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Abstract Since the pioneering work of Harry Markowitz, mean–variance portfolio
selection model has been widely used in both theoretical and empirical studies, which
maximizes the investment return under certain risk level or minimizes the investment
risk under certain return level. In this paper, we review several variations or gener-
alizations that substantially improve the performance of Markowitz’s mean–variance
model, including dynamic portfolio optimization, portfolio optimization with practi-
cal factors, robust portfolio optimization and fuzzy portfolio optimization. The review
provides a useful reference to handle portfolio selection problems for both researchers
and practitioners. Some summaries about the current studies and future research direc-
tions are presented at the end of this paper.

Keywords Portfolio selection · Mean–variance model · Dynamic optimization ·
Fuzzy optimization · Robust optimization

1 Introduction

Since the pioneering work of Markowitz (1952), mean–variance (MV) methodology
has been the most popular way for solving the portfolio selection problem, which is
lately expanded to a seminal book (Markowitz 1959). The main idea of MV model is
to handle the returns of individual security as random variables and adopt the expected
value and variance to quantify the investment return and investment risk, respectively.
A rational investor generally minimizes the risk for a fixed expected return level or
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maximizes the expected return for a given risk level. In the case of maximizing the
return for a given level of risk, the standard formulation is,

⎧
⎪⎪⎨

⎪⎪⎩

max E[ξ1x1 + ξ2x2 + · · · + ξn xn]
s.t. V ar [ξ1x1 + ξ2x2 + · · · + ξn xn] ≤ β

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n,

(1)

where E denotes the expected value operator, V ar denotes the variance operator, xi

is the proportion of wealth invested in security i , ξi represents the random return for
the i th security, and β is the maximum risk level that the investor can tolerate. In the
case of minimizing the risk for a given return level, the formulation is,

⎧
⎪⎪⎨

⎪⎪⎩

min V ar [ξ1x1 + ξ2x2 + · · · + ξn xn]
s.t. E[ξ1x1 + ξ2x2 + · · · + ξn xn] ≥ α

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n,

(2)

where α represents the minimum investment return that the investor can accept. Here
xi ≥ 0 means that short-selling is not allowed. The optimal portfolio strategy and
solution scheme of classical MV model with short-selling (xi ∈ R) can be found in
Merton (1972).

TheMarkowitz’sMVmodel has only provided a basic idea on the optimal portfolio
selection. In the complex and unpredictable financial markets, there usually exist more
specific requirements, such as (1)multi-period portfolio selection should be considered
to tackle the constantly dynamic financial markets; (2) the practical constraints should
be considered, including transaction costs, trading rules constraints, securities types
constraints, market securities constraints and some others; (3) the optimal portfolios
are often sensitive to the estimation errors of sample parameters’ mean value and
deviation; (4) the future return and risk of a security can not be forecasted with high
performance in case of there is no enough sample data. In this case, consulting experts’
suggestions and financial reports can enable investors to make sound decisions on
portfolio selection. This paper mainly reviews four aspects about what have been
devoted to extending theMarkowitz’sMVmodel tomeet the specific needs in financial
markets.

The remainder of this paper is organized as follows. Section 2 introduces
Markowitz’sMVmodel in dynamic setting. Section 3 reviews some commonmethods
to combat with the problems in real financial markets. Section 4 reviews studies on
robust portfolio optimization. Section 5 reviews publications regarding fuzzy portfolio
optimization. Section 6 summarizes the whole paper and shows some new directions
forward.

2 Dynamic optimization

The original Markowitz’s MV model is restricted to a static model which means
that investors can only make a decision at the beginning of investment and have
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to wait for results until the investment horizon ends. This seems to be awkward in
real-life financial markets. Thus, the MV model is soon extended to multi-period
ones. Generalizations of these work have followed two main streams. In the first
stream, the discrete-time portfolio selection problem has been studied by Samuel-
son (1969), Hakansson (1971), Grauer and Hakansson (1993), and Pliska (1997). For
example, Samuelson (1969) proposes a discrete-timemulti-period consumption invest-
ment model to fulfill the objective that maximized the expected utility of investor’s
terminal wealth. Grauer and Hakansson (1993) compare the MV approximation and
quadratic approximation for calculating the optimal portfolios in the discrete-time
dynamic investment model. In the second stream, the continuous-time portfolio selec-
tion models have been investigated by Merton (1969, 1971), Karatzas et al. (1987)
and Bajeux-Besnainou and Portait (1998). Specially, Merton (1969, 1971) introduces
a continuous-time model to maximize the expected utility within a fixed planning
horizon. Karatzas et al. (1987) consider a general consumption/portfolio decision
problem for a single agent. The objective is to maximize a linear combination of the
total expected discounted utility from consumption during the continuous investment
horizon and the expected utility from terminal wealth. Bajeux-Besnainou and Por-
tait (1998) analyse the portfolio strategies when continuous rebalancing is allowed
between the current data and the horizon.

For discrete-timeportfolio case, the capital is reallocated at distinct, separate “points
in time” in the given investment horizon T . For example, for a 5-year portfolio selec-
tion model, the investor can adjust his investment strategy at the beginning of each
year. In continuous-time portfolio case, the securities are traded continuously in inter-
val [0, T ], which means that the investor can reallocate the capital in securities at any
time. In addition, rather than treat themean and variance of investment portfolio as two
separate objectives, the dynamic portfolio optimization considers a single objective of
the expected utility of terminal wealth. The Markowitz’s MV formulation enables the
investor to specify a return level that he/she would like to achieve when he/she is look-
ing for minimizing the homologous risk, or specify a risk level that he/her can accept
when he/she is looking for maximizing his/her expected return. Generally speaking,
it is more difficult for investors to construct a utility function of the terminal wealth
than to provide this kind of subjective information. Hence, the dynamic portfolio opti-
mization methods have the disadvantage that the relationship between the risk and the
return of the derived policy is not clear.

2.1 Embedding technique

To obtain the dynamic optimal portfolio selection, it is usual for scholars to consider
the dynamic programming. However, while extending the Markowitz’s MV work to
multi-period portfolio selection with dynamic programming, a somewhat difficult task
has been stoked. Scholars find that getting efficient frontiers ofMVapproach encounter
difficulties on account of variance minimization problem in stochastic control. More
precisely, for the expected value operator, dynamic programming is applicable because
of the “smoothingproperty”: E[E(·|F j )|Fk] = E(·|Fk),∀ j > k,whereFt denotes an
information set available at time t andFt−1 ⊂ Ft ,∀t , while the variance operator does
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not satisfy the “smoothing property”: V ar [V ar(·|F j )|Fk] �= V ar(·|Fk),∀ j > k,
on the grounds that the variance operator is nonlinear with respect to the expected
wealth. Due to the principle of optimality no longer working, the classical dynamic
programming optimal stochastic control methods will be inapplicable in such non-
separable situations. Later, a few of scholars find the embedding technique can be a
useful tool to address this issue. The embedding technique applied in discrete-time
and continuous-time settings are introduced as follows respectively.

2.1.1 Embedding technique in discrete-time portfolio model

Li and Ng (2000) firstly solve the nonseparability difficulty by using embedding
technique to construct a tractable auxiliary problem with the MV framework in
discrete-time case. They consider that a capital market consisted of n risky securi-
ties with random returns and a riskless security with deterministic return. An investor
with an initial wealth u0 joins the market at time 0 and allocates his/her wealth among
the n + 1 securities. The investor can reallocate his/her wealth among the n + 1 secu-
rities at the beginning of the following T − 1 consecutive time periods. The returns of
the risky securities at time period t within the planning horizon are denoted by a vector
et = [e1t , . . . , en

t ]′, where ei
t is the random return for security i at period t . Let st be

the given deterministic return of the riskless security at period t . Let ui be the wealth
of the investor at the beginning of the t th period, and xi

t be the amount invested in the
i th risky security at the beginning of the t th period, i = 1, 2, . . . , n. The multi-period
MV portfolio selection is formulated as follows,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max E[uT ] − ωV ar [uT ]
s.t. ut+1 =

n∑

i=1

ei
t xi

t +
(

ut −
n∑

i=1

xi
t

)

st = st ut + P′
txt

t = 0, 1, 2, . . . , T − 1,

(3)

where Pt = [P1
t , P2

t , . . . , Pn
t ]′ = [(e1t − st ), (e2t − st ), . . . , (en

t − st )]′, xt =
[x1t , x2t , . . . , xn

t ]′, E[uT ] denotes the expected value of the terminal wealth uT ,
V ar [uT ] denotes the variance of the terminal wealth, and ω ∈ [0,∞) represents
the risk aversion factor. The following auxiliary problem is constructed,

max E
[[

−u2
T

]
+ λ [uT ]

]
(4)

subjects to the constraints in model (3), where λ ∈ (−∞,+∞). The prominent fea-
ture of formulation (4) is that it is of a separable structure in the sense of dynamic
programming and also it is of a quadratic form while the system dynamic is of a linear
form.

Since then, the embedding technique has been widely used in solving the discrete-
time portfolio selection problem. For example, Yi et al. (2008) consider the MV
formulation of discrete-time portfolio optimization for asset-liability management
with an uncertain investment horizon and derive an analytical optimal strategy by using
the embedding technique. Wu and Li (2011) consider a discrete-time MV portfolio

123



Portfolio selection problems with Markowitz’s. . . 129

selectionmodelwith regime switching under the assumption that there exit a stochastic
cash flow. By using dynamic programming and embedding technique, they derive the
optimal strategy and efficient frontier in closed form.Wu et al. (2014) study a discrete-
time Markowitz’s MV portfolio selection problem with uncertain time-horizon in a
regime-switching market. And the expressions for the optimal investment strategy and
the efficient frontier are derived explicitly by the embedding technique.

2.1.2 Embedding technique in continuous-time portfolio model

Following a similar embedding technique introduced by Li andNg (2000) for discrete-
time model, Zhou and Li (2000) embed the continuous-time MV portfolio selection
problem into a tractable auxiliary problem as well. They show that this auxiliary
problem actually is a stochastic optimal linear-quadratic (LQ) problem and can be
solved explicitly by LQ theory. In their paper, (�,F , P, {F}0≤t≤T ) is a fixed fil-
tered complete probability space onwhich a standard n-dimensional Brownianmotion
W (t) ≡ [W 1(t), . . . , W n(t)]′ with W (0) = 0 is defined. It is assumed that the
Ft = σ {W (g) : 0 ≤ g ≤ t} is generated by the Brownian motion and augmented by
all the P-null sets. They denoted by L2

F (0, T ; Rn) the set of all Rn-valued, measurable
stochastic processes f (t) adapted to {F}0≤t≤T . The riskless security’s price process
P0(t) is subject to the following differential equations

{
dP0(t) = s(t)P0(t)dt, t ∈ [0, T ]
P0(0) = p0 > 0,

(5)

where s(t) > 0 is the interest rate.
The prices of these risky securities satisfy the following stochastic differential

equations

⎧
⎪⎪⎨

⎪⎪⎩

dPi (t) = Pi (t)

⎧
⎨

⎩
bidt +

n∑

j=1

σi j (t)dW j (t)

⎫
⎬

⎭
, t ∈ [0, T ]

Pi (0) = pi > 0,

(6)

where bi (t) and (σi j (t))n×n are the return and the volatility matrix of these securities,
respectively. Zhou and Li (2000) also assume that the trading of securities take place
continuously. Without consideration of consumptions or transaction costs, the MV
portfolio optimization problem is formulated as follows,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min −E[u(T )] + ωV ar [u(T )]
s.t. V(t) ∈ L2

F (0, T ; Rn)

du(t) =
{

s(t)u(t) +
n∑

i=1

[bi (t) − s(t)]ui (t)

}

dt +
n∑

j=1

n∑

i=1

σi j (t)Vi (t)dW j (t)

u(0) = u0 > 0,
(7)
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where V(t) = (V1(t), . . . , Vn(t))′ represents a portfolio of the investor at time t ,
Vi (t) ≡ Ni (t)Pi (t), i = 0, 1, 2, . . . , n, denotes the total market value of the investor’s
wealth in the i th bond/stock, u(t) denotes the total wealth at time t , and Ni (t) denotes
the shares of the i th security at time t . Then Zhou and Li (2000) propose to embed
model (7) into a tractable auxiliary problem, which is a stochastic LQ problem as
follows,

min E[λ1u(T )2 − λ2u(T )] (8)

subjects to the constraints in model (7), where λ1, λ2 ∈ (−∞,+∞).
Since then, a growing number of papers tender to resolve the multi-period portfolio

selection problem by using the stochastic optimal LQ control technique. For example,
Chiu and Li (2006) employ stochastic optimal control theory to analytically solve
the asset and liability management problem in a continuous-time setting. And they
derive both the optimal policy and MV efficient frontier by a stochastic LQ control
framework. Xie et al. (2008) derive the optimal dynamic strategy of a continuous-time
MV portfolio selection problem in an incomplete market by applying the stochastic
optimal LQ control technique. Making use of the same approach, Xu and Wu (2014)
investigate a continuous-time MV portfolio selection problem with inflation in an
incomplete market and obtain the dynamic optimal strategy and the MV efficient
frontier.

2.2 Lagrange dual method

Besides the embedding technique, another common used method, Lagrange dual
method (or call Lagrange multiplier method), has been used by many authors to study
dynamic MV models under some real conditions. Li et al. (2002) propose that the
LQ theory typically requires the portfolio to be unconstrained on the grounds that
the optimal portfolio constructed through the Riccati equation may not satisfy the
portfolio constraint. To study the constrained MV portfolio problem, Li et al. (2002)
for the first time introduce the lagrange dual method to investigate a continuous-time
problemwith no-shorting constraint. In this paper, theMV portfolio selection problem
is formulated as the following optimization problem parameterized by the value of the

expected terminal wealth, d ≥ u0e
∫ b

a s(r) dr ,

⎧
⎨

⎩

min V ar [u(T )] ≡ E[u(T ) − d]2
s.t. E[u(T )] = d

(V(·), u(·)) admissable,
(9)

Since Model (9) is a convex optimization problem, the equality constraint E[uT ] = d
can be dealt with by introducing a Lagrangemultiplier λ ∈ R. In this way the portfolio
problem (9) can be solved via the following optimal stochastic control problem,

min E
{
[u(T ) − d]2 + 2λ {E[u(T )] − d}

}
(10)

subjects to the constraints in model (7).
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Comparing with the embedding technique, the lagrange dual method is quite sim-
ple in procedure settings and calculation. Lim and Zhou (2002) use Lagrange dual
method to transfer the continuous-timeMV portfolio selection problem into an uncon-
strained stochastic LQ control problem. In this paper, the authors show that embedding
technique can not be used and dynamic programming is difficult to apply when the
coefficients are not deterministic. Thus, the authors use Lagrange dual method and the
backward stochastic differential equation (BSDE) theory to derive the MV efficient
frontier and optimal policy. Wei and Ye (2007) consider a multi-period MV stochastic
markets model and take the risk control over bankruptcy into consideration. Using the
Lagrange dual method, the authors obtain the optimal portfolio policies. Jin and Zhou
(2007) study theMV portfolio selection in a continuous-time incomplete market, with
a no-shorting constraint on portfolios. Based on Lagrange dual method and BSDE
theory, the MV efficient portfolio and frontiers are derived explicitly. Ma et al. (2015)
consider a continuous-time MV asset-liability management problem in a market with
random market parameters. The authors employ the Lagrange dual method and the
BSDE theory to tackle this problem and derive optimal investment strategy as well as
the MV efficient frontier.

2.3 Mean-field method

More recently, Cui et al. (2014b) propose a novel mean-field framework that offer a
more efficient modeling tool in addressing the issue of nonseparable stochastic control
related to the multi-periodMV portfolio selection problem.With this framework, they
derive a more accurate solution for optimal strategy. In particular, they develop a
unified framework of mean-field formulation to investigate three discrete-time MV
models (Li and Ng 2000; Zhu et al. 2004; Costa and Nabholz 2007), and improve
their optimal strategies. In their paper, the conventional multi-period MV portfolio
selection model can be reformulated as the following mean-field type,

⎧
⎪⎪⎨

⎪⎪⎩

max E[ut ] − ωE[(ut − E[ut ])2]
s.t. E[ut+1] = st E[ut ] + E[P′

t]E[xt]
ut+1 − E[ut+1] = st (ut − E[ut ]) + P′

txt − E[P′
t]E[xt]

u0 − E[u0] = 0.

(11)

The objective function becomes separable in the expanded state space (E[ut ], ut −
E[ut ]), which enables us to apply dynamic programming. After that, Yi et al. (2014)
extend the abovemean-field formulation to discrete-timeMVportfolio selection prob-
lem with an uncertain exit time. Cui et al. (2015) focus on the mean-field formulation
to tackle the discrete-time asset-liability MV portfolio selection with an uncertain exit
time. In Cui et al. (2015), it is noted that the mean-field formulation proposed by
Cui et al. (2014b) and Yi et al. (2014) is constructed for single state variable and no
longer applicable, hence, Cui et al. (2015) extend their mean-field theory and propose
a two dimensional mean-field formulation to derive the analytical optimal strategies
and efficient frontiers.
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2.4 Time-inconsistent control

Another development for dynamic MV portfolio selection problem that has received
much attention is the time-inconsistent control. Some scholars argue that the optimal
portfolio strategy obtained by a Bellman optimality principle is just optimal at the ini-
tial time. For instance, the volatility of terminal wealth at time t +τ may be lower than
that at time t , in addition to the investors may frequently adjusts their risk preferences,
thus, the investors would like to revise their time-t optimal strategy at subsequent
dates. But the investors must commit the time-t “optimal strategy” even if it is not
optimal in the remaining investment periods as the financial market changes in classi-
cal Markowitz’s portfolio selection problem. Therefore, dynamic portfolio selection
with Markowitz’s MV framework is time-inconsistent. Basak and Chabakauri (2010)
call this time-inconsistent optimal strategy as pre-commitment strategy, they firstly
propose the time-consistent policy for optimal MV problem in both discrete-time and
continuous-time, and tackle this problem by obtaining attractable recursive formula-
tion for the MV objective. It is assumed that the investor is guided by MV objectives
over horizon wealth uT . The objective function is

max E [uT ] − ω

2
V ar [uT ] , (12)

where ω is a given constant representing the risk aversion factor. The recursive repre-
sentation for maximizing the time-t objective function of the MVmodel is as follows,

max Ut = Et
[
Ut+τ

] − ω

2
V art

[
Et+τ [uT ]

]
. (13)

This representation reveal that Ut , the decision-making at time t , involve maxi-
mizing the future expected objective function with an adjustment that quantifies the
investor’s incentives to deviate from the time-t optimal policy. They also note that
the same outcome can alternatively be derived as the Nash equilibrium solution of
an interpersonal game model. Another feasible interpretation of the time inconsistent
control is that the investors’ appetites change timely in a temporally inconsistent way.
Therefore, the MV problem can be viewed as a interpersonal game, where the rules
are depended on the game players’ expectation of their appetites in the future.

To our knowledge, Björk and Murgoci (2010) is the first paper that treat the game
theoretic approach to time inconsistent control in more general terms both in discrete-
time and continuous-time. Within the game theoretic framework, system alternatives
of the subgame perfect Nash equilibrium control are derived.Wang and Forsyth (2011)
study the time-consistent strategy and the pre-commitment strategy of a continuous-
time MV asset allocation problem, and develop a numerical scheme to determine the
strategy where any type of constraint can be applied to the investment behavior. Cui
et al. (2012) claim that the dynamic MV model is time-inconsistent in efficiency in
discrete-time case, but time-consistent in continuous-time case. Thus, they develop
a revised MV strategy which can keep the efficiency of the portfolio strategy for
all time periods. Czichowsky (2013) considers a time-consistent MV portfolio selec-
tion problem under a general semimartingale setting. Wei et al. (2013) study the
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time-consistent outcome of the continuous-timeMVasset-liabilitymanagement under
Markov regime-switching setting.

Lately, within a reasonably general Markovian framework, Björk and Murgoci
(2014) further present a rigorous study of the time inconsistent control in discrete-
time. Bensoussan et al. (2014) study a time-consistent MV portfolio policy with
short-selling prohibition in both discrete-time and continuous-time settings within
the framework developed in Björk and Murgoci (2010, 2014). Li et al. (2015c) use
the time-consistent investment strategy to resolve an MV portfolio selection problem
under partial information within a game theoretic framework. Chiu and Wong (2015)
investigate the optimal trading of cointegrated assets using the classical MV portfo-
lio selection criterion in a continuous-time economy, and derive the time-consistent
optimal trading strategy in a closed-form solution. Under the assumption that the risk
aversion is allowed to depend dynamically on current wealth, which is assumed as a
constant in Basak and Chabakauri (2010). Wu (2013) and Björk et al. (2014) study the
time-consistent Nash equilibrium strategies for discrete-period and continuous-time
MV portfolio selection problem, respectively. Wu and Chen (2015) investigate the
time-consistent multi-period MV portfolio selection and assume that the risk aversion
depended dynamically on the market states. In this paper, the subgame perfect Nash
equilibrium strategy and closed-form equilibrium value function are derived within a
game theoretic framework. For more literature about dynamicMV portfolio selection,
see Tables 1, 2.

Table 1 Discrete-time MV portfolio selection with different types of constraints

Constraints type

Trading rules Market scenarios Securities types

Zhu et al. (2004) Bankruptcy
control

Yin and Zhou (2004) Markov switching market

Leippold et al. (2004) Assets and liabilities

Costa and Araujo (2008) Bankruptcy
control

Markov switching market

Yi et al. (2014) Uncertain exit T assets
and liabilities

Wu and Li (2011) Markov switching market Uncertain exit T

Wu and Li (2012) Markov switching market
stochastic cash flow

Leippold et al. (2011) Endogenous liabilities

Chen and Yang (2011) Markov switching market Assets and liabilities

Li and Li (2012) Bankruptcy
control

Assets and liabilities

Yao et al. (2013c) Uncontrolled cash flow Assets and liabilities
uncertain exit T

Yao et al. (2013a) Markov switching market Uncertain exit T
endogenous liabilities

Wu et al. (2014) Markov switching market State-dependent exit T
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Table 2 Continuous-time MV portfolio selection with different types of constraints

Constraints type

Trading rules Market scenarios Securities types

Lim and Zhou (2002) Complete market

Li et al. (2002) No short-selling

Zhou and Yin (2003) Markov switching market

Bielecki et al. (2005) Bankruptcy control Complete market Uncertain exit T

Xia and Yan (2006) Bankruptcy control Incomplete market

Chiu and Li (2006) Assets and liabilities

Xiong and Zhou (2007) Incomplete market

Jin and Zhou (2007) No short-selling Incomplete market Finite T horizon

Xie et al. (2008) Incomplete market Assets and liabilities

Chen et al. (2008) Markov switching market Assets and liabilities

Fu et al. (2010) Higher borrowing rate

Li and Xie (2010) Incomplete market Uncertain exit T

Chiu and Wong (2011) Cointegrated assets

Zeng and Li (2011) Jump diffusion market Assets and liabilities

Chiu and Wong (2013) Incomplete market Cointegrated assets insurance
liability

Yao et al. (2013b) Endogenous liabilities

Chiu and Wong (2014) Correlation risk

Xu and Wu (2014) Inflation

Shen (2015) Complete market

Guo and Duan (2015) Jump diffusion market Finite T horizon

Ma et al. (2015) Complete market Exogenous liability

Chang (2015) Stochastic interest rate Assets and liabilities

2.5 Summary

This section reviews the application of dynamic optimization in portfolio selection,
including discrete-time and continuous-time cases. In a dynamic setting, an investor
may revise his portfolio periodically, which is more suitable for real investment sit-
uation compared with single-period case. Due to the difficulties in getting efficient
frontiers, two stochastic optimal linear-quadratic methods, Lagrange dual method and
time-consistent model are introduced explicitly, which has a far-reaching influence in
dynamic portfolio selection problem.

It is found that for the majority of continuous-time MV portfolio selection prob-
lems, the risky securities’ prices and the liability are all subject to Brownian motions,
Brownian motions with drift and Lévy processes (Chiu and Li 2006; Zeng and Li
2011; Xu and Wu 2014; Guo and Duan 2015). Secondly, all security returns invested
in each period can be obtained at the same exit time. However, in real-life financial
markets, there are various financial derivativeswith differentmaturity dates. For exam-
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ple, the return of a 2-year fund can only be obtained after 2years. In other words, at
the end of the first year, no money can be obtained. Therefore, a multi-period portfo-
lio selection of n risky securities with different maturity dates will be attractive and
should be addressed in the future. Thirdly, due to the uncertainty of financial markets,
a favorable decision making method for dynamic portfolio selection should be able to
update all input parameters and to react immediately to any variation from the future.
In dynamic portfolio optimization, the rational investors’ decisions are based upon the
forecasting information for a certain periods. To our knowledge, the rolling horizon
decision making proposed in Sethi and Sorger (1991) is a good approach to cope with
the presence of uncertainty. Using the rolling horizon to solve the dynamic portfolio
selection problems will be a challenging future research direction.

3 Practical factors

In the real world, it is noticed that the solution to the original portfolio selection
problem in Models (1) and (2) is often not practical to implement. For instance, the
MV optimal portfolio obtained from Models (1) and (2) may turn itself over many
times, which would incur high transaction costs. Thus, despite the Markowitz’s MV
model has elegant theory for portfolio selection problem, ignorance of the realistic
factors hinders its efficient extensions for real-life applications.

3.1 Transaction costs

In dynamic case, rational investors won’t trade continuously at every instant of time
with the consideration of transaction costs. In the original MV model, the transaction
costs associated with buying/selling assets are ignored for the purpose of simplifica-
tion. However, the lack of any transaction costs will indulge a quite unrealistic type of
portfolio behavior. Pogue (1970) gives one of the first description for theMV portfolio
selection problem in the presence of transaction costs. Davis and Norman (1990) fur-
ther discuss the portfolio selection problem that include proportional transaction costs.
Dumas and Luciano (1991), Morton and Pliska (1995) study portfolio optimization
problem with proportional transaction costs and fixed transaction costs, respectively.
Yoshimoto (1996) firstly assumes transaction costs to be a V-shaped function and
obtain the optimal portfolio strategy.

Liu and Loewenstein (2002) study the portfolio selection problem comprised trans-
action costs and finite horizons where the investors wish to maximize the utility of
wealth. Oksendal and Sulem (2002) consider optimal consumption and portfolio with
both fixed and proportional transaction costs with the objective of maximizing the
cumulative expected utility of consumption over a planning horizon. Xue et al. (2006)
construct a MV portfolio selection model under concave transaction costs. Taking
transaction costs into account, Lobo et al. (2007) solve the problems of single-period
portfolio optimization including different types of constraints on the feasible portfo-
lios. After that, Dai and Zhong (2008) propose a penalty method to numerically solve
the continuous-time portfolio selection problem that comprise proportional transac-
tion costs. Peng et al. (2011) present a new optimal portfolio methodology within the
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Markowitz’s MV framework with a quadratic form in the transaction costs. Wang and
Liu (2013) investigate the multi-periodMV portfolio selection problemwith fixed and
proportional transaction costs and define the indirect utility function for solving the
problem by using dynamic programming and Lagrange multiplier.

3.2 MV portfolio selection under various constraints

Institutional policy and investors’ viewpoints often lead tomore complicated situations
than the original formulation of the MV problem. Consequently, practical constraints
are incorporated into the Markowitz’s MVmodel to make the solution more practical.
The relevant literature are listed in Tables 1, 2. In practice, the following constraints
are commonly imposed.

3.2.1 Trading rules constraints

In practice, a multitude of investment policies or laws would restrict investment trad-
ing behaviors. These rules are set to regulate investors’ behaviors and control risks.
For example, an investor, who has bankrupted, is not allowed to keep on trading or
borrowing money. Hence, putting a constraint to supervise the investor’s bankrupt
probability before reaching the expiration of an investment horizon is necessary. The
basic idea of bankruptcy prohibition is to control the probability of investor’s wealth
falling below an assigned level. Zhu et al. (2004) consider an integration of discrete-
time and bankruptcy control portfolio selection with a generalized MV formulation
to help investors not only accomplish their expected return with an MV tradeoff, but
also control the bankruptcy risk very well. Next year, Bielecki et al. (2005) study the
same problem in continuous-time case. In addition, in many practical applications,
the investment proportion on each asset has to take nonnegative value, which is the
short-selling constraint. Jin and Zhou (2007) study the MV portfolio selection in a
continuous-time incomplete market with a no short-selling constraint on portfolios.
Cui et al. (2014a) consider the MV formulation in discrete-time portfolio selection
under no short-selling constraint.

3.2.2 Securities constraints

There are two main restrictions in securities constraints. One is the horizon of invest-
ment time, and the other is the type of securities. Firstly, the investment time horizon
contains finite time horizon (Li et al. 2006; Jin and Zhou 2007; Guo and Duan 2015)
and uncertain exit time (Bielecki et al. 2005; Li and Xie 2010; Wu and Li 2011). The
investment horizon may have intertemporal restrictions (Costa and Nabholz 2007).
Secondly, securities in financial markets have several different types, such as risky
securities, riskless securities and liabilities, etc. Riskless securities and liabilities are
not considered in the Markowitz’s model. However, in the real world, both of the risk-
less securities and liabilities are important factors which almost all investors should
cope with. Hence, it will be more practical for portfolio selection model that includes
the riskless securities and liabilities. In some papers, authors assume that the capital

123



Portfolio selection problems with Markowitz’s. . . 137

market with n risk securities and one riskless security (Zhou and Li 2000; Zhou and
Yin 2003; Xu and Wu 2014). In a way, the portfolio selection with liabilities is per-
ceived as a special type of asset-liability management (ALM). For example, Leippold
et al. (2004) derive explicit expressions for the optimal portfolio policy and the effi-
cient frontier of a discrete-time MV ALM problem by utilizing a geometric approach
and stochastic LQmethod. Yao et al. (2013b) investigate a continuous-timeMVALM
problem in a more general market where all the securities can be risky. Furthermore,
some investors would take industry limitation into consideration when making deci-
sions. For example, a slice of investors are willing to buy stocks from the non-ferrous
metal plate, and some of them are unwilling to invest in energy stocks.

3.2.3 Market scenarios constraints

It is well known that financialmarkets are continually changing, and themarket param-
eters are not immutable. Themarket parameters include the riskless securities’ interest
rates, the appreciation and volatility rates of the securities. Therefore, some investors
tend to characterize themarket by complete, incomplete,Markovian regime-switching,
and jump diffusion. Lim and Zhou (2002) consider a continuous-time MV portfolio
selection problem in a complete market where interest rates, appreciation rates and
volatility rates are random parameters. Yin and Zhou (2004) study a discrete-time
Markowitz’s MV portfolio selection model in which the market parameters are gov-
erned by Markov random regime-switching and obtain the efficient frontier of this
problem. Xiong and Zhou (2007) study a continuous-time portfolio selection problem
under the Markowitz’s MV framework in an incomplete market. In this incomplete
market, only the past prices of the stocks and the bond are available to the investors.Guo
and Duan (2015) further study the continuous-time MV portfolio selection problem
withfinite timehorizon. In their paper, the stocks’ prices are assumed to satisfy stochas-
tic differential equations with Poisson jumps, and the interest rate is also assumed to
be a stochastic process.

3.2.4 Non-convex constraints

Besides all linear constraints mentioned above, there are some non-convex constraints.
For example, cardinality constraints, bounding constraints, transaction lots and so on.
Shaw et al. (2008) study a portfolio selection problem subject to a cardinality con-
straint to ensure the investment in a given number of different assets and the problem is
formulated as a cardinality-constrained quadratic programming. The authors develop
a dedicated Lagrangian relaxation method to solve it. Fernández and Gómez (2007)
consider a generalization of the standard Markowitz MV model which includes car-
dinality and bounding constraints. These constraints ensure the investment in a given
number of different assets and limit the amount of capital to be invested in each asset.
Soleimani et al. (2009) propose a portfolio selection model based upon Markowitz’s
MV framework, which cover cardinality constraints, minimum transaction lots and
market (sector) capitalization. Motivated by the need of developing best market tim-
ing strategy, Gao et al. (2015) consider the time cardinality constrained MV dynamic
portfolio selection problem with management fees.
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3.3 The heuristic approach

The underlying assumption of multivariate normality in Markowitz MV portfolio
selection problem is not sustainable. The distribution of individual security returns
tends to exhibit heavy tail, high peak and possible skewness according to the empirical
evidence. Therefore, some studies assume that the security returns follow non-
Gaussian processes. Bodnar and Schmid (2008) consider matrix elliptically contoured
distributions of security returns. Goldfarb and Iyengar (2003), Lu (2011), Xiao and
Valdez (2015) assume that the returns follow multivariate elliptical distributions. Liu
et al. (2015) regard the distributions of security returns as interval random uncertainty
sets and develop an improved particle swarm optimization algorithm to solve the pro-
posed multi-period portfolio model. Hao and Liu (2009) assume that the membership
function of security returns follow triangular fuzzy distribution. Deng and Li (2012)
regard the security returns as fuzzy variables with trapezoidal membership functions.
Exact solution methods may fail to solve this problem in reasonable time. In addi-
tion, for practical purposes, it may be desirable to limit the number of securities in a
portfolio like cardinality constraints, which turns the problem into nonlinear mixed
integer programming. Such constraints better capture the real-world trading system,
but make the problem more difficult to be solved with exact methods (Chang et al.
2000). Therefore, given the computational difficulty of tackling the problem exactly,
using heuristics in these cases is imperative. Heuristics do not guarantee to find the
optimal solution; however, they are able to find a good solution within reasonable
computation time.

Chang et al. (2000) illustrate the discontinuous nature of the MV efficient frontier
in the presence of cardinality constraints and present three metaheuristic algorithms
based upon a genetic algorithm, tabu search and simulated annealing for finding the
cardinality constrained MV efficient frontier. Following the work of Chang et al.
(2000), papers relating to heuristic approaches can be subdivided into two classes,
single-objective optimization algorithm and multi-objective optimization algorithm.
For Single-objective optimization algorithm, there are genetic algorithm (Yang 2006;
Woodside-Oriakhi et al. 2011), simulated annealing (Crama and Schyns 2003; Ehrgott
et al. 2004), tabu search (Woodside-Oriakhi et al. 2011), particle swarm (Cura 2009;
Zhu et al. 2011), neural networks (Fullér and Majlender 2007), artificial bee colony
(Wang et al. 2012; Tuba and Bacanin 2014), memetic algorithm (Ruiz-Torrubiano
and Suárez 2015). Multi-objective optimization algorithm consist of non-dominated
sorting genetic algorithm II (NSGA-II), the strength pareto evolutionary algorithm
2 (SPEA2), the e-multiobjective evolutionary algorithm (e-MOEA) and the pareto
envelope-based selection algorithm (PESA) (Chiam et al. 2008; Anagnostopoulos and
Mamanis 2010; Metaxiotis and Liagkouras 2012; Liagkouras and Metaxiotis 2015).

3.4 Summary

Studies considering practical factors in real-life financial markets are reviewed in this
section,which are concluded into two types.One is the portfolio selectionwith transac-
tions costs appearing in the objective function, and the other is MV portfolio selection
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under various constraints including trading rules, market scenarios, securities types
and others. It is found that there are more studies considering uncertain investment
exit time than finite time horizon. That is due to many factors can affect the exit time,
for example, the price movements of risky assets, securities markets behavior, exoge-
nous huge consumption such as purchasing a house or accident, which may force
the investors to abandon their original investment decisions (Wu and Li 2011). Sec-
ondly, there are many real-world constraints that lead to a non-convex search space,
e.g., cardinality constraints, minimum buy-in thresholds. As a consequence, the exact
approaches can no longer be applied, and heuristic solutions are needed. As a result of
literature survey, it can be concluded that portfolio selection problemwith non-convex
constraints ismuch researched using nature inspiredmetaheuristics, a physical process
like simulated annealing or biologically inspired algorithms like artificial bee colony
or evolutionary algorithms and so on. In addition, these constraints that imposed on
portfolio selection model are more and more complex but practical to cope with the
real-world challenges in financial markets (Soleimani et al. 2009; Gao et al. 2015).

4 Robust techniques

It is generally established that the distributions of security returns are not known. To
implement Markowitz’s portfolio model in practice, one has to estimate the mean
values and variances by past sample data. However, Michaud (1989) argues that MV
optimal portfolios are often “error maximization”. Best and Grauer (1991) find that
MV portfolio weights are highly sensitive to changes in the mean value. One study
claims that MV optimization can produce extreme or non-intuitive weights for some
of securities in the portfolio selection. Chopra (1993) claims that small changes to the
estimates of mean values or variances can result in immensely different solutions of
MV optimal portfolios. All these issues are caused by estimation errors. Typically, the
estimates of those parameters are used as if theywere the “true” parameter values ignor-
ing the estimation errors. With the purpose of reducing the effect of estimation errors
in the estimates of mean values and variances, more stable MV portfolio selection
models are formulated by applying robust techniques. Different robust optimization
techniques are introduced as follows.

4.1 Bayesian approach

Under theBayesian approach, the estimates ofmean and variance rely on the predictive
distributions of security returns. The use of predictive distribution of security returns
and the Bayesian optimal portfolio strategy was obtained by maximizing the expected
utility. The Bayesian approach on estimation errors has been implemented in previous
studies in different ways. We shall describe two common implementations in the
following sections.

4.1.1 Bayesian prior portfolio

The first considered prior is diffuse prior. In portfolio choice problems, Barry (1974),
Brown (1976), andKlein andBawa (1976) are primitiveBayesian studies under param-
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eter uncertainty that rely on diffuse priors. The Bayesian models based on the diffuse
prior are commonly applied in addition to the classical methods of portfolio selec-
tion. The second is conjugate prior. Compared with the diffusion prior, the conjugate
prior is an informative prior which considers a normal prior for mean and an inverse
Wishart prior for variance. Frost and Savarino (1986) propose an interesting appli-
cation of the conjugate prior where all securities possess identical expected returns,
variances and pairwise correlation coefficients. Next, by using of stochastic approxi-
mation, Greyserman et al. (2006) consider a portfolio selection methodology using a
Bayesian predictive distribution of security returns. They derive the hierarchical pri-
ors on the mean vector and covariance matrix of security returns. In order to connect
the parameter estimation with economic objectives, Tu and Zhou (2010) explore a
general form for priors in the presence of financial objectives. In the light of an out-
of-sample loss function measure, they demonstrate that the Bayesian policy under the
objective-based priors work better than the strategies under other priors in portfolio
selection decisions. To allow Bayesian priors to reflect the objectives of an economic
problem, Tu and Zhou (2010) propose the application of the objective-based prior to
the portfolio weights of the general MV portfolio and report good results.

4.1.2 Bayes–Stein shrinkage portfolio

The Bayes–Stein portfolio is an application of the shrinkage estimation, which is
pioneered by Stein (1956) and developed by James and Stein (1961). These estimators
shrink the sample mean value to a common “grand mean”, which is frequently chosen
to be the average expected return relying on the security volatility and the distance of its
expected return from the average value. Jorion (1986) provides an interesting Bayes–
Stein shrinkage estimator, and shows that the resulting portfolio rule can frequently
generate high expected out-of-sample performance. In portfolio selection, one study
provides a pioneeringwork that allow incorporate investors’ views to derive a posterior
distribution of security returns. Black–Litterman model is a market-based shrinkage
approach where a weighted average of the market equilibrium and the investor’s views
are calculated for the estimates of expected returns. Meucci (2010) extends the Black–
Litterman model to a more generic form of the market distribution. Xiao and Valdez
(2015) further extend Meucci (2010)’s market-based version of the Black–Litterman
model to the case where the returns distribution appertain to the kind of elliptical
distribution. For the errors in estimating covariance matrixes, Ledoit and Wolf (2003,
2004) adopt Bayesian shrinkage technique to estimate covariance matrixes, and prove
that this method outperformed the sample covariance matrixes as well as the global
minimun variance (GMV) portfolio. Yang et al. (2014) propose a hybrid covariance
matrix estimator on the base of robust M-estimation and Ledoit and Wolf (2004)’s
shrinkage approach.

4.2 Global minimum variance portfolio

The global minimun variance (GMV) portfolio is a specific optimal portfolio which
possesses the smallest variance among all portfolios on the efficient frontier. This
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portfolio corresponds to the fully-risk averse investor who aims to minimize the vari-
ance without taking the expected return into consideration. The importance of the
GMV portfolio in financial applications is well motivated by Chopra and Ziemba
(1993) who point out that errors in expected values are approximately ten times as
significant as errors in variances and covariances. Later, a host of empirical works,
such as Chan et al. (1999), Jagannathan and Ma (2002) and DeMiguel and Nogales
(2009), focus on the GMV portfolio and emphasize the GMV portfolio outperformed
the Markowitz MV portfolios. For example, Jagannathan and Ma (2002) claim that
the GMV portfolio weights should be more stable than the standard MV portfo-
lio weights since the estimation errors of the covariances are smaller than that of
the means. Bodnar and Schmid (2008) consider the weights of the GMV portfolio
with an assumption that the returns follow a matrix elliptically contoured distribu-
tion. For example, the security returns are assumed to be neither normally distributed
nor independent. They also found that the stochastic properties of the GMV portfo-
lio did not rely on the mean vector or on the distributional assumptions imposed
on security returns. Candelon et al. (2012) provide that the method of adopting
Bayesian shrinkage technique to estimate covariance matrixes, is not optimal for
small samples (Ledoit and Wolf 2003, 2004), and introduce a new framework to
solve this problem of the GMV portfolio based on shrinkage estimators of the covari-
ance matrix. Bodnar et al. (2015) analyse the GMV portfolio within a Bayesian
framework, which incorporate prior beliefs of the investors into portfolio selection
decisions.

4.3 Robust optimization

Although advances have been made to enhance estimates of returns, there are still
mistakes in these estimates on the grounds of the immanent stochastic nature of the
security returns process. This has induced some scholars to seek alternative way to
account for estimation errors directly in the decision making process for portfolio
selection.

Unlike the Bayesian and GMV portfolios, robust portfolio considers the estima-
tion errors in the decision making process directly. Generally, robust optimization
refers to find good objective values to given optimization problems with the uncer-
tain input parameters. Most robust portfolio optimization studies are stemmed from
the work of Ben-Tal and Nemirovski (1998, 1999) where the unknown parame-
ters are modeled as ellipsoidal sets instead of point estimates used in standard MV
optimization. By using the robust optimization framework described in Ben-Tal and
Nemirovski (1998, 1999), Goldfarb and Iyengar (2003) develop a robust factor model
to resolve robust portfolio selection problem. In their paper, the uncertain market
parameters are modeled as ellipsoidal uncertainty sets. Tütüncü and Koenig (2004)
formulate a robust optimization problem where uncertainty is described by use of
an uncertainty set which include most possible realizations of the uncertain input
parameters.

Ceria and Stubbs (2006) point out the aforementioned approaches can be rather
too conservative. They introduce a robust portfolio model with an alternative uncer-

123



142 Y. Zhang et al.

tainty region over the expected returns that create a less conservative robust problem.
Garlappi et al. (2007) develop a robust model for a decision-maker, who is averse
to ambiguity, with multiple priors. In Garlappi et al. (2007), the multiple priors are
characterized via a “confidence interval” around the estimated expected returns and
ambiguity aversion is modeled by a minimization over the priors. Differing from
Goldfarb and Iyengar (2003) and Tütüncü and Koenig (2004), the model in Garlappi
et al. (2007) incorporate not only parameter uncertainty but also model uncertainty. In
addition, joint constraints on expected returns are considered instead of only individ-
ual constraints. Alternatively, Lu (2011) considers the same factor model for security
returns as studied in Goldfarb and Iyengar (2003). For the model parameters, Lu
(2011) proposes a “joint” ellipsoidal uncertainty set instead of Goldfarb and Iyengar
(2003)’s “separable” uncertainty set and states that it can be structured as a confi-
dence region related to a statistical procedure. The “joint” ellipsoidal uncertainty set
indicate that each type of uncertain parameter has its own uncertainty set. Ye et al.
(2012) point out that these robust models with “separable” uncertainty sets have dif-
ferent probability measures over the mean and the variance of returns, which lead to
a worse than worst-case situation and may be over-conservative. Accordingly, they
construct a robust MVmodel by introducing uncertainty regions over the mean vector
and the second moment matrix of returns to mitigate those defects. For a decision-
maker aiming to optimize a portfolio by using the global minimum-variance strategy,
Maillet et al. (2015) provide a robust approach to mitigate the impact of parameter
uncertainty.

For the multi-period robust portfolio optimization, Ben-Tal et al. (2000) firstly
suggest using robust optimization to cope with the portfolio optimization problem
in multi-period case. Based on the approach of Ben-Tal et al. (2000), Bertsimas
and Pachamanova (2008) define the problem of multi-period portfolio selection with
transaction costs and present different robust formulations for the multi-period robust
portfolio optimization problem. Liu et al. (2015) propose a robust multi-period model
for portfolio optimization that consider investors’ behavioral factors by introducing
dynamically updated loss aversion parameters as well as a dynamic value function
based on prospect theory. For a thorough review on robust portfolio optimization, the
readers can refer to Fabozzi et al. (2007, 2010); Kim et al. (2014).

4.4 Other methods reducing estimation errors

Anumber of other approaches have been proposed in the literature to reduce estimation
errors. For instance, Chopra (1993), Jagannathan and Ma (2002) impose no short-
selling constraint to reduce estimation errors in optimizing MV portfolio selection
strategies. Michaud and Michaud (1998) introduces a statistical resampling technique
that considers estimation errors indirectly via averaging the each optimal portfolio.
Kan and Zhou (2007) provide a three-fund optimal portfolio that consist of the riskless
asset, the sample tangency portfolio, and the sample global minimum-variance portfo-
lio. They advocate that incorporating the economic objective function into parameter
estimation is a good method for analyzing the MV optimal portfolio selection prob-
lem.
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4.5 Summary

This section reviews the portfolio selection research from the perspective of reducing
influence of the estimated errors on parameters. The Bayesian approach, global mini-
mum variance portfolio and robust optimization methods are introduced respectively.
For these studies, the security returns are mainly assumed to obey normal distribution.
In fact, some empirical studies have demonstrated the disadvantages of normality in
real-life applications for the reason that the distribution of security returns may have
heavier tails and occasionally high peaks. One alternative distribution is multivari-
ate elliptical distributions which can be well applied in financial markets (Fabozzi
et al. 2007; Yang et al. 2014; Xiao and Valdez 2015). In addition, when estimating
the covariance matrix of returns, the risky securities are assumed to be subject to the
identical type of distribution (Greyserman et al. 2006; Lu 2011; Maillet et al. 2015).
The future work may focus on different return distributions for individual security in
formulating the MV model.

5 Fuzzy portfolio selection

Classical Markowitz’s portfolio selection model has two basic assumptions: (1) all
security returns are random variables; (2) investors have sufficient historical data on
securities which can correctly reflect the situation of financial markets in future. How-
ever, it is invariably hard to ensure such two assumptions. Indeed, in most cases, the
prediction of returns depends on experts’ judgments and investors’ subjective opin-
ions.Moreover, there is no past performance information for those newly listed stocks.
Numerous researchers have been devoted to finding a nonprobabilistic approach to
model experts’ judgements and investors’ subjective opinions.

With the introduction of fuzzy set theory in Zadeh (1965) and the development in
Bellman and Zadeh (1970), scholars have tried to employ fuzzy variables to manage
portfolio selection problem. Various theories accounting for new facets of uncertainty
have been proposed to cope with the fuzzy portfolio selection problem, such as possi-
bility theory, credibility theory, random fuzzy theory, fuzzy random theory and others.

5.1 Possibilistic MV portfolio selection

Possibility theory is proposed by Zadeh (1978) and advanced by Dubois and Prade
(1988). The family of fuzzy variables is denoted by A. Let ξ be a fuzzy variable with
membership function μ, and r a real number. The possibility of fuzzy event ξ ∈ A is
defined by Zadeh (1978) as follows

Pos{ξ ∈ A} = sup
x∈A

μ(x).

Possibilistic portfolio selection model is initially proposed by Tanaka (1995), where
fuzzy variables are associated with exponential possibility distributions. Further,
Tanaka and Guo (1999) propose upper and lower possibility distributions, which can
be used in portfolio selection problem to reflect experts’ knowledge. Instead of conven-
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tional probability distributions in Markowitz’s model, Tanaka et al. (2000) propose
two kinds of portfolio selection models that based on possibility probabilities and
fuzzy distributions, respectively. Afterwards, Carlsson and Fullér (2001) introduce
the notions of lower and upper possibilistic mean and variance of fuzzy variables.
Also they introduce the crisp possibilistic mean and variance of a continuous possi-
bility distributions. For a fuzzy variable ξ ∈ A with γ−level set

[
ξ
]γ =[a1(γ ), a2(γ )]

(0 < γ ≤ 1), the possibilistic expected value and variance of ξ are defined as

E[ξ ] =
∫ 1

0
γ (a1(γ ) + a2(γ )) dγ, V ar [ξ ] = 1

2

∫ 1

0
γ (a2(γ ) − a1(γ ))2 dγ .

Based on Carlsson and Fullér (2001), Carlsson et al. (2002) find an optimal MV
portfolio selection model with highest utility score under the assumption that the
returns of securities are trapezoidal fuzzy variables. Zhang et al. (2003) present the
notions of lower and upper possibilistic variance and covariance of fuzzy variables, and
Zhang and Wang (2005a, b) present a possibilistic MV portfolio selection model by
integrating the managers’ viewpoints and the experts’ knowledge. Zhang et al. (2007)
propose a lower and upper possibilistic MV model for portfolio selection when the
investment proportions have lower bound constraints. The authors also present an
exact algorithm to obtain the explicit expression of the possibilistic efficient frontier
for thismodel. Zhang et al. (2009b) discuss the portfolio selection problem for bounded
securities on the base of the general possibilistic MV utility function, which is a two-
parameter quadratic programming problem. The authors present a sequential minimal
optimization (SMO) algorithm which can derive the optimal portfolio. Subsequently,
Zhang et al. (2009a) study the possibilisticMVportfolio selection problemconsidering
the securities returns obeying LR-type possibility distributions. Based on Zhang et al.
(2007), Li et al. (2015c) formulate a possibilistic MV portfolio selection model with
background risk by assuming that the possibility distribution of security returns is
LR-type, which can be deduced into any specific form by investors’ estimation and
practical situation. A genetic algorithm is developed for solving the proposed model.

In addition, a few scholars study the weighted lower and upper possibislistic MV
model for portfolio selection. Fullér and Majlender (2003) propose the notations of
the weighted lower and upper possibilistic mean as well as variance of fuzzy variable.
The function f : [0, 1] → R̄− is said to be a weighting function if f is non-negative,
monotonic increasing and satisfies the normalization condition as follows

∫ 1

0
f (γ )dγ = 1.

They define the f -weighted possibilistic expected value and variance of fuzzy variable
ξ by

E[ξ ] =
∫ 1

0

a1(γ ) + a2(γ )

2
f (γ )dγ, V ar [ξ ] =

∫ 1

0

(
a2(γ ) − a1(γ )

2

)2

f (γ )dγ .

Based on possibility theory, Li et al. (2015b) redefine the possibilistic mean and
variance of fuzzy variable and propose the concept of possibilistic skewness. For a
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fuzzy variable ξ with differentiable membership functionμ(x), the mean and variance
of ξ are defined as follows

E[ξ ] =
∫ +∞

−∞
xμ(x)|μ′(x)|dx, V ar [ξ ] =

∫ +∞

−∞
(x − E[ξ ])2μ(x)|μ′(x)|dx .

This definition of possibilistic mean is proved to coincide with the lower and upper
possibilistic means defined by Carlsson and Fullér (2001).

Zhang and Xiao (2009) present the weighted lower and upper possibilistic MV
model for portfolio selection, which can be transformed to a linear programming
problem by regarding the security returns as trapezoidal fuzzy variables. Zhang et al.
(2011) add transaction costs into the portfolio model and assume that the security
returns are fuzzy variables by using the weighted average of possibilistic MV method
introduced in Zhang and Xiao (2009). A sequential minimal optimization (SMO)
algorithm is utilized to calculate the optimal strategy for this model.

In recent years, researchers have applied the possibilistic MV portfolio selection
model to resolve practical problems. Deng and Li (2010) propose that the conventional
MVmodel can be simplified as a bi-objective linear programmingmodel on the base of
possibility theory. Furthermore, the fuzzy two-stage algorithm is applied to solve the
proposed bi-objective model. Sadjadi et al. (2011) present a fuzzy multi-period port-
folio selection model where the the borrowing rates are higher than the lending rates.
Also based on the possibility theory, Deng and Li (2012) propose a quadratic program-
ming with inequality borrowing constraints where the security returns are assumed
as trapezoid fuzzy variables. Furthermore, Lemke algorithm has been designed to
solve the proposed model. Later, Deng and Li (2014) further propose a bi-objective
nonlinear portfolio selection model by assuming that the returns are triangular fuzzy
variables based on possibility theory, moreover, they introduce a gradually tolerant
constraint method to illustrate the efficiency of the proposed model.

It is worth mentioning that quite a few scholars study the admissible errors in fuzzy
circumstance using possibility theory. For instance, by assuming the expected return
and variance have admissible errors, Zhang and Nie (2004) employ the definitions
of fuzzy weighted average return and covariance (Tanaka et al. 2000) to study the
admissible efficient portfolio problem to reflect the uncertainty in real investment
world. Considering the riskless securities can be either lent or borrowed under general
investment constraints, Zhang et al. (2006) present an admissible efficient portfolio
model. Zhang and Wang (2008) propose an admissible efficient portfolio model con-
cerning the borrowing case. Chen and Zhang (2010) discuss the admissible portfolio
selection problem with transaction costs. And they propose a new admissible efficient
portfolio selection model and produce an improved PSO algorithm for the model.

5.2 Credibilistic MV portfolio selection

Though possibility measure has been widely used in portfolio selection, it has some
limitations. One limitation is that possibility measure is not self-dual (Liu and Liu
2002). However, within the framework of possibility theory, two fuzzy events with
different occurring chances may have the same possibility value, which is not a favor-
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able condition for investors. To overcome this, credibility theory is proposed (Liu and
Liu 2002) and accepted by more and more scholars. Li and Liu (2006a) introduce a
relation between possibility measures and credibility measures, and prove a necessary
and sufficient condition for credibility measures.

In Liu and Liu (2002), the credibility is defined as

Cr{ξ ∈ A} = 1

2

(

sup
x∈A

μ(x) + 1 − sup
x∈Ac

μ(x)

)

.

The credibility measure Cr is an average of possibility measure and necessity measure
and is proved to be self-dual. Based on the credibility measure, Liu and Liu (2002)
define the expected value as

E[ξ ] =
∫ ∞

0
Cr{ξ ≥ r}dr −

∫ 0

−∞
Cr{ξ ≤ r}dr.

This definition is not only applicable to a continuous fuzzy variable, bust also a discrete
one. If a fuzzy variable ξ has finite expected value E[ξ ], then its variance is defined
as

V ar [ξ ] = E
[
(ξ − E[ξ ])2

]
.

This definition tells us that the variance is just the expected value of the nonnegative
fuzzy variance (ξ − E[ξ ])2, which is expressed as

V ar [ξ ] =
∫ ∞

0
Cr{(ξ − E[ξ ])2 ≥ r}dr.

Following Markowitz’s idea of MV model, Huang (2007a) firstly proposes the
credibilistic MV models as follows,

⎧
⎪⎪⎨

⎪⎪⎩

max E[ξ1x1 + ξ2x2 + · · · + ξn xn]
s.t. V ar [ξ1x1 + ξ2x2 + · · · + ξn xn] ≤ β

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n,

(14)

In the above model, ξi represents the return of the i-th security, which is defined
as ξi = (p′

i + di − pi )/pi , i = 1, 2, . . . , n, respectively, where p′
i is the estimated

closing price of the security i in the next year, pi is the closing price of the security i
at present, and di is the estimated dividend of the security i during the coming year.
A hybrid intelligent algorithm integrating fuzzy simulation and genetic algorithm is
developed for giving a general solution the credibilistic portfolio selection model.

Afterwards, Chen et al. (2006) build two classes of fuzzy portfolio selection models
based on credibility measure. And they give the definition of variance with triangular
and trapezoidal fuzzy variables in credibilistic environment. Huang (2011) proposes
two credibilistic minimax MV models for fuzzy portfolio selection problem where
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security returns are treated as fuzzy variables. The proposed models are converted into
linear programmingmodels in three special cases. A neuron network imbedded genetic
algorithm is provided to solve the proposed optimization problems in general cases.
Li et al. (2009, 2015a) design an efficient hybrid intelligent algorithm by integrating
simulated annealing algorithm, neural network and fuzzy simulation techniques for
solving credibilistic portfolio selectionmodels. Huang (2009) gives a review regarding
credibilistic portfolio selection approaches, where the returns of securities are assumed
to be characterized by fuzzy variables with known credibility distributions.

5.3 Fuzzy random and random fuzzy MV portfolio selection

Sometimes, the investors encounter both randomness and fuzziness on the grounds
of the complex financial market. In this case, a framework of hybrid theory is needed
to handle the hybrid uncertainty. Therefore, some authors propose a hybrid portfolio
selection containing both fuzziness and randomness. According to different require-
ments of measurability, different definitions of fuzzy random variable are given such
as Kwarkernaak (1978, 1979), Puri and Ralescu (1986), Kruse andMeyer (1987), Liu
and Liu (2003a), Li and Liu (2009) and so on.

Generally speaking, a fuzzy random variable is a measurable function from a prob-
ability space to a collection of fuzzy sets. Here, we introduce the following definition
given by Liu and Liu (2003a). Let ξ be a fuzzy random variable defined on the prob-
ability space (�,�,Pr), the expected value operator of ξ is defined as

E[ξ ] =
∫ ∞

0
Pr{π ∈ �|E[ξ(π)] ≥ r}dr −

∫ 0

−∞
Pr{π ∈ �|E[ξ(π)] ≤ r}dr.

If ξ has finite expected value E[ξ ]. The variance is defined as the expected value of
(ξ − E[ξ ])2. That is

V ar [ξ ] = E
[
(ξ − E[ξ ])2

]
.

Conversely, a random fuzzy variable is a function from a possibility space to a
collection of random variables. Liu (2002) proposes the concept of random fuzzy
variable. In Liu (2002), ξ represents a random fuzzy variable defined on the credibility
space (
, P(
), Cr). E[ξ ] is defined as

E[ξ ] =
∫ ∞

0
Cr{θ ∈ 
|E[ξ(θ)] ≥ r}dr −

∫ 0

−∞
Cr{θ ∈ 
|E[ξ(θ)] ≤ r}dr.

Let ξ be a random fuzzy variable with finite expected value E[ξ ]. Then the variance
of ξ is defined by

V ar [ξ ] = E
[
(ξ − E[ξ ])2

]
.

123



148 Y. Zhang et al.

For detailed expositions on fuzzy random theory and random fuzzy theory, the
interested readers can refer to Liu and Liu (2003b), Li and Liu (2006b), Li and Liu
(2009), and Liu et al. (2012).

There are a few studies about random fuzzy portfolio selection problem. Ammar
(2008) investigates portfolio selection problem with a fuzzy random multi-objective
quadratic programming. As a counterpart of Markowitz’s MV model, Hao and Liu
(2009) develop two novel classes ofMVmodelswithin the framework of fuzzy random
theory for portfolio selection problem, and present the variance equations for triangular
fuzzy random variables. This paper designs genetic algorithm to solve the proposed
problem, and verify the obtained optimal solutions viaKuhn-Tucker conditions. Li and
Xu (2009) establish a new MV portfolio selection model with different perspective in
fuzzy random environment. Li and Xu (2013) propose a constrained multi-objective
MV portfolio selection model in which security returns are fuzzy random variables,
and this model has three criteria (return, risk and liquidity) which is more practical
in realistic investment environment. To avoid the difficulty of evaluating a large set
of efficient solutions and to ensure the selection of the best solution, a compromise
approach-based genetic algorithm is employed to solve the proposed model.

To deal with uncertainty of random fuzziness, Huang (2007b, c) employs the ran-
dom fuzzy theory to discuss risk definition from different perspectives.With these new
definitions of risk, both two papers present newMVmodelswith random fuzzy returns.
Huang (2007b) design a hybrid intelligent algorithm integrating random fuzzy simu-
lation and genetic algorithm to produce a general solution method. In Huang (2007c),
neural networks are utilized to calculate the expected value and the chance value in
the proposed hybrid intelligent algorithm. Furthermore, Hasuike et al. (2009) propose
several random fuzzy portfolio models of random fuzzy portfolio selection problems;
(a) single criteria optimization model, (b) bi-criteria optimization model with a fuzzy
goal of target profit. Since each problem is equivalent to a parametric nonlinear pro-
gramming problem, the authors construct each efficient solution method involving the
procedure of solving a parametric convex programming problem to obtain a global
optimal solution.

5.4 Other models with nonprobabilistic variables

Besides the above four branches of theories mentioned above, there are also certain
other methods to cope with portfolio selection problem whose returns are assumed
nonprobabilistic variables. Liu (2007) proposes uncertainty theory to tackle the uncer-
tainty which acted neither randomness nor fuzziness. Some scholars start to consider
the MV portfolio selection problem in which the security returns are treated as spe-
cial types of uncertain variables. Yan (2009) extends Liu (2007)’s work and provides
two classes of uncertain programming models for MV portfolio selection with uncer-
tain returns. The author discusses the crisp equivalents when the uncertain security
returns are treated as uncertain variables in order to solve the proposed models by
traditional methods. Huang (2012) provides a hybrid intelligent algorithm for solving
the MV portfolio selection problem in which security returns are given according to
experts’ estimations. The author presents a method for determining the uncertainty
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distributions of security returns based on experts’ evaluations. Lai et al. (2002), Ida
(2003) and Liu et al. (2013) study the portfolio selection optimization model by using
interval analysis in uncertain circumstance. Qin (2015) proposes a hybrid MV model
for portfolio selection problem in the simultaneous presence of random and uncertain
returns.

5.5 Summary

While it is difficult to obtain the precise probability distributions or enough data,
fuzzy portfolio models behave better than probabilistic models. This section gives
an introduction on portfolio selection in fuzzy environments. We review possibilistic
portfolio models, credibilistic portfolio models, random fuzzy portfolio models, fuzzy
random portfoliomodels and some other nonprobabilistic models. It is found that most
of these studies focus on theoretical aspects. There are few studies offering themethods
of how to transform the real-life stock data into fuzzy returns/fuzzy numbers before
formulating the fuzzy portfolio models. More works (Zhang et al. 2010; Pedrycz
and Song 2012) are needed to introduce the way of approximating fuzzy numbers
with real data and illustrate its effectiveness. There are two main methods to obtain
the optimal portfolio in uncertain environment, fuzzy portfolio selection methods,
such as the fuzzy portfolio optimization method by using the quadratic programming
(Hasuike et al. 2009; Zhang and Wang 2008), the multi-objective nonlinear model for
fuzzy portfolio selection (Deng and Li 2014), fuzzy randommulti-objective quadratic
programming for portfolio selection (Ammar 2008), etc; and heuristic approach, for
example, hybrid intelligent algorithm (Huang 2007b, 2012), a compromise approach-
based GA (Li and Xu 2013), SMO algorithm (Zhang et al. 2009b) and so on. In
addition, more real constraints should be considered in the fuzzy portfolio selection
literature in the future.

6 Conclusion and future research

This paper reviews various extensions of Markowitz’s MV model, which aims to help
researchers find hot points and trend on portfolio selection studies and help practioners
to find useful theoretical tools, including dynamic optimization, robust optimization,
fuzzyoptimization and soon.Despite all the effortswehavemade to present a complete
review on MV portfolio selection methods, it still has some limitations. Nevertheless,
we are convinced that we have compiled the vast majority of the studies carried out
in this field. As we have discussed, the practical financial markets are uncertain and
complex, but the theoretical models are much simpler. Hence, more works should
be done to reduce the gap and enhance the models’ practicability in real world. For
example, the difference on investment horizons of securities in dynamic portfolio
selection problems should be considered. In addition, the current studies generally
assume that the risky security returns obey normal distribution. However, elliptical
distribution may be more suitable to tackle with the uncertainty in real-life markets.

In real-life financial market, investors want to knowwhat is happening now, what is
likely to happen next and what measures should be taken to get the optimal portfolios.
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Thus, combing forecasting theory with portfolio selection is an promising research
direction. The existing works (Deng and Min 2013; Xia et al. 2015) mainly focus on
earning forecasting, which is an input to a portfolio optimization analysis where funda-
mental and statistical-based risk models are used. In addition, predicting stock’s price
based on financial reports is also attractive for investors. For example, the investors
can make subjective judgments based on the objective technical indicators (Wu et al.
2015).

Big data ananlysis is another hot direction in portfolio optimization. Henri Wael-
broeck, serves asGlobal Head of Research at Portware, published an article titled “Big
Data Techniques Can Give Institutional Portfolio Managers Upper Hand”, in which
he pointed out that while Chief Information Officers (CIOs) had previously adopted
quantitative methods for portfolio optimization, today the race is on to deploy big data
optimization solutions to extend these capabilities to trade execution as well. There
are multiple sources supporting portfolio optimization. Aside from the recorded large
scale real-time data and risk rating of securities that issued by securities institutes,
accumulated data from financial statements analysis of the firms also contain valu-
able information for evaluating profitability of the security with big data technique
(Norman 2011, 2012) . In addition, information on investment environment such as
economic policies, government supervision and industry situation is also an important
data source. Last but not least, the specific requirements of the investors are a vital
part of data source. Before investing, the investors may decide what they are planning
for, how long they plan to invest, how sensitive they are to the investment risk, how
much they have saved or invested currently, etc. If we can collect all these valuable
information and build a database for big data analysis, we can make sound decisions
on portfolio.

Acknowledgements Funding was provided by National Natural Science Foundation of China (Grant No.
71371027).

References

Ammar, E. E. (2008).On solutions of fuzzy randommultiobjective quadratic programmingwith applications
in portfolio problem. Information Sciences, 178(2), 468–484.

Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives and
discrete variables. Computers and Operations Research, 37(7), 1285–1297.

Bajeux-Besnainou, I., & Portait, R. (1998). Dynamic asset allocation in a mean-variance framework. Man-
agement Science, 44(11), 79–95.

Barry, C. B. (1974). Portfolio analysis under uncertain means, variances, and covariances. The Journal of
Finance, 29(2), 515–522.

Basak, S., & Chabakauri, G. (2010). Dynamic mean-variance asset allocation. Review of Financial Studies,
23(8), 2970–3016.

Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science,
17(4), B-141.

Ben-Tal, A., Margalit, T., & Nemirovski, A. (2000). Robust modeling of multi-stage portfolio problems.
High performance optimization (pp. 303–328). New York: Springer.

Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research,
23(4), 769–805.

Ben-Tal, A., & Nemirovski, A. (1999). Robust solutions of uncertain linear programs. Operations Research
Letters, 25(1), 1–13.

123



Portfolio selection problems with Markowitz’s. . . 151

Bensoussan, A., Wong, K. C., Yam, S. C. P., & Yung, S. P. (2014). Time-consistent portfolio selection under
short-selling prohibition: From discrete to continuous setting. SIAM Journal on Financial Mathemat-
ics, 5(1), 153–190.

Bertsimas, D., & Pachamanova, D. (2008). Robust multiperiod portfolio management in the presence of
transaction costs. Computers and Operations Research, 35(1), 3–17.

Best, M. J., & Grauer, R. R. (1991). On the sensitivity of mean-variance-efficient portfolios to changes in
asset means: Some analytical and computational results. Review of Financial Studies, 4(2), 315–342.

Bielecki, T. R., Jin, H., Pliska, S. R., & Zhou, X. Y. (2005). Continuous-time mean-variance portfolio
selection with Bankruptcy prohibition. Mathematical Finance, 15(2), 213–244.

Björk, T., & Murgoci, A. (2010). A general theory of Markovian time inconsistent stochastic control
problems. Available at SSRN 1694759.

Björk, T., & Murgoci, A. (2014). A theory of Markovian time-inconsistent stochastic control in discrete
time. Finance and Stochastics, 18(3), 545–592.

Björk, T., Murgoci, A., & Zhou, X. Y. (2014). Mean-variance portfolio optimization with state-dependent
risk aversion. Mathematical Finance, 24(1), 1–24.

Bodnar, T., Mazur, S., & Okhrin, Y. (2015). Bayesian estimation of the global minimum variance portfolio.
In Working papers in statistics.

Bodnar, T., & Schmid, W. (2008). A test for the weights of the global minimum variance portfolio in an
elliptical model. Metrika, 67(2), 127–143.

Brown, S. J. (1976). Optimal portfolio choice under uncertainty: A Bayesian approach. (Doctoral disserta-
tion, University of Chicago, Graduate School of Business).

Candelon, B., Hurlin, C.,&Tokpavi, S. (2012). Sampling error and double shrinkage estimation ofminimum
variance portfolios. Journal of Empirical Finance, 19(4), 511–527.

Carlsson, C., & Fullér, R. (2001). On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets
and Systems, 122(2), 315–326.

Carlsson, C., Fullér, R., &Majlender, P. (2002). A possibilistic approach to selecting portfolios with highest
utility score. Fuzzy Sets and Systems, 131(1), 13–21.

Ceria, S., & Stubbs, R. A. (2006). Incorporating estimation errors into portfolio selection: Robust portfolio
construction. Journal of Asset Management, 7(2), 109–127.

Chan, L. K., Karceski, J., & Lakonishok, J. (1999). On portfolio optimization: Forecasting covariances and
choosing the risk model. Review of Financial Studies, 12(5), 937–974.

Chang, H. (2015). Dynamic mean-variance portfolio selection with liability and stochastic interest rate.
Economic Modelling, 51, 172–182.

Chang, T. J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained
portfolio optimisation. Computers and Operations Research, 27(13), 1271–1302.

Chen, Y., Liu, Y. K., & Chen, J. (2006). Fuzzy portfolio selection problems based on credibility theory.
Lecture Notes in Computer Science (pp. 377–386).

Chen, P., &Yang,H. (2011).Markowitz’smean-variance asset-liabilitymanagementwith regime switching:
A multi-period model. Applied Mathematical Finance, 18(1), 29–50.

Chen, P., Yang, H., & Yin, G. (2008). Markowitz’s mean-variance asset-liability management with regime
switching: A continuous-time model. Insurance: Mathematics and Economics, 43(3), 456–465.

Chen, W., & Zhang, W. G. (2010). The admissible portfolio selection problem with transaction costs and an
improved PSO algorithm. Physica A: Statistical Mechanics and its Applications, 389(10), 2070–2076.

Chiam, S. C., Tan, K. C., & Al Mamum, A. (2008). Evolutionary multi-objective portfolio optimization in
practical context. International Journal of Automation and Computing, 5(1), 67–80.

Chiu, M. C., & Li, D. (2006). Asset and liability management under a continuous-time mean-variance
optimization framework. Insurance: Mathematics and Economics, 39(3), 330–355.

Chiu, M. C., & Wong, H. Y. (2011). Mean-variance portfolio selection of cointegrated assets. Journal of
Economic Dynamics and Control, 35(8), 1369–1385.

Chiu, M. C., & Wong, H. Y. (2013). Mean-variance principle of managing cointegrated risky assets and
random liabilities. Operations Research Letters, 41(1), 98–106.

Chiu, M. C., & Wong, H. Y. (2014). Mean-variance portfolio selection with correlation risk. Journal of
Computational and Applied Mathematics, 263, 432–444.

Chiu, M. C., & Wong, H. Y. (2015). Dynamic cointegrated pairs trading: Mean-variance time-consistent
strategies. Journal of Computational and Applied Mathematics, 290, 516–534.

Chopra, V. K. (1993). Improving optimization. The. Journal of Investing, 2(3), 51–59.

123



152 Y. Zhang et al.

Chopra, V. K., & Ziemba,W. T. (1993). The effect of errors in means, variances, and covariances on optimal
portfolio choice. Journal of Portfolio Management, 19(2), 6–11.

Costa, O. L., & Araujo, M. V. (2008). A generalized multi-period mean-variance portfolio optimization
with Markov switching parameters. Automatica, 44(10), 2487–2497.

Costa, O. L. V., & Nabholz, R. B. (2007). Multiperiod mean-variance optimization with intertemporal
restrictions. Journal of Optimization Theory and Applications, 134(2), 257–274.

Crama, Y., & Schyns, M. (2003). Simulated annealing for complex portfolio selection problems. European
Journal of Operational Research, 150(3), 546–571.

Cui, X., Gao, J., Li, X., & Li, D. (2014a). Optimal multi-period mean-variance policy under no-shorting
constraint. European Journal of Operational Research, 234(2), 459–468.

Cui, X., Li, X., & Li, D. (2014b). Unified framework of mean-field formulations for optimal multi-period
mean-variance portfolio selection. IEEE Transactions on Automatic Control, 59(7), 1833–1844.

Cui, X., Li, D., Wang, S., & Zhu, S. (2012). Better than dynamic mean-variance: Time inconsistency and
free cash flow stream. Mathematical Finance, 22(2), 346–378.

Cui, X., Li, X., Wu, X., & Yi, L. (2015). A mean-field formulation for optimal multi-period asset–liability
mean–variance portfolio selection with an uncertain exit time. Available at SSRN 2680109.

Cura, T. (2009). Particle swarm optimization approach to portfolio optimization. Nonlinear Analysis: Real
World Applications, 10(4), 2396–2406.

Czichowsky, C. (2013). Time-consistent mean-variance portfolio selection in discrete and continuous time.
Finance and Stochastics, 17(2), 227–271.

Dai, M., & Zhong, Y. (2008). Penalty methods for continuous-time portfolio selection with proportional
transaction costs. Available at SSRN 1210105.

Davis,M.H.,&Norman,A.R. (1990). Portfolio selectionwith transaction costs.Mathematics of Operations
Research, 15(4), 676–713.

DeMiguel, V., & Nogales, F. J. (2009). Portfolio selection with robust estimation. Operations Research,
57(3), 560–577.

Deng, X., & Li, R. (2010). A portfolio selection model based on possibility theory using fuzzy two-stage
algorithm. Journal of Convergence Information Technology, 5(6), 138–145.

Deng, X., & Li, R. (2012). A portfolio selection model with borrowing constraint based on possibility
theory. Applied Soft Computing, 12(2), 754–758.

Deng, X., & Li, R. (2014). Gradually tolerant constraint method for fuzzy portfolio based on possibility
theory. Information Sciences, 259, 16–24.

Deng, S., & Min, X. (2013). Applied optimization in global efficient portfolio construction using earning
forecasts. The Journal of Investing, 22(4), 104–114.

Dubois, D., & Prade, H. (1988). Possibility theory. New York: Plenum Press.
Dumas,B.,&Luciano,E. (1991).An exact solution to a dynamic portfolio choice problemunder transactions

costs. The Journal of Finance, 46(2), 577–595.
Ehrgott,M.,Klamroth,K.,&Schwehm,C. (2004).AnMCDMapproach to portfolio optimization.European

Journal of Operational Research, 155(3), 752–770.
Fabozzi, F. J., Huang, D., & Zhou, G. (2010). Robust portfolios: Contributions from operations research

and finance. Annals of Operations Research, 176(1), 191–220.
Fabozzi, F. J., Kolm, P. N., Pachamanova, D., & Focardi, S. M. (2007). Robust portfolio optimization and

management. Hoboken: Wiley.
Fernández, A., & Gómez, S. (2007). Portfolio selection using neural networks. Computers and Operations

Research, 34(4), 1177–1191.
Frost, P. A., & Savarino, J. E. (1986). An empirical Bayes approach to efficient portfolio selection. Journal

of Financial and Quantitative Analysis, 21(03), 293–305.
Fu, C., Lari-Lavassani, A., & Li, X. (2010). Dynamic mean-variance portfolio selection with borrowing

constraint. European Journal of Operational Research, 200(1), 312–319.
Fullér, R., & Majlender, P. (2003). On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy

Sets and Systems, 136(3), 363–374.
Gao, J., Li, D., Cui, X., & Wang, S. (2015). Time cardinality constrained mean-variance dynamic portfolio

selection and market timing: A stochastic control approach. Automatica, 54, 91–99.
Garlappi, L., Uppal, R., & Wang, T. (2007). Portfolio selection with parameter and model uncertainty: A

multi-prior approach. Review of Financial Studies, 20(1), 41–81.
Goldfarb, D., & Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of Operations

Research, 28(1), 1–38.

123



Portfolio selection problems with Markowitz’s. . . 153

Grauer, R. R., & Hakansson, N. H. (1993). On the use of mean-variance and quadratic approximations
in implementing dynamic investment strategies: A comparison of returns and investment policies.
Management Science, 39(7), 856–871.

Greyserman, A., Jones, D. H., & Strawderman,W. E. (2006). Portfolio selection using hierarchical Bayesian
analysis and MCMC methods. Journal of Banking and Finance, 30(2), 669–678.

Guo, Z., & Duan, B. (2015). Dynamic mean-variance portfolio selection in market with jump-diffusion
models. Optimization, 64(3), 663–674.

Hakansson, N. H. (1971). Capital growth and the mean-variance approach to portfolio selection. Journal
of Financial and Quantitative Analysis, 6(01), 517–557.

Hao, F. F., & Liu, Y. K. (2009). Mean-variance models for portfolio selection with fuzzy random returns.
Journal of Applied Mathematics and Computing, 30(1–2), 9–38.

Hasuike, T., Katagiri, H., & Ishii, H. (2009). Portfolio selection problems with random fuzzy variable
returns. Fuzzy Sets and Systems, 160(18), 2579–2596.

Henri, W. Big data techniques can give institutional portfolio managers upper hand. http://www.
wallstreetandtech.com/trading-technology/big-data-techniques-can-give-institutional-portfolio-man
agers-upper-hand/d/d-id/1268644?.

Huang, X. (2007a). Portfolio selection with fuzzy returns. Journal of Intelligent and Fuzzy Systems, 18(4),
383–390.

Huang, X. (2007b). Two newmodels for portfolio selectionwith stochastic returns taking fuzzy information.
European Journal of Operational Research, 180(1), 396–405.

Huang,X. (2007c).Anewperspective for optimal portfolio selectionwith random fuzzy returns. Information
Sciences, 177(23), 5404–5414.

Huang, X. (2009). A review of credibilistic portfolio selection. Fuzzy Optimization and Decision Making,
8(3), 263–281.

Huang, X. (2011). Minimax mean-variance models for fuzzy portfolio selection. Soft Computing, 15(2),
251–260.

Huang, X. (2012). Mean-variance models for portfolio selection subject to experts estimations. Expert
Systems with Applications, 39(5), 5887–5893.

Ida, M. (2003). Portfolio selection problem with interval coefficients. Applied Mathematics Letters, 16(5),
709–713.

Jagannathan, R., & Ma, T. (2002). Risk reduction in large portfolios: Why imposing the wrong constraints
helps (No. w8922). National Bureau of Economic Research.

James, W., & Stein, C. (1961). Estimation with quadratic loss. In Proceedings of the fourth Berkeley
symposium on mathematical statistics and probability (pp. 361–379).

Jin, H., & Zhou, X. Y. (2007). Continuous-time Markowitz’s problems in an incomplete market, with
no-shorting portfolios. Stochastic Analysis and Applications (pp. 435–459). Berlin: Springer.

Jorion, P. (1986). Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quantitative
Analysis, 21(03), 279–292.

Kan, R., & Zhou, G. (2007). Optimal portfolio choice with parameter uncertainty. Journal of Financial and
Quantitative Analysis, 42(03), 621–656.

Karatzas, I., Lehoczky, J. P., & Shreve, S. E. (1987). Optimal portfolio and consumption decisions for a
“small investor” on a finite horizon. SIAM Journal on Control and Optimization, 25(6), 1557–1586.

Kim, J. H., Kim, W. C., & Fabozzi, F. J. (2014). Recent developments in robust portfolios with a worst-case
approach. Journal of Optimization Theory and Applications, 161(1), 103–121.

Klein, R. W., & Bawa, V. S. (1976). The effect of estimation risk on optimal portfolio choice. Journal of
Financial Economics, 3(3), 215–231.

Kruse, R., & Meyer, K. D. (1987). Statistics with vague data. New York: Springer.
Kwarkernaak, H. (1978). Fuzzy random variables (I). Information Sciences, 15(1), 1–29.
Kwarkernaak, H. (1979). Fuzzy random variables (II). Information Sciences, 17, 253–278.
Lai, K. K., Wang, S. Y., Xu, J. P., Zhu, S. S., & Fang, Y. (2002). A class of linear interval programming

problems and its application to portfolio selection. IEEE Transactions on Fuzzy Systems, 10(6), 698–
704.

Ledoit, O., & Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an
application to portfolio selection. Journal of Empirical Finance, 10(5), 603–621.

Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices.
Journal of Multivariate Analysis, 88(2), 365–411.

123

http://www.wallstreetandtech.com/trading-technology/big-data-techniques-can-give-institutional-portfolio-managers-upper-hand/d/d-id/1268644?
http://www.wallstreetandtech.com/trading-technology/big-data-techniques-can-give-institutional-portfolio-managers-upper-hand/d/d-id/1268644?
http://www.wallstreetandtech.com/trading-technology/big-data-techniques-can-give-institutional-portfolio-managers-upper-hand/d/d-id/1268644?


154 Y. Zhang et al.

Leippold, M., Trojani, F., & Vanini, P. (2004). A geometric approach to multiperiod mean variance opti-
mization of assets and liabilities. Journal of Economic Dynamics and Control, 28(6), 1079–1113.

Leippold, M., Trojani, F., & Vanini, P. (2011). Multiperiod mean-variance efficient portfolios with endoge-
nous liabilities. Quantitative Finance, 11(10), 1535–1546.

Liagkouras, K., & Metaxiotis, K. (2015). Efficient portfolio construction with the use of multiobjective
evolutionary algorithms: Best practices and performancemetrics. International Journal of Information
Technology and Decision Making, 14(03), 535–564.

Li, C., & Li, Z. (2012). Multi-period portfolio optimization for asset-liability management with bankrupt
control. Applied Mathematics and Computation, 218(22), 11196–11208.

Li, X., & Liu, B. (2006a). A sufficient and necessary condition for credibility measures. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 14(05), 527–535.

Li, X.,&Liu, B. (2006b). New independence definition of fuzzy randomvariable and random fuzzy variable.
World Journal of Modelling and Simulation, 2(5), 338–342.

Li, X., & Liu, B. (2009). Chancemeasure for hybrid events with fuzziness and randomness. Soft Computing,
13(2), 105–115.

Li, D., & Ng, W. L. (2000). Optimal dynamic portfolio selection: Multiperiod mean-variance formulation.
Mathematical Finance, 10(3), 387–406.

Li, X., Guo, S. N., & Yu, L. A. (2015a). Skewness of fuzzy numbers and its applications in portfolio
selection. IEEE Transactions on Fuzzy Systems, 23(6), 2135–2143.

Li, Y., Qiao, H., Wang, S., & Zhang, L. (2015b). Time-consistent investment strategy under partial infor-
mation. Insurance: Mathematics and Economics, 65, 187–197.

Li,D., Sun,X.,&Wang, J. (2006).Optimal lot solution to cardinality constrainedmean-variance formulation
for portfolio selection. Mathematical Finance, 16(1), 83–101.

Li, Z. F., & Xie, S. X. (2010). Mean-variance portfolio optimization under stochastic income and uncertain
exit time. Dynamics of Continuous, Discrete and Impulsive Systems B: Applications and Algorithms,
17, 131–147.

Li, J., & Xu, J. (2009). A novel portfolio selection model in a hybrid uncertain environment. Omega, 37(2),
439–449.

Li, J., & Xu, J. (2013). Multi-objective portfolio selection model with fuzzy random returns and a compro-
mise approach-based genetic algorithm. Information Sciences, 220, 507–521.

Li, X., Zhang, Y., Wong, H. S., & Qin, Z. (2009). A hybrid intelligent algorithm for portfolio selection
problem with fuzzy returns. Journal of Computational and Applied Mathematics, 233(2), 264–278.

Li, T., Zhang, W., & Xu, W. (2015c). A fuzzy portfolio selection model with background risk. Applied
Mathematics and Computation, 256, 505–513.

Li, X., Zhou, X. Y., & Lim, A. E. (2002). Dynamic mean-variance portfolio selection with no-shorting
constraints. SIAM Journal on Control and Optimization, 40(5), 1540–1555.

Lim, A. E., & Zhou, X. Y. (2002). Mean-variance portfolio selection with random parameters in a complete
market. Mathematics of Operations Research, 27(1), 101–120.

Liu, B. (2002). Random fuzzy dependent-chance programming and its hybrid intelligent algorithm. Infor-
mation Sciences, 141(3), 259–271.

Liu, B. (2007). Uncertainty theory. Berlin: Springer.
Liu, J., Jin, X., Wang, T., & Yuan, Y. (2015). Robust multi-period portfolio model based on prospect theory

and ALMV-PSO algorithm. Expert Systems with Applications, 42(20), 7252–7262.
Liu, B., & Liu, Y. K. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE

Transactions on Fuzzy Systems, 10(4), 445–450.
Liu, Y. K., &Liu, B. (2003a). Fuzzy random variables: A scalar expected value operator.Fuzzy Optimization

and Decision Making, 2(2), 143–160.
Liu, Y. K., & Liu, B. (2003b). Expected value operator of random fuzzy variable and random fuzzy expected

value models. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11(02),
195–215.

Liu, H., & Loewenstein, M. (2002). Optimal portfolio selection with transaction costs and finite horizons.
Review of Financial Studies, 15(3), 805–835.

Liu, Y. K., Wu, X., & Hao, F. (2012). A new chance-variance optimization criterion for portfolio selection
in uncertain decision systems. Expert Systems with Applications, 39(7), 6514–6526.

Liu, Y. J., Zhang, W. G., & Zhang, P. (2013). A multi-period portfolio selection optimization model by
using interval analysis. Economic Modelling, 33, 113–119.

123



Portfolio selection problems with Markowitz’s. . . 155

Lobo, M. S., Fazel, M., & Boyd, S. (2007). Portfolio optimization with linear and fixed transaction costs.
Annals of Operations Research, 152(1), 341–365.

Lu, Z. (2011). Robust portfolio selection based on a joint ellipsoidal uncertainty set. Optimization Methods
and Software, 26(1), 89–104.

Ma, H. Q., Wu, M., & Huang, N. J. (2015). A random parameter model for continuous-time mean–variance
asset–liability management. Mathematical Problems in Engineering 2015.

Maillet, B., Tokpavi, S., &Vaucher, B. (2015). Global minimum variance portfolio optimisation under some
model risk: A robust regression-based approach. European Journal of Operational Research, 244(1),
289–299.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.
Markowitz, H. (1959). Portfolio selection: Efficient diversfication of investments. New York: Wiley.
Merton, R. C. (1969). Lifetime portfolio selection under uncertainty: The continuous-time case. The review

of Economics and Statistics, 51(3), 247–257.
Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model. Journal of

Economic Theory, 3(4), 373–413.
Merton, R. C. (1972). An analytic derivation of the efficient portfolio frontier. Journal of Financial and

Quantitative Analysis, 7(04), 1851–1872.
Metaxiotis, K., & Liagkouras, K. (2012).Multiobjective evolutionary algorithms for portfolio management:

A comprehensive literature review. Expert Systems with Applications, 39(14), 11685–11698.
Meucci, A. (2010). The Black–Litterman approach: Original model and extensions. Encyclopedia of Quan-

titative Finance. Wiley. doi:10.2139/ssrn.1117574.
Michaud, R. O. (1989). The Markowitz optimization enigma: Is “optimized” optimal? Financial Analysts

Journal, 45(1), 31–42.
Michaud, R. O., & Michaud, R. (1998). Efficient asset management. Boston: Harvard Business School

Press.
Morton, A. J., & Pliska, S. R. (1995). Optimal portfolio management with fixed transaction costs. Mathe-

matical Finance, 5(4), 337–356.
Norman, A. S. (2011). Financial analysis as a consideration for stock exchange investment decisions in

Tanzania. Journal of Accounting and Taxation, 3(4), 60–69.
Norman, A. S. (2012). The usefulness of financial information in capital markets investment decision

making in Tanzania: A case of Iringa region. International Journals of Marketing and Technology,
2(8), 50–65.

Oksendal, B., & Sulem, A. (2002). Optimal consumption and portfolio with both fixed and proportional
transaction costs. SIAM Journal on Control and Optimization, 40(6), 1765–1790.

Pedrycz, W., & Song, M. (2012). Granular fuzzy models: A study in knowledge management in fuzzy
modeling. International Journal of Approximate Reasoning, 53(7), 1061–1079.

Peng, H., Kitagawa, G., Gan, M., & Chen, X. (2011). A new optimal portfolio selection strategy based
on a quadratic form mean-variance model with transaction costs. Optimal Control Applications and
Methods, 32(2), 127–138.

Pliska, S. (1997). Introduction to mathematical finance. Oxford: Blackwell publishers.
Pogue, G. A. (1970). An extension of the Markowitz portfolio selection model to include variable transac-

tions’ costs, short sales, leverage policies and taxes. The Journal of Finance, 25(5), 1005–1027.
Puri, M. L., & Ralescu, D. A. (1986). Fuzzy random variables. Journal of Mathematical Analysis and

Applications, 114(2), 409–422.
Qin, Z. (2015). Mean-variance model for portfolio optimization problem in the simultaneous presence of

random and uncertain returns. European Journal of Operational Research, 245(2), 480–488.
Ruiz-Torrubiano, R., & Suárez, A. (2015). A memetic algorithm for cardinality-constrained portfolio opti-

mization with transaction costs. Applied Soft Computing, 36, 125–142.
Sadjadi, S. J., Seyedhosseini, S. M., & Hassanlou, K. (2011). Fuzzy multi period portfolio selection with

different rates for borrowing and lending. Applied Soft Computing, 11(4), 3821–3826.
Samuelson, P. A. (1969). Lifetime portfolio selection by dynamic stochastic programming. The Review of

Economics and Statistics, 51(3), 239–246.
Sethi, S., & Sorger, G. (1991). A theory of rolling horizon decision making. Annals of Operations Research,

29(1), 387–415.
Shaw, D. X., Liu, S., & Kopman, L. (2008). Lagrangian relaxation procedure for cardinality-constrained

portfolio optimization. Optimisation Methods and Software, 23(3), 411–420.

123

http://dx.doi.org/10.2139/ssrn.1117574


156 Y. Zhang et al.

Shen, Y. (2015). Mean-variance portfolio selection in a complete market with unbounded random coeffi-
cients. Automatica, 55, 165–175.

Soleimani, H., Golmakani, H. R., & Salimi, M. H. (2009). Markowitz-based portfolio selection with
minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic
algorithm. Expert Systems with Applications, 36(3), 5058–5063.

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution.
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 399(1),
197–206.

Tanaka, H. (1995). Possibility portfolio selection. In Proceedings of 4th IEEE international conference on
fuzzy systems (pp. 813–818).

Tanaka, H., & Guo, P. (1999). Portfolio selection based on upper and lower exponential possibility distri-
butions. European Journal of Operational Research, 114(1), 115–126.

Tanaka, H., Guo, P., & Türksen, I. B. (2000). Portfolio selection based on fuzzy probabilities and possibility
distributions. Fuzzy Sets and Systems, 111(3), 387–397.

Tu, J., & Zhou, G. (2010). Incorporating economic objectives into Bayesian priors: Portfolio choice under
parameter uncertainty. Journal of Financial and Quantitative Analysis, 45(4), 959–986.

Tuba, M., & Bacanin, N. (2014). Artificial bee colony algorithm hybridized with firefly algorithm for cardi-
nality constrained mean-variance portfolio selection problem. Applied Mathematics and Information
Sciences, 8(6), 2831–2844.

Tütüncü, R. H., & Koenig, M. (2004). Robust asset allocation. Annals of Operations Research, 132(1–4),
157–187.

Wang, J., & Forsyth, P. A. (2011). Continuous time mean variance asset allocation: A time-consistent
strategy. European Journal of Operational Research, 209(2), 184–201.

Wang, Z., & Liu, S. (2013). Multi-period mean-variance portfolio selection with fixed and proportional
transaction costs. Journal of Industrial and Management Optimization, 9(3), 643–657.

Wang, Z., Liu, S., & Kong, X. (2012). Artificial bee colony algorithm for portfolio optimization problems.
International Journal of Advancements in Computing Technology, 4(4), 8–16.

Wei, J., Wong, K. C., Yam, S. C. P., & Yung, S. P. (2013). Markowitz’s mean-variance asset-liability man-
agement with regime switching: A time-consistent approach. Insurance: Mathematics and Economics,
53(1), 281–291.

Wei, S. Z., & Ye, Z. X. (2007). Multi-period optimization portfolio with bankruptcy control in stochastic
market. Applied Mathematics and Computation, 186(1), 414–425.

Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for the cardinality con-
strained efficient frontier. European Journal of Operational Research, 213(3), 538–550.

Wu, H. (2013). Time-consistent strategies for a multiperiod mean–variance portfolio selection problem.
Journal of Applied Mathematics. doi:10.1155/2013/841627.

Wu, H., & Chen, H. (2015). Nash equilibrium strategy for a multi-period mean-variance portfolio selection
problem with regime switching. Economic Modelling, 46, 79–90.

Wu, H., & Li, Z. (2011). Multi-period mean-variance portfolio selection with Markov regime switching
and uncertain time-horizon. Journal of Systems Science and Complexity, 24(1), 140–155.

Wu, H., & Li, Z. (2012). Multi-period mean-variance portfolio selection with regime switching and a
stochastic cash flow. Insurance: Mathematics and Economics, 50(3), 371–384.

Wu, C., Luo, P., Li, Y., & Chen, K. (2015). Stock price forecasting: Hybrid model of artificial intelligent
methods. Engineering Economics, 26(1), 40–48.

Wu, H., Zeng, Y., & Yao, H. (2014). Multi-period Markowitz’s mean-variance portfolio selection with
state-dependent exit probability. Economic Modelling, 36, 69–78.

Xia, H., Min, X., & Deng, S. (2015). Effectiveness of earnings forecasts in efficient global portfolio con-
struction. International Journal of Forecasting, 31(2), 568–574.

Xia, J., & Yan, J. A. (2006). Markowitz’s portfolio optimization in an incomplete market. Mathematical
Finance, 16(1), 203–216.

Xiao, Y., & Valdez, E. A. (2015). A Black-Litterman asset allocation model under Elliptical distributions.
Quantitative Finance, 15(3), 509–519.

Xie, S., Li, Z., &Wang, S. (2008). Continuous-time portfolio selection with liability: Mean-variance model
and stochastic LQ approach. Insurance: Mathematics and Economics, 42(3), 943–953.

Xiong, J., & Zhou, X. Y. (2007). Mean-variance portfolio selection under partial information. SIAM Journal
on Control and Optimization, 46(1), 156–175.

123

http://dx.doi.org/10.1155/2013/841627


Portfolio selection problems with Markowitz’s. . . 157

Xu, Y., &Wu, Z. (2014). Continuous-timemean-variance portfolio selection with inflation in an incomplete
market. Journal of Financial Risk Management, 3(02), 19.

Xue, H. G., Xu, C. X., & Feng, Z. X. (2006). Mean-variance portfolio optimal problem under concave
transaction cost. Applied Mathematics and Computation, 174(1), 1–12.

Yan, L. (2009). Optimal portfolio selection models with uncertain returns. Editorial Board, 3(8), 76.
Yang, X. (2006). Improving portfolio efficiency: A genetic algorithm approach. Computational Economics,

28(1), 1–14.
Yang, L., Couillet, R.,&McKay,M. (2014).Minimumvariance portfolio optimizationwith robust shrinkage

covariance estimation. In Asilomar conference on signals, systems, and computers.
Yao, H., Lai, Y., & Hao, Z. (2013a). Uncertain exit time multi-period mean-variance portfolio selection

with endogenous liabilities and Markov jumps. Automatica, 49(11), 3258–3269.
Yao, H., Lai, Y., & Li, Y. (2013b). Continuous-timemean-variance asset-liability management with endoge-

nous liabilities. Insurance: Mathematics and Economics, 52(1), 6–17.
Yao, H., Zeng, Y., & Chen, S. (2013c). Multi-period mean-variance asset-liability management with uncon-

trolled cash flow and uncertain time-horizon. Economic Modelling, 30, 492–500.
Ye, K., Parpas, P., & Rustem, B. (2012). Robust portfolio optimization: A conic programming approach.

Computational Optimization and Applications, 52(2), 463–481.
Yi, L., Li, Z. F., & Li, D. (2008). Multi-period portfolio selection for asset-liability management with

uncertain investment horizon. Journal of Industrial and Management Optimization, 4(3), 535–552.
Yi, L., Wu, X., Li, X., & Cui, X. (2014). A mean-field formulation for optimal multi-period mean-variance

portfolio selection with an uncertain exit time. Operations Research Letters, 42(8), 489–494.
Yin, G., & Zhou, X. Y. (2004). Markowitz’s mean-variance portfolio selection with regime switching: From

discrete-time models to their continuous-time limits. IEEE Transactions on Automatic Control, 49(3),
349–360.

Yoshimoto, A. (1996). The mean-variance approach to portfolio optimization subject to transaction costs.
Journal of the Operations Research Society of Japan, 39(1), 99–117.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Zadeh, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1, 3–28.
Zeng, Y., & Li, Z. (2011). Asset-liability management under benchmark and mean-variance criteria in a

jump diffusion market. Journal of Systems Science and Complexity, 24(2), 317–327.
Zhang, W. G., Liu, W. A., & Wang, Y. L. (2006). On admissible efficient portfolio selection: Models and

algorithms. Applied Mathematics and Computation, 176(1), 208–218.
Zhang, W. G., & Nie, Z. K. (2003). On possibilistic variance of fuzzy numbers. Lecture Notes in Computer

Science (pp. 398–402).
Zhang,W.G.,&Nie, Z.K. (2004).On admissible efficient portfolio selection problem.Applied Mathematics

and Computation, 159(2), 357–371.
Zhang, W. G., & Wang, Y. L. (2005a). Portfolio selection: Possibilistic mean–variance model and possi-

bilistic efficient frontier. In Algorithmic applications in management (p. 203).
Zhang, W., & Wang, Y. (2005b). Using fuzzy possibilistic mean and variance in portfolio selection model.

In Computational intelligence and security (pp. 291–296).
Zhang, W. G., &Wang, Y. L. (2008). An analytic derivation of admissible efficient frontier with borrowing.

European Journal of Operational Research, 184(1), 229–243.
Zhang,W.G.,Wang, Y. L., Chen, Z. P., &Nie, Z. K. (2007). Possibilisticmean-variancemodels and efficient

frontiers for portfolio selection problem. Information Sciences, 177(13), 2787–2801.
Zhang, W. G., & Xiao, W. L. (2009). On weighted lower and upper possibilistic means and variances of

fuzzy numbers and its application in decision. Knowledge and Information Systems, 18(3), 311–330.
Zhang,W. G., Xiao,W. L., &Wang, Y. L. (2009a). A fuzzy portfolio selection method based on possibilistic

mean and variance. Soft Computing, 13(6), 627–633.
Zhang, W. G., Zhang, X. L., & Xiao, W. L. (2009b). Portfolio selection under possibilistic mean-variance

utility and a SMO algorithm. European Journal of Operational Research, 197(2), 693–700.
Zhang, W. G., Zhang, X. L., & Xu, W. J. (2010). A risk tolerance model for portfolio adjusting problem

with transaction costs based on possibilistic moments. Insurance: Mathematics and Economics, 46(3),
493–499.

Zhang, X., Zhang, W. G., & Xu, W. J. (2011). An optimization model of the portfolio adjusting problem
with fuzzy return and a SMO algorithm. Expert Systems with Applications, 38(4), 3069–3074.

Zhou, X. Y., & Li, D. (2000). Continuous-time mean-variance portfolio selection: A stochastic LQ frame-
work. Applied Mathematics and Optimization, 42(1), 19–33.

123



158 Y. Zhang et al.

Zhou, X. Y., & Yin, G. (2003). Markowitz’s mean-variance portfolio selection with regime switching: A
continuous-time model. SIAM Journal on Control and Optimization, 42(4), 1466–1482.

Zhu, S. S., Li, D., & Wang, S. Y. (2004). Risk control over bankruptcy in dynamic portfolio selection: A
generalized mean-variance formulation. IEEE Transactions on Automatic Control, 49(3), 447–457.

Zhu, H., Wang, Y., Wang, K., & Chen, Y. (2011). Particle Swarm Optimization (PSO) for the constrained
portfolio optimization problem. Expert Systems with Applications, 38(8), 10161–10169.

123


	Portfolio selection problems with Markowitz's mean–variance framework: a review of literature
	Abstract
	1 Introduction
	2 Dynamic optimization
	2.1 Embedding technique
	2.1.1 Embedding technique in discrete-time portfolio model
	2.1.2 Embedding technique in continuous-time portfolio model

	2.2 Lagrange dual method
	2.3 Mean-field method
	2.4 Time-inconsistent control
	2.5 Summary

	3 Practical factors
	3.1 Transaction costs
	3.2 MV portfolio selection under various constraints
	3.2.1 Trading rules constraints
	3.2.2 Securities constraints
	3.2.3 Market scenarios constraints
	3.2.4 Non-convex constraints

	3.3 The heuristic approach
	3.4 Summary

	4 Robust techniques
	4.1 Bayesian approach
	4.1.1 Bayesian prior portfolio
	4.1.2 Bayes–Stein shrinkage portfolio

	4.2 Global minimum variance portfolio
	4.3 Robust optimization
	4.4 Other methods reducing estimation errors
	4.5 Summary

	5 Fuzzy portfolio selection
	5.1 Possibilistic MV portfolio selection
	5.2 Credibilistic MV portfolio selection
	5.3 Fuzzy random and random fuzzy MV portfolio selection
	5.4 Other models with nonprobabilistic variables
	5.5 Summary

	6 Conclusion and future research
	Acknowledgements
	References




