted combination of kernels with initial fixed (not nec-
essarily the best) parameters. Our algorithm is an extension of the KFCM and the
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Table 1 UCI database validity
results

Databases PC CE SC S #Clusters

Iris

FCM 0.78 0.57 0.67 0.0089 3

KFCM 0.82 0.44 0.55 0.0067

MKFCM 0.86 0.41 0.53 0.0033

OKFCM 0.9 0.38 0.51 0.002

Wine

FCM 0.76 0.55 0.66 0.0085 3

KFCM 0.81 0.44 0.56 0.0076

MKFCM 0.87 0.39 0.53 0.0039

OKFCM 0.89 0.36 0.5 0.0034

Diabetes

FCM 0.82 0.44 0.58 0.0077 2

KFCM 0.84 0.31 0.48 0.0065

MKFCM 0.86 0.35 0.45 0.004

OKFCM 0.88 0.32 0.41 0.0039

Breast

FCM 0.85 0.39 0.55 0.0073 2

KFCM 0.86 0.35 0.43 0.0048

MKFCM 0.88 0.3 0.4 0.0039

OKFCM 0.9 0.27 0.37 0.0036

Sonar

FCM 0.81 0.45 0.57 0.0075 2

KFCM 0.83 0.37 0.48 0.0042

MKFCM 0.87 0.34 0.44 0.0039

OKFCM 0.89 0.31 0.4 0.0035

MKFCM. It uses multiple kernels. There is no need to give “good” initial parameters
of each kernel and initial “good” number of kernels. It is robust and flexible (Vasant
2013). Every cluster will be characterized by a different optimal Gaussian kernel. Its
effectiveness and efficiency can be shown by comparing our algorithm to the c-means,
FCM, KFCM, and MKFCM algorithms. It is well known that better clustering out-
puts, the better stable and reliable it is. We have used the following validity measures:
The Partition Coeffcient (PC), the Classification Entropy (CE), the Partition Index
(SC), the Separation Index (S), and the Normalized Mutual Information (NMI). Two
artificial datasets (4clusters dataset and the Spiral dataset) and 5 databases obtained
from the UCI repository (Iris, Wine, Diabetes, Breast, and Sonar) were used in our
simulations.

123



Fuzzy clustering using multiple Gaussian kernels… 175

Table 2 NMI validity results for different databases, and for different training percentages of data

% Data 90% 80% 70% 60% 50% 40%

Iris

Kmean 0.7420 0.7329 0.721932 0.721932 0.760877 0.7194

FCM 0.7420 0.7329 0.728344 0.728344 0.760877 0.7194

KFCM 0.81325 0.88654 0.76432 0.76555 0.74543 0.72321

MKFCM 0.8534 0.9041 0.805277 0.805277 0.777473 0.7565

OKFCM 0.8796 0.9237 0.8675 0.8654 0.864186 0.8567

Wine

Kmean 0.853666 0.787503 0.838802 0.809670 0.877179 0.797017

FCM 0.857443 0.787503 0.838802 0.809670 0.877179 0.763332

KFCM 0.812116 0.720754 0.813421 0.824311 0.854234 0.724315

MKFCM 0.852508 0.760174 0.833144 0.841316 0.867406 0.787435

OKFCM 0.865877 0.782211 0.835431 0.860145 0.865189 0.791774

Diabetes

Kmean 0.050703 0.025024 0.0463 0.052077 0.067244 0.047269

FCM 0.048843 0.026885 0.050766 0.056876 0.0732 0.042926

KFCM 0.009876 0.015431 0.016541 0.019876 0.02431 0.004591

OKFCM 0.016865 0.020307 0.020404 0.020369 0.0388 0.007618

MKFCM 0.060185 0.042111 0.027863 0.057657 0.0597 0.023043

Breast

Kmean 0.763804 0.753012 0.751245 0.714159 0.727149 0.760439

FCM 0.763804 0.753012 0.751245 0.703572 0.727149 0.760439

KFCM 0.709881 0.726709 0.688811 0.629889 0.724319 0.706511

MKFCM 0.722747 0.761021 0.702268 0.654843 0.744905 0.736875

OKFCM 0.787766 0.783211 0.769811 0.768785 0.755432 0.780134

Sonar

Kmean 0.007451 0.012186 0.022278 0.000034 0.033213 0.007473

FCM 0.007708 0.010107 0.019145 0.003523 0.033213 0.007473

KFCM 0.007911 0.009011 0.027651 0.007321 0.032131 0.015432

MKFCM 0.016585 0.009516 0.032515 0.008936 0.043647 0.016046

OKFCM 0.043221 0.027651 0.041279 0.051234 0.051213 0.032215

The OKFCM algorithm gave the highest values (better performance) for the PC
and the NMI and the lowest values (better performance) for SC, S, and CE validity
measures.

Future work could include the application of this new algorithm on different real
world problems like image segmentation and image compression problems.

Finally, I thank the reviewers for comments that greatly improved the manuscript.
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