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Abstract In this paper, a representation of a recurrent neural network to solve
quadratic programming problems with fuzzy parameters (FQP) is given. The moti-
vation of the paper is to design a new effective one-layer structure neural network
model for solving the FQP. As far as we know, there is not a study for the neural net-
work on the FQP. Here, we change the FQP to a bi-objective problem. Furthermore,
the bi-objective problem is reduced to a weighting problem and then the Lagrangian
dual is constructed. In addition, we consider a neural network model to solve the FQP.
Finally, some illustrative examples are given to show the effectiveness of our proposed
approach.
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1 Introduction

In this paper, we study the following FQP (quadratic programming problems with
fuzzy parameters):
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min f̃ (x) = c̃T x + 1

2
xT H̃ x,

s.t. Ãx ≤ b̃,

x ≥ 0, (1)

where H̃ is a fuzzy positive semi-definite and symmetric matrix (see Definition 3.1)
of order n×n, Ã, c̃, and b̃ are matrices of orderm×n, n×1, andm×1, respectively.
Recently,manymathematical programming topics extended in a fuzzyway.Wu (2003)
presented the fuzzy-valued Lagrangian function of fuzzy optimization problem via
the concept of fuzzy scalar (inner) product. Also, Wu (2004b) introduced a solution
concept of fuzzy optimization problems, which is essentially similar to the notion
of Pareto optimal solution (non-dominated solution) in multi-objective programming
problems, by imposing a partial ordering on the set of all fuzzy numbers.

Some real world problems and many interesting applications are classified as
quadratic programming problem such as inventory management (Abdel-Malek and
Areeractch 2007), portfolio selection (Ammar and Khalifa 2003; Wu and Liu 2012),
engineering design (Petersen and Bodson 2006), etc. These real problems have uncer-
tain and vague data that can be dealt with using fuzzy logic. Thus, the development
of methods for solving quadratic programming problem under fuzzy environment
emerges as a way of solving these kinds of problems. Some studies have been devel-
oped to solve the FQP (see Ammar and Khalifa 2003; Liu 2009; Silva et al. 2013;
Cruz et al. 2011). For solving the FQP, Ammar and Khalifa (2003) described a method
where all decision variables are non negative and the linear term in the objective func-
tion does not exist. They converted the original problem into the lower bound and the
upper boundproblems.The twoquadratic programs canbe solvedbyusing theKarush–
Kuhn–Tucker optimality conditions for each α-cut (Ammar and Khalifa 2003). The
optimal solution of the original problem, is inside of the interval formed for the optimal
solutions obtained by the lower bound and the upper bound problems. Also, Liu (2009)
transformed the FQP to a two-level mathematical programming problem for finding
the bounds of the fuzzy objective values. Then, he described how to transform the
two-level mathematical program into the conventional one-level quadratic program.
Beside, Liu (2009) converted the problem (1) into the lower bound and the upper
bound problems as well. However, the upper bound problem is a non-linear program.
Here, we reformulate the problem (1) into the bi-objective problem. Moreover, the
bi-objective problem is reduced to a weighting problem and after that the Lagrangian
dual is constructed. In addition, the dual program and then the fuzzy form of Dorn’s
dual quadratic program are provided. Then, we show that the solution of the problem
is equal to the solution of a dynamical system. We call this dynamical system as a
neural network model and apply to solve the FQP (1).

Neural networks concepts were found in 1985 by Hopfield and Tank (1985). There
exist some neural network models for solving the quadratic optimization problem
(Chen and Fang 2000; Effati and Ranjbar 2011; Effati et al. 2015; Eshaghnezhad et al.
2016. Chen and Fang (2000) presented a neural network computational scheme with
time-delay consideration for solving convex quadratic programming problems. Effati
and Ranjbar (2011) proposed a neural network for solving quadratic programming
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problems. In 2011, Effati et al. established the first fuzzy neural network. They pre-
sented a new neural network model for solving the linear programming problem. In
fact, their model solved the fuzzy shortest path and the fuzzy maximum flow prob-
lems. Also, Mansoori et al. (2016) proposed a recurrent neural network to solve the
non-linear optimization problem with fuzzy parameters.

The motivation of this paper is to design a new effective one-layer structure neural
network model for solving the FQP defined in (1). As mentioned above, there are
several neural network models to solve crisp mathematical programming problems.
This methodology is going to study the possibility of extending the existing neural
networkmodel to solve the FQP.Additionally, for showing the stability of the proposed
neural network model, we give a Lyapunov function for dynamical system. Also, we
compare our results with two other crisp neural network (Effati et al. 2015; Xia and
Wang 2000), for α = 1, i. e., when the fuzziness goes to zero.

The rest of the paper is organized as follows. Section 2 contains preliminaries.
In Sect. 3, the FQP is established. We present the neural network model in Sect. 4.
In Sect. 5, the stability condition and global convergence for the proposed neural
network are discussed. Illustrative examples are given in Sect. 6 to show the validity
and applicability of our method. Finally, Sect. 7 states a brief description about some
issues for the proposed method and findings of the paper.

2 Preliminaries

In this section, we give some preliminaries of fuzzy set theory and optimization.

2.1 Fuzzy set theory

Here, our requirements from the fuzzy set theory are presented.

Definition 2.1 (Friedman et al. 1999) A fuzzy number is a fuzzy set ũ : R → [0, 1]
with the following properties:

1. ũ is upper semi-continuous function.
2. ũ is normal, i. e., there exists an x0 ∈ R, with ũ(x0) = 1.
3. ũ is fuzzy convex, i. e., ũ((1 − λ)x + λy) ≥ min{ũ(x), ũ(y)} whenever x, y ∈ R

and λ ∈ [0, 1].
4. cl(supp ũ) = cl{x ∈ R : ũ(x) > 0} is a compact set.

The collection of all fuzzy numbers is denoted by E1. Also, the α-cut sets of a fuzzy
number ũ ∈ E1 is denoted by [u(α), u(α)], that is defined by,

ũ[α] = [u]α = [u(α), u(α)] =
{

{x ∈ R : u(x) ≥ α}, if 0 < α ≤ 1

cl(supp ũ), if α = 0.

Definition 2.2 (Friedman et al. 1999) A fuzzy number ũ is completely determined
by any pair ũ = (u, u) of functions u(α), u(α) : [0, 1] → R, defining the endpoints
of the α-cuts, satisfying the three conditions:
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1. u(α) is a boundedmonotonic increasing (non-decreasing) left-continuous function
for all α ∈ (0, 1] and right-continuous for α = 0.

2. u(α) is a boundedmonotonic decreasing (non-increasing) left-continuous function
for all α ∈ (0, 1] and right-continuous for α = 0.

3. For all α ∈ (0, 1] we have, u(α) ≤ u(α).

From Definition 2.2, a fuzzy number ũ ∈ E1 is determined by the endpoints of the
interval [u(α), u(α)]. Thus, we can identify a fuzzy number ũ with the parameterized
triple:

{(u(α), u(α), α) : α ∈ [0, 1]}.

Let Ã be anm×n fuzzy matrix, then according to the above notations, Ã = (ãi j )m×n ,
can be shown in the following form:

Ã = ({(ai j (α), ai j (α), α) : α ∈ [0, 1]})m×n .

Throughout the paper, we denote Ã by (A(α), A(α)) where,

A(α) = (ai j (α))m×n, A(α) = (ai j (α))m×n .

Definition 2.3 (Wu 2004a) Let A = [a, a] and B = [b, b] be two closed interval in
R. We note A � B, if and only if, a ≤ b and a ≤ b. Also, we write A ≺ B, if and
only if, A � B and A �= B. Equivalently, we observe that A ≺ B, if and only if,

{
a < b,

a < b,
or

{
a ≤ b,

a < b,
or

{
a < b,

a ≤ b.

Definition 2.4 (Friedman et al. 1999) A subset S of E1 is bounded from above, if
there exists a fuzzy number ṽ ∈ E1, called an upper bound of S, such that ũ ≤ ṽ for
any ũ ∈ E1. ṽ0 ∈ E1 is called the supremum of S if ṽ0 is an upper bound of S and
satisfies ṽ0 ≤ v for any upper bound ṽ of S, and we denote it as ṽ0 = supũ∈A ũ. A
lower bound and the infimum of S are defined similarly. S is said to be order bounded
if it is both bounded from above and bounded from below.

Definition 2.5 (Wu 2004a) A triangular fuzzy number is denoted by ũ = (a, b, c),
and its α-cuts is denoted by ũ[α] = [a + α(b − a), c − α(c − b)].
Definition 2.6 (Lupulescu 2009) For arbitrary fuzzy numbers ũ = [u, u], ṽ = [v, v],
the distance between ũ and ṽ is defined as follows,

d(ũ, ṽ) = sup
α∈[0,1]

dH ([u]α, [v]α), (2)

where dH is the Hausdorff distance.
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Definition 2.7 (Lupulescu 2009) The opposite of a fuzzy number ũ to be the fuzzy
number −ũ. If ũ[α] = [u(α), u(α)], then −ũ[α] = [−u(α),−u(α)]. Also,
1. (kũ)[α] = [min{ku(α), ku(α)},max{ku(α), ku(α)}], ∀k ∈ R

+.
2. (ũ + ṽ)[α] = [u(α) + v(α), u(α) + v(α)].
3. (ũ − ṽ)[α] = [u(α) − v(α), u(α) − v(α)].
4. (ũṽ)[α] = [(uv)(α), (uv)(α)], where:

(uv)(α) = min{u(α)v(α), u(α)v(α), u(α)v(α), u(α)v(α)},
(uv)(α) = max{u(α)v(α), u(α)v(α), u(α)v(α), u(α)v(α)}. (3)

Any m ∈ R can be considered as a fuzzy number m̃ in the following form:

m̃(r) =
{
1, if r = m

0, if r �= m,
(4)

and note that from Definition 2.2, we can write m̃ = (m,m). Particularly, the fuzzy
number 0̃ is defined as 0̃(r) = 1, if r = 0 and 0̃(r) = 0 otherwise.

Ã is said to be an n-dimensional fuzzy vector, if the components of Ã are composed
by n fuzzy numbers, denoted by Ã = (x̃1, x̃2, . . . , x̃n)T .

A α-level vector of fuzzy vector Ã = (x̃1, x̃2, . . . , x̃n)T is defined as,

Ã[α] = (x̃1[α], x̃2[α], . . . , x̃n[α]),

and,

A[α] = (x1[α], x2[α], . . . , xn[α]), A[α] = (x1[α], x2[α], . . . , xn[α]).

Also, for Ã = (x̃1, x̃2, . . . , x̃n)T and B̃ = (ỹ1, ỹ2, . . . , ỹn)T , we have:

Ã + B̃ = (x̃1 + ỹ1, x̃2 + ỹ2, . . . , x̃n + ỹn)
T , k Ã = (kx̃1, kx̃2, . . . , kx̃n)

T , (k ∈ R).

2.2 Fuzzy calculus

Here, our requirements from the fuzzy calculus are stated.

Definition 2.8 (Panigrahi et al. 2008) Let f̃ : Ω ⊆ R
n → E1 be a fuzzy mapping

where Ω is an open subset of R
n . We denote the α-cut of f̃ at t ∈ Ω with f̃ (t)[α] =

[ f (t, α), f (t, α)]which is a closed and bounded interval. Here, f (t, α) and f (t, α) are

real valued functions, where f (t, α) is a bounded increasing function of α and f (t, α)

is a bounded decreasing function of α. Also, for each α ∈ [0, 1], f (t, α) ≤ f (t, α).

Definition 2.9 (Panigrahi et al. 2008) Let d be the metric defined in Definition 2.6. A
fuzzy function f̃ : (a, b) → E1 is differentiable at t̂ ∈ (a, b), if there exists f̃ ′(t̂) ∈ E1,
such that the limits:
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d

(
lim

h→0+
f̃ (t̂ + h) − f̃ (t̂)

h
, f̃ ′(t̂)

)
, d

(
lim

h→0+
f̃ (t̂) − f̃ (t̂ − h)

h
, f̃ ′(t̂)

)
, (5)

exist and both equal to 0.Then f̃ ′(t̂) is called the derivative of f̃ at t̂ (Lupulescu 2009).

Theorem 2.10 (Panigrahi et al. 2008) Suppose f̃ is a fuzzy function with f̃ (t)[α] =
[ f (t, α), f (t, α)] where 0 ≤ α ≤ 1, and f̃ is differentiable according to Definition

2.9, then f (t, α) and f (t, α) are differentiable functions and we have:

f̃ ′(t)[α] = [ f ′(t, α), f ′(t, α)].

Definition 2.11 (Panigrahi et al. 2008) Let f̃ : Ω ⊆ R
n → E1 be a fuzzy mapping,

where Ω is an open subset of R
n . Let (x1, x2, . . . , xn)T ∈ Ω and ∂

∂xi
, i = 1, 2, . . . , n

stands for the partial differentiation with respect to the i-th variable xi . Assume that
for all α ∈ [0, 1], f (x, α) and f (x, α) (the α-cuts of f̃ ) have continuous partial

derivatives, such that
∂ f (x,α)

∂xi
and ∂ f (x,α)

∂xi
are continuous. Define,

∂̃ f̃ (x)

∂xi
[α] =

[
∂ f (x, α)

∂xi
,
∂ f (x, α)

∂xi

]
, i = 1, 2, . . . , n, α ∈ [0, 1]. (6)

If for each i = 1, 2, . . . , n (6) defines the α-cuts of a fuzzy number, then we will say
that f̃ is differentiable at x , and we write:

∇̃ f̃ (x) =
(

∂̃ f̃ (x)

∂x1
,
∂̃ f̃ (x)

∂x2
, . . . ,

∂̃ f̃ (x)

∂xn

)
. (7)

We call ∇̃ f̃ (x) the gradient of the fuzzy function f̃ at x (here ∇̃ stands for fuzzy
gradient of fuzzy function f̃ ).

A subset C of Ω is said to be convex, if (1 − λ)x + λy ∈ C whenever x ∈ C ,
y ∈ C , and 0 < λ < 1.

Theorem 2.12 (Wang and Wu 2003) A fuzzy mapping f̃ : C → E1 defined on a
convex subset C in Ω is convex, if and only if,

f̃ ((1 − λ)x + λy) ≤ (1 − λ) f̃ (x) + λ f̃ (y), λ ∈ [0, 1],

for every x and y in C.

A fuzzy mapping f̃ : C → E1 defined on a convex subset C in Ω is called strictly
convex if,

f̃ ((1 − λ)x + λy) < (1 − λ) f̃ (x) + λ f̃ (y), ∀x, y ∈ C, x �= y, λ ∈ (0, 1).
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According to the parametric representation of fuzzy number, a fuzzy mapping f̃ (x)
can be written as follows:

f̃ (x) = {( f (x)(α), f (x)(α), α) : α ∈ [0, 1]}.

Theorem 2.13 (Wang andWu 2003) Let C be a convex subset inΩ and f̃ : C → E1

be a fuzzy mapping, then f̃ is convex, if and only if, both of f (x)(α) and f (x)(α) are
convex functions at x for any fixed α ∈ [0, 1].
Theorem 2.14 (Wang and Wu 2003) If f̃1, f̃2,…, f̃m are convex fuzzy mappings
defined on C ⊆ Ω,λi ≥ 0 (i = 1, . . . ,m), then λ1 f̃1 + λ2 f̃2 + . . . + λm f̃m is a
convex fuzzy mappings on C.

2.3 Fuzzy optimization

Here, our requirements from the fuzzy optimization are investigated.

Definition 2.15 (Wu 2004a) Let f (x) = [ f (x), f (x)] be an interval-valued function
on Ω ⊆ R

n . We consider the following minimized problem with the interval-valued
objective function:

min f (x) = [ f (x), f (x)],
s.t. x ∈ Ω, (8)

where the feasible set Ω is assumed as a convex subset on R
n .

Definition 2.16 (Miettinen 1999) A decision vector x∗ ∈ Ω is a Pareto optimal, if
there does not exist another decision vector x ∈ Ω , such that fi (x) ≤ fi (x∗) for all
i = 1, . . . , k and f j (x) < f j (x∗) for at least one index j .

Definition 2.17 (Wu 2004a) A feasible point x∗ ∈ Ω is said to be an efficient solution
for (8), if there exists no feasible point x̄ ∈ Ω , such that f (x̄) ≺ f (x∗).

Consider the following weighting problem:

min
k∑

i=1

wi fi (x),

s.t. x ∈ Ω, (9)

where wi ≥ 0 for all i = 1, . . . , k and
k∑

i=1
wi = 1.

Theorem 2.18 (Miettinen 1999) The unique solution of weighting problem (9) is a
Pareto optimal, if the weighting coefficients are positive.
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Theorem 2.19 (Miettinen 1999) Let the multi-objective optimization problem be con-
vex. If x∗ ∈ Ω is a Pareto optimal, then there exists a weighting vector w, such that
x∗ is a solution of weighting problem (9).

Corollary 2.20 (Miettinen 1999) A point to be a properly Pareto optimal solution
of a multi-objective optimization problem, if and only if, that point is a solution of a
weighting problem with all the weighting coefficient being positive.

Consider the following bi-objective optimization problem:

min ( f (x), f (x)),

s.t. x ∈ Ω. (10)

Also, consider the weighting problem of (10) defined by:

min w1 f (x) + w2 f (x),

s.t. x ∈ Ω, (11)

where w1 and w2 are positive real numbers and w1 + w2 = 1. Based on Corollary
2.20, if x∗ is an optimal solution of problem (11), then x∗ is a Pareto optimal solution
of problem (10) and according to Definition 2.17, x∗ is an efficient solution of problem
(8).

3 Fuzzy quadratic programming problem

In this section, the FQP is presented.

Definition 3.1 (Positive semi-definite and symmetric fuzzy matrix) An n × n fuzzy
matrix Ã = ({(ai j (α), ai j (α), α) : α ∈ [0, 1]})n×n is said to be positive semi-definite

and symmetric, if for any α ∈ [0, 1], A(α) = (ai j (α))n×n and A(α) = (ai j (α))n×n

are n × n positive semi-definite and symmetric.

Theorem 3.2 Let x̄ ∈ R
n+ is a local optimal solution to the problem (1), then x̄ is a

global optimal solution of (1). Also, if f̃ is strictly convex, then x̄ is the unique global
optimal solution of (1).

Proof See “Appendix 3”. ��

Consider the FQP in (1). We can rewrite this problem as,

min f̃ (x) = c̃T x + 1

2
xT H̃ x,

s.t. Ã′x ≤ b̃′, (12)
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where Ã′ =
[
Ã

−I

]
, Ã′(α) =

⎡
⎣A(α)

A(α)

−I

⎤
⎦ and b̃′ =

[
b̃
0

]
, b̃′(α) =

⎡
⎣b(α)

b(α)

−I

⎤
⎦. Based on

Definition 2.15, we can write (12) as an interval program:

min [ f (x)(α), f (x)(α)]
s.t. [A′(α), A′(α)]x ≤ [b′(α), b′(α)],

0 ≤ α ≤ 1, (13)

or it can be written as a bi-objective problem:

min ( f (x)(α), f (x)(α))

s.t. A′(α)x ≤ b′(α),

A′(α)x ≤ b′(α),

0 ≤ α ≤ 1, (14)

where f (x)(α) = c(α)T x + 1
2 x

T H(α)x and f (x)(α) = c(α)T x + 1
2 x

T H(α)x .
According to Corollary 2.20, by reformulating (14) into a weighting problem as in
(11), we have:

min w1 f (x)(α) + w2 f (x)(α)

s.t. A′(α)x ≤ b′(α),

A′(α)x ≤ b′(α),

0 ≤ α ≤ 1, (15)

where w1 + w2 = 1. The Lagrangian of (15) is derived as:

L(x, u1, u2) = w1 f (x)(α) + w2 f (x)(α) + uT1 (A′(α)x − b′(α))

+ uT2 (A′(α)x − b′(α)), u1, u2 ≥ 0, 0 ≤ α ≤ 1.

The Lagrangian dual of (15) is given by:

max
u1,u2≥0

min
x≥0

L(x, u1, u2) = max
u1,u2≥0

min
x≥0

{
w1 f (x)(α) + w2 f (x)(α)

+ uT1 (A′(α)x − b′(α)) + uT2 (A′(α)x − b′(α))
}
. (16)

The Lagrangian dual in (16) can be written another form as (Bazaraa et al. 1979):

max w1 f (x)(α) + w2 f (x)(α) + uT1 (A′(α)x − b′(α)) + uT2 (A′(α)x − b′(α)),

s.t. w1(c(α) + H(α)x) + w2(c(α) + H(α)x) + A′(α)T u1 + A′(α)T u2 = 0,

u1, u2 ≥ 0, 0 ≤ α ≤ 1. (17)
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Thus, (17) can be as follow:

max w1

[
c(α)T x + 1

2
xT H(α)x

]
+ w2

[
c(α)T x + 1

2
xT H(α)x

]
+ uT1 (A′(α)x − b′(α)) + uT2 (A′(α)x − b′(α)),

s.t. w1
[
c(α) + H(α)x

]+ w2
[
c(α) + H(α)x

]+ A′(α)T u1 + A′(α)T u2 = 0,

u1, u2 ≥ 0, 0 ≤ α ≤ 1. (18)

From multiplying w1
[
c(α) + H(α)x

]+ w2
[
c(α) + H(α)x

]+ A′(α)T u1 + A′(α)T

u2 = 0 to x we have (w1c(α) + w2c(α))T x + (uT1 A
′(α) + uT2 A

′(α))x =
−xT (w1H(α) + w2H(α))x . Substitute this into (18), we derive the fuzzy form of
Dorn’s dual quadratic program:

max − 1

2
xT (w1H(α) + w2H(α))x − (b′(α)T u1 + b′(α)u2),

s.t. w1c(α) + w2c(α) + (w1H(α) + w2H(α))x + A′(α)T u1 + A′(α)T u2 = 0,

u1, u2 ≥ 0, 0 ≤ α ≤ 1.
(19)

Here, by using x = −(w1H(α) + w2H(α))−1(w1c(α) + w2c(α) + A′(α)T u1
+ A′(α)T u2) and substituting in (19) we get:

max
1

2
uT D(α)u + uT d(α) − 1

2
c(α)T H(α)−1c(α),

s.t. u ≥ 0, 0 ≤ α ≤ 1, (20)

where D(α) = −A′(α)H(α)−1A′(α)T , d(α) = −b′(α) − A′(α)H(α)−1c(α). Also,

A′(α) = [A′(α), A′(α)], H(α)−1 = (w1H(α) + w2H(α))−1,

b′(α) = [b′(α), b′(α)], c(α) = w1c(α) + w2c(α).

Therefore, the problem (1) is converted into the problem (20). In next section, we
propose a neural network model for solving the problem (20).

4 Neural network model

In this point of view, we propose a dynamical system for solving the problem (20) as
the following:

dαu

dt
= D(α)u + d(α), u ∈ R

2m+n+ , 0 ≤ α ≤ 1, (21)

where dα

dt means for any fixed α we have a particular dynamical system which refers
to α. The neural network model described by (21) can be easily realized by a recurrent
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u1(α)

u2(α)

...
u2m+n−1(α)

u2m+n(α)

Di1(α)

Di2(α)

Di(2m+n−1)(α)

Di(2m+n)(α)
di(α)

U(α) X(α)

Fig. 1 Architecture of the neural network (21)

neural network with a single-layer structure as shown in Fig. 1. According to Fig. 1,
the circuit realizing the proposed neural network model consists of 2m + n activation
functions, 2m+n summers, and (2m+n)2 multipliers. Also, to solve the above neural
network model we use MATLAB (ode45).

Lemma 4.1 The dynamical system in (21) is Lipschitz continuous function.

Proof For any û, ū ∈ R
2m+n+ , where û = (û1, . . . , ûn), ū = (ū1, . . . , ūn), and assume

that Gα(u) = D(α)u + d(α), 0 ≤ α ≤ 1, we have:

‖Gα(û) − Gα(ū)‖ =
∥∥∥D(α)û + d(α) − (D(α)ū + d(α))

∥∥∥
≤
∥∥∥D(α)(û − ū)

∥∥∥
≤ ‖D(α)‖

∥∥∥û − ū
∥∥∥.

Therefore, by the above notation one can consequently prove that
∥∥∥Gα(û)−Gα(ū)

∥∥∥ ≤
‖D(α)‖

∥∥∥û − ū
∥∥∥. Thus, Gα(u) = D(α)u + d(α) is Lipschitz continuous function

with constant ‖D(α)‖. Note that, Gα(·) means for any fixed α we have a particular
Gα(u) = D(α)u + d(α) which refers to α. ��

5 Stability analysis

In this section, we show that the neural network whose dynamic is described by the
differential equation (21) is stable. First, some definitions from dynamical system are
presented (Khalil 1996).

Definition 5.1 (Equilibrium point) In the following dynamical system:

ẋ = f (x(t)), x(t0) = x0 ∈ R
n, (22)

where f is a function from R
n to R

n, x∗ is called an equilibrium point of (22), if
f (x∗) = 0.
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Definition 5.2 (Stability in the sense of Lyapunov) Suppose x(t) is a solution for (22).
Equilibrium point x∗ is said to be stable in the sense of Lyapunov, if for any x0 = x(t0)
and any ε > 0, there exists a δ > 0, such that:

‖x(t) − x∗‖ < ε, ∀ t ≥ t0, ‖x(t0) − x∗‖ < δ.

Definition 5.3 (Lyapunov function) Let Ω ⊆ R
n be an open neighborhood of x∗. A

continuously differentiable function V : R
n −→ R is said to be a Lyapunov function

at the state x∗ over the set Ω for (2) if,

{
V (x∗) = 0, V (x) > 0, ∀x ∈ Ω\{x∗},
dV (x(t))

dt = ∇V (x(t))T f (x(t)) ≤ 0, ∀x ∈ Ω.

Definition 5.4 (Bazaraa et al. 1979)A function F : R
m −→ R

m is said to beLipschitz
continuous, if there exists a constant L > 0, such that ‖F(x) − F(y)‖ ≤ L‖x − y‖
for all x, y ∈ R

m .

Definition 5.5 (Asymptotic stability) An isolated equilibrium point x∗ is said to be
asymptotically stable, if in addition to being Lyapunov stable, it has the property that
x(t) → x∗ as t → ∞ for all ‖x(t0) − x∗‖ < δ.

Now, with assumption Z∗ = {u | u is the solution of (21)} �= ∅, we prove the global
convergence of (21). At first, we state basic property of (21) as follow.We assume that
Gα(u) = D(α)u + d(α).

Theorem 5.6 u∗ is the equilibrium point of (21), if and only if, u∗ ∈ Z∗ and for any
u0 = u(t0) ∈ R

2m+n there exist a unique continuous solution to Eq. (21) over [t0,∞).

Proof Without loss of generality, assume that Gα(u∗) = 0. And according to the
Lemma 4.1, Gα(u) is Lipschitz continuous. Using theorem 3.1 in Khalil (1996) the
existence and uniqueness of the solution to (21) over [t0,∞) are proved. ��

Theorem 5.7 The proposed neural dynamical system in (21) is stable in the sense of
Lyapunov and is globally convergent to the solution set of (20).

Proof By Theorem 5.6, one can see that there is a unique continuous solution to (21)
over [t0,∞). Suppose that u = u(t) is the solution of (21)with initial point u0 = u(t0).
Also, we propose the following Lyapunov function:

Vα(u) = 1

2
‖D(α)u + d(α)‖2 , u ∈ R

2m+n+ , 0 ≤ α ≤ 1,

where Vα means for any fixed α we have a particular Lyapunov function which refers
to α. For u = u∗, Vα(u∗) = 0, and Vα(u) > 0 for u �= u∗. Also, for 0 ≤ α ≤ 1, we
have:
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d

dt
Vα(u) = dVα

du

dαu

dt
= (D(α)u + d(α))T D(α)G(u)

= (D(α)u + d(α))T D(α)(D(α)u + d(α)) ≤ 0. (23)

The last inequality is verified from the fact that, Gα(u) = D(α)u + d(α) and D(α)

is a negative semi-definite matrix. Therefore, dVα(u)
dt < 0 just for u �= u∗. Thus, the

neural network (21) is stable and Vα(u) → ∞ as u → ∞. ��

6 Illustrative examples

In this section, some numerical examples are stated in order to demonstrate the validity
and applicability of our method. The codes are developed using symbolic computation
software MATLAB (ode45) and the calculations are implemented on a machine with
Intel core 7 Duo processor 2 GHz and 8 GB RAM.

Example 6.1 Consider the following FQP from Liu (2009):

min f̃ = (−6,−5,−4)x1 + (1, 1.5, 2)x2

+ 1

2

[
(4, 6, 8)x21 + (−6,−4,−2)x1x2 + (2, 4, 6)x22

]
s.t. x1 + (0.5, 1, 1.5)x2 ≤ (1, 2, 3)

(1, 2, 3)x1 + (−2,−1,−0.5)x2 ≤ (3, 4, 5)

x1, x2 ≥ 0,

According to the α-cuts of fuzzy coefficients, we have:

H(α) =
[
4 + 2α −3 + α

−3 + α 2 + 2α

]
, c(α) =

[
−6 + α

1 + 0.5α

]
, A(α) =

[
1 0.5 + 0.5α

1 + α −2 + α

]
, b(α) =

[
1 + α

2 + 2α

]
,

H(α) =
[
8 − 2α −1 − α

−1 − α 6 − 2α

]
, c(α) =

[
−4 − α

2 − 0.5α

]
, A(α) =

[
1 1.5 − 0.5α

3 − α 0.5 − 0.5α

]
, b(α) =

[
3 − α

6 − 2α

]
.

The primal and the dual solutions for various values of α,w1 = 1
3 , and w2 = 2

3 are
shown in Table 1.

One can see all simulation results demonstrate that the neural network (21)
is globally asymptotically stable. We solve this problem by letting initial point
(−3,−1.5,−0.5, 1, 2, 3). The α-cuts of f represent the possibility that the objec-
tive values will appear in the associated range. For instance, at α = 0.4, the value of
f = −1.8000 occurs at x1 = 0.7500 and x2 = 0.0000 and at α = 0.6, the value
of f = −1.8897 occurs at x1 = 0.7766 and x2 = 0.0000. Also, Fig. 2 displays the
transient behaviour of state trajectories based on (21).

In addition, the primal and the dual solutions for various values of α,w1 = 1
4 and

w2 = 3
4 are shown in Table 2.

One can see all simulation results demonstrate that the neural network (21)
is globally asymptotically stable. We solve this problem by letting initial point
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Table 1 The solution of neural network (21) for different values of α,w1 = 1
3 , and w2 = 2

3 in Example
6.1

α f x1 x2 u1 u2 u3 u4 u5 u6 CPU-time (s)

0.0 −1.6333 0.7000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.033967

0.2 −1.7146 0.7245 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3776 0.030143

0.4 −1.8000 0.7500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500 0.032257

0.5 −1.8443 0.7632 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1842 0.032965

0.6 −1.8897 0.7766 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1170 0.035451

0.8 −1.9841 0.8063 0.0062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.035251

1.0 −2.0875 0.8500 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.034296

0 1 2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

iterations

u

u1

u2

u3

u5

u6

u4

Fig. 2 Transient behaviour of the neural network (21) for α = 0.6, w1 = 1
3 , and w2 = 2

3 in Example 6.1

(3, 1.5,−0.5,−2, 2,−1). The α-cuts of f represent the possibility that the objec-
tive values will appear in the associated range. For instance, at α = 0, the value of
f = −1.4464 occurs at x1 = 0.6429 and x2 = 0.0000 and at α = 0.5, the value
of f = −1.7356 occurs at x1 = 0.7308 and x2 = 0.0000. Also, Fig. 3 displays the
transient behaviour of state trajectories based on (21).

Furthermore, we compare our neural network results for this example with some
other neural networks (for α = 1, i. e., when the fuzziness goes to zero) in the Table
3.
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Table 2 The solution of neural network (21) for different values of α, w1 = 1
4 , and w2 = 3

4 in Example
6.1

α f x1 x2 u1 u2 u3 u4 u5 u6 CPU-time (s)

0.0 −1.4464 0.6429 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7857 0.033398

0.2 −1.5559 0.6765 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6176 0.034563

0.4 −1.6735 0.7121 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4394 0.036921

0.5 −1.7356 0.7308 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3462 0.037541

0.6 −1.8000 0.7500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500 0.033642

0.8 −1.9363 0.7903 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0484 0.037241

1.0 −2.0875 0.8500 0.0500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.033003

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5
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0
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u6
u4

Fig. 3 Transient behaviour of the neural network (21) for α = 0.8, w1 = 1
4 , and w2 = 3

4 in Example 6.1

In next examples, the FQP with high dimension is investigated, and they show the
effectiveness of our method. In fact, we consider a crisp quadratic program as a FQP,
but we put the parameters, triangular and symmetric fuzzy numbers.

Example 6.2 Consider the FQP as in (1) with the following properties:

H̃ =
⎡
⎣2̃ 1̃ 1̃
1̃ 2̃ 0̃
1̃ 0̃ 2̃

⎤
⎦ , c̃ = [−4̃, 3̃,−2̃]T , b̃ = [3̃, 1̃]T , Ã =

[
3̃ −9̃ 9̃
1̃ 1̃ 2̃

]
,
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Table 3 Comparison between the neural network (21) for α = 1 and w1 = w2 = 1
2 with random initial

point and the methods in Effati et al. (2015), and Xia and Wang (2000) in Example 6.1

The method Iterations The solution CPU-time (s)

The neural network (21) 10 x∗ = (0.8500, 0.5000) 0.121

The method in Effati et al. (2015) 10 x∗ = (0.7316, 0.0655) 0.097

The method in Effati et al. (2015) 100 x∗ = (0.8500, 0.5000) 0.235

The method in Xia and Wang (2000) 10 x∗ = (0.9194, 0.1700) 0.085

The method in Xia and Wang (2000) 50 x∗ = (0.8500, 0.5000) 0.114

Table 4 The solution of neural network (21) for different values of α,w1 = 1
3 , and w2 = 2

3 in Example
6.2

α f x1 x2 x3 u1 u2 u3 u4 u5 u6 u7 CPU-time (s)

0.0 −2.5000 1.0000 0.0000 0.0000 0.0000 3.2524 0.0000 0.6667 0.0000 0.0000 4.9191 0.942597

0.2 −2.6000 1.0000 0.0000 0.0000 0.0000 3.0238 0.0000 0.4788 0.0000 0.0000 4.5026 1.014158

0.4 −2.7000 1.0000 0.0000 0.0000 0.0000 2.6399 0.0000 0.3400 0.0000 0.0000 3.9800 1.067926

0.5 −2.7500 1.0000 0.0000 0.0000 0.0000 2.4397 0.0000 0.2979 0.0000 0.0000 3.7376 0.109297

0.6 −2.8000 1.0000 0.0000 0.0000 0.0000 2.3247 0.0000 0.2418 0.0000 0.0000 3.6759 1.011527

0.8 −2.9000 1.0000 0.0000 0.0000 0.0000 2.2499 0.0000 0.1578 0.0000 0.0000 3.4211 0.968638

1.0 −3.0000 1.0000 0.0000 0.0000 0.0000 2.0000 0.0000 0.0000 0.0000 0.0000 3.0000 0.146410

where,

2̃ = (1, 2, 3), − 2̃ = (−3,−2,−1), 3̃ = (2, 3, 4), 1̃ = (0, 1, 2),

−4̃ = (−5,−4,−3), − 9̃ = (−10,−9,−8), 9̃ = (8, 9, 10).

The primal and the dual solutions for various values of α,w1 = 1
3 , and w2 = 2

3 are
shown in Table 4. The optimal solution of the problem for α = 1 is x∗ = (1, 0, 0).
One can see all simulation results demonstrate that the neural network (21) is globally
asymptotically stable. Theα-cuts of f represent the possibility that the objective values
will appear in the associated range. Also, Figs. 4 and 5 display the transient behaviour
of state trajectories based on (21).

Moreover, we compare our neural network results for this example with some other
neural networks (for α = 1, i. e., when the fuzziness goes to zero) in Table 5.

Example 6.3 Consider the FQP as in (1) with the following properties:

H̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2̃ 1̃ 0̃ 0̃ . . . 0̃ 0̃
1̃ 2̃ 1̃ 0̃ . . . 0̃ 0̃
0̃ 1̃ 2̃ 1̃ . . . 0̃ 0̃
...

. . .
. . .

. . .
...

0̃ 0̃ . . . 1̃ 2̃ 1̃ 0̃
0̃ 0̃ . . . 0̃ 1̃ 2̃ 1̃
0̃ 0̃ . . . 0̃ 0̃ 1̃ 2̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×10

, c̃ = [−1̃, 4̃,−1̃, 1̃, 0̃, 0̃, 1̃, 0̃, 1̃, 0̃]T ,
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Fig. 4 Transient behaviour of the neural network (21) for α = 0.5, w1 = 1
3 , and w2 = 2

3 in Example 6.2

b̃ = [3̃, 1̃, 2̃]T , Ã =
⎡
⎣ 1̃ −1̃ −1̃ 1̃ −1̃ 1̃ 0̃ 1̃ 1̃ −1̃

0̃ 1̃ 0̃ 1̃ 0̃ 1̃ 1̃ 1̃ 1̃ 0̃
−1̃ 1̃ −1̃ 1̃ 0̃ 1̃ 1̃ 0̃ 1̃ 0̃

⎤
⎦ ,

where,

2̃ = (1, 2, 3), 1̃ = (0, 1, 2), −1̃ = (−2,−1, 1), 3̃ = (2, 3, 4), 4̃ = (3, 4, 5).

The optimal solution of the problem for various values of α are shown in Table 6.
The optimal solution of the problem for α = 1 is x∗ = [0.5, 0, 0.5, 0, 0, 0, 0, 0,

0, 0]T . One can see all simulation results demonstrate that the neural network (21)
is globally asymptotically stable. We solve this problem by letting initial point
(−4,−1, 2, 0, 1, 2,−1, 5,−3, 0, 1, 3, 1, 7, 6, 0). The α-cuts of f represent the possi-
bility that the objective values will appear in the associated range. Also, Figs. 6 and 7
display the transient behaviour of state trajectories based on (21).

Example 6.4 Consider the following FQP:

min f̃ (x) = c̃T x + 1

2
xT H̃ x,

s.t. 1̃xi ≤ 1̃,
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Fig. 5 Transient behaviour of the neural network (21) for α = 1, w1 = 1
4 , and w2 = 3

4 in Example 6.2

Table 5 Comparison between the neural network (21) for α = 1, w1 = 1
3 , and w2 = 2

3 with random
initial point and the methods in Effati et al. (2015), and Xia and Wang (2000) in Example 6.2

The method Iterations The solution CPU-time (s)

The neural network (21) 50 x∗ = (1, 0, 0) 0.179

The method in Effati et al. (2015) 50 x∗ = (0.9942, 0.0013, 0.0032) 0.400

The method in Effati et al. (2015) 100 x∗ = (1, 0, 0) 0.872

The method in Xia and Wang (2000) 50 x∗ = (1.0668, 0.0219,−0.0005) 0.050

The method in Xia and Wang (2000) 110 x∗ = (1, 0, 0) 0.198

Table 6 The solutions of neural network method for various values of α with different w1 and w2 for
Example 6.3

α 0.0 0.2 0.4 0.5 0.6 0.8 1.0 CPU-
time (s)

f with w1 = 1
3 , w2 = 2

3 −0.1666 −0.2121 −0.2666 −0.2976 −0.3313 −0.4083 −0.5 1.6113

f with w1 = 1
4 , w2 = 3

4 −0.0833 −0.1285 −0.1884 −0.2249 −0.2666 −0.3681 −0.5 1.9132
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Fig. 6 Transient behaviour of the neural network (21) for α = 0.4, w1 = 1
3 , and w2 = 2

3 in Example 6.3

xi ≥ 0, i = 1, 2, . . . , n

where,

H̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1̃ 2̃ 2̃ 2̃ 2̃ . . . 2̃
2̃ 5̃ 6̃ 6̃ 6̃ . . . 6̃
2̃ 6̃ 9̃ 1̃0 1̃0 . . . 1̃0
2̃ 6̃ 1̃0 1̃3 1̃4 . . . 1̃4
2̃ 6̃ 1̃0 1̃4 1̃7 1̃8
...

...
...

...
. . .

...

2̃ 6̃ 1̃0 1̃4 1̃8 . . . 4̃n − 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×n

, c̃ =

⎡
⎢⎢⎢⎢⎢⎣

−1̃
−1̃
−1̃
...

−1̃

⎤
⎥⎥⎥⎥⎥⎦
n×1

.

We consider all fuzzy parameters as a triangular and symmetric fuzzy numbers, i. e.,
ã = (a − 1, a, a + 1). The problem is solved for n = 25 and n = 35. One can see all
simulation results demonstrate that the neural network (21) is globally asymptotically
stable.We solve this problemby letting random initial point. Also, Figs. 8 and 9 display
the transient behaviour of state trajectories based on (21).
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Fig. 7 Transient behaviour of the neural network (21) for α = 1, w1 = 1
4 , and w2 = 3

4 in Example 6.3
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Fig. 8 Transient behaviour of the neural network (21) for α = 1, n = 25, and w1 = w2 = 1
2 in Example

6.4
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Fig. 9 Transient behaviour of the neural network (21) for α = 0.5, n = 35, w1 = 1
4 , and w2 = 3

4 in
Example 6.4

Example 6.5 Consider the following quadratic programming problem with fuzzy
coefficients in the linear term from Silva et al. (2013):

min (−6,−5,−4)x1 + (1, 1.5, 2)x2 + 2x21 − 2x1x2 + x22 ,

s.t. x1 + x2 ≤ 2,

2x1 − x2 ≤ 4

x1, x2 ≥ 0.

The optimal solution of the crisp problem is x∗ = (1.45, 0.55) and the value of
the objective function is −3.5125. We apply the neural network (21) for the case
that α = 1 and w1 = w2 = 1

2 . Figure 10 displays the transient behaviour of state
trajectories based on (21) with many random initial points.

Also, Fig. 11 displays the transient behaviour of state trajectories based on (21)
with many random initial points, α = 0.2, w1 = 1

3 , and w2 = 2
3 .

7 Discussion and conclusion

In this section, we provide a brief description about some issues for the proposed
method and findings of the paper.

In this paper, a neural network model to solve the FQP was proposed. We solved
the proposed dynamical system by ODE method. Recently, many neural network
models are proposed for solving mathematical programming problems. As we state
before, there exist some approaches for solving the FQP. For instance, Ammar and
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Fig. 10 Transient behaviour of the neural network (21) for α = 1 and w1 = w2 = 1
2 in Example 6.5
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Fig. 11 Transient behaviour of the neural network (21) for α = 0.2, w1 = 1
3 , and w2 = 2

3 in Example
6.5

Khalifa (2003) studied the FQP where all decision variables are non negative and
the linear term in the objective function does not exist. Also, Liu (2009) discussed
a FQP problem as a two-level mathematical programming problem for finding the
bounds of the fuzzy objective values. However, in this paper, we solved the FQP by
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Table 7 The solutions of neural network method with different w1 and w2 and the Liu’s 2009 method for
Example 6.1

α 0.0 0.2 0.4 0.5 0.6 0.8 1.0 CPU-time (s)

f U in Liu’s
method Liu
(2009)

−1.00 −1.16 −1.34 −1.45 −1.56 −1.80 −2.09 0.055

f L in Liu’s
method Liu
(2009)

−10.08 −6.72 −4.46 −3.67 −3.14 −2.49 −2.09 0.050

f in this paper
with w1 =
1
3 , w2 = 2

3

−1.6333 −1.7146 −1.8000 −1.8443 −1.8897 −1.9841 −2.0875 0.034

f in this paper
with w1 =
1
4 , w2 = 3

4

−1.4464 −1.5559 −1.6735 −1.7356 −1.8000 −1.9363 −2.0875 0.033

reformulating into aweighting problem.Also, we used some reformulated problems in
order to get the Lagrangian dual and the Dorn dual of the FQP. Additionally, by using
these transformations, we found both the primal and the dual solutions of the original
problem. On the convergence analysis and stability side, we prove some results about
the global convergence of the proposed neural network. Table 7 shows the solutions
of Liu’s (2009) method and the method which discussed in this paper.

Based on theTable 7, our solutions are feasible.Because the solutionswhich provide
from the neural network method are in the range of the solutions which provided from
the Liu’s (2009) method. Indeed, in Liu’s method both upper and lower problems
must be solved whereas, in neural network method just an ODE must be solved. Also,
in Liu’s method the upper bound problem is a non-linear problem. On the network
side, the neural network model has a single-layer structure. Computational results
showed that the proposed neural network model is effective for solving the FQP in
high dimension. Furthermore, in the neural networkmethod,wehave not this limitation
that whether we choose the initial point from outside of the convergence region or not
and of course, we obtain the unique solution of the problem. In fact, the neural network
method does not depend on the initial point. The reason is that our model is globally
convergent to the optimal solution of the problem. Thus, we can say that if the model
is globally convergent then the trajectories behaviour of the solution for all starting
initial points are convergent. Also, we compared our results (for α = 1, i. e., when
the fuzziness goes to zero) with some other crisp neural networks (Effati et al. 2015;
Xia and Wang 2000). The results were reported in the Tables 3 and 5. It can be seen
that, the proposed neural network after less iterations than the other neural networks
obtained the optimal solution. Finally, the works are in progress to extend the other
neural network models to solve fuzzy non-linear programming problems and to solve
the FQP with fuzzy relations in the constraints.

Acknowledgements The authors wish to express our special thanks to the anonymous referees and editor
for their valuable suggestions.
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Appendix 1: Some results on fuzzy calculus

Lemma 7.1 Let f̃ , g̃ be convex fuzzy mappings defined on C ⊆ Ω , and int C �= ∅,
then,

∂̃(λ f̃ )(x) = λ∂̃ f̃ (x), (λ > 0), ∂̃( f̃ + g̃)(x) = ∂̃ f̃ (x) + ∂̃ g̃(x).

Proof FromTheorem2.14,λ f̃ and f̃ +g̃ are convex fuzzymapping. The completeness
of the proof follows from theorem 23.8 in Zhong and Shi (2002). ��
Theorem 7.2 Let f̃ , g̃ be convex fuzzy mappings defined on C ⊆ Ω , and int C �= ∅,
if f̃ , g̃ are differential at x∗, then λ f̃ (λ > 0) and f̃ + g̃ are also differential at x∗,
i. e.,

∇̃(λ f̃ )(x∗) = λ∇̃ f̃ (x∗), ∇̃( f̃ + g̃)(x∗) = ∇̃ f̃ (x∗) + ∇̃ g̃(x∗).

Proof FromTheorem 2.14, λ f̃ and f̃ + g̃ are convex fuzzymapping. Using Definition
2.11 and Lemma 7.1, the proof is trivial. ��

Appendix 2: Some results on FQP

Lemma 7.3 If fuzzy matrix H̃ , is positive semi-definite and symmetric, x ∈ R
n+, then

xT H̃ x is a fuzzy number and,

xT H̃ x =
⎛
⎝
⎧⎨
⎩
⎛
⎝ n∑

i, j=1

xi x j hi j (α),

n∑
i, j=1

xi x j hi j (α), α

⎞
⎠ : α ∈ [0, 1]

⎫⎬
⎭
⎞
⎠

n×n

= ({(xT H(α)x, xT H(α)x, α) : α ∈ [0, 1])})n×n, (24)

where x = (x1, x2, . . . , xn)T , H̃ = ({(hi j (α), hi j (α), α) : α ∈ [0, 1]})n×n.

Proof The proof follows from Definition 3.1. ��
Lemma 7.4 Let fuzzy matrix H̃ be positive semi-definite and symmetric, x ∈ R

n+,
then h̃(x) = xT H̃ x is a convex fuzzy mapping.

Proof The proof follows from Definition 3.1, Theorem 2.13, and Lemma 7.3. ��
Now, consider the FQP defined in (1). Here, we are going to prove some results for

the FQP.

Lemma 7.5 Let fuzzy matrix H̃ be a positive semi-definite and symmetric, then
f̃ (x) = c̃T x + 1

2 x
T H̃ x in (1) is a convex fuzzy mapping.

Proof Since x ≥ 0, c̃T x is a convex fuzzy mapping. Using Lemma 7.4 and Theorem
2.14, the proof is complete. ��
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Remark 7.6 Since in FQP (1), f̃ (x) is a convex fuzzy mapping and T = {x : x ≥
0, Ãx ≤ b̃} is a convex feasible set, so FQP (1) is a convex fuzzy programming.

Remark 7.7 As in crisp programming problem,we say a fuzzy programming is convex
if both objective function and the region solution are convex.

Lemma 7.8 The fuzzy mapping f̃ (x) = c̃T x + 1
2 x

T H̃ x is differentiable on int R
n+

and,

∇̃ f̃ (x) = c̃ + H̃ x . (25)

Proof The proof follows from Theorem 7.2 and Lemma 7.5. ��

Appendix 3: Proof of Theorem 3.2

Proof Since x̄ is a local optimal solution, there exists a neighborhood N (x̄) around
x̄ , such that:

f̃ (x̄) ≤ f̃ (x), ∀ x ∈ N (x̄).

i.e., according to the Definition 2.3, we get,

f (x̄)(α) ≤ f (x)(α), f (x̄)(α) ≤ f (x)(α), 0 ≤ α ≤ 1. (26)

By contradiction, suppose that x̄ is not a global optimal solution, so that f̃ (x∗) < f̃ (x̄)
for some x∗ ∈ T , where T = {x : x ≥ 0, Ãx ≤ b̃} is the feasible set. In other words,
we have:

f (x∗)(α) ≤ f (x̄)(α), f (x∗)(α) ≤ f (x̄)(α), 0 ≤ α ≤ 1.

From the convexity of f̃ for all λ ∈ (0, 1), we have:

f (λx∗ + (1 − λ)x̄)(α) ≤ λ f (x∗)(α) + (1 − λ) f (x̄)(α)

≤ λ f (x̄)(α) + (1 − λ) f (x̄)(α) = f (x̄)(α),

f (λx∗ + (1 − λ)x̄)(α) ≤ λ f (x∗)(α) + (1 − λ) f (x̄)(α)

≤ λ f (x̄)(α) + (1 − λ) f (x̄)(α) = f (x̄)(α).

But for λ > 0 and sufficiently small, λx∗ + (1 − λ)x̄ ∈ N (x̄). Hence, the above
inequalities contradict with (26), this leads to the conclusion that x̄ is a global optimal
solution. Suppose that x̄ is not the unique global optimal solution, so that there exists
a x̂ ∈ T, x̂ �= x̄ , such that f̃ (x̂) = f̃ (x̄), i. e.,

f (x̂)(α) = f (x̄)(α), f (x̂)(α) = f (x̄)(α), 0 ≤ α ≤ 1.
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By the strict convexity,

f (
1

2
x̂ + 1

2
x̄)(α) <

1

2
f (x̂)(α) + 1

2
f (x̄)(α) = f (x̄)(α),

f (
1

2
x̂ + 1

2
x̄)(α) <

1

2
f (x̂)(α) + 1

2
f (x̄)(α) = f (x̄)(α).

By the convexity of T, 1
2 x̂ + 1

2 x̄ ∈ T , and the above inequalities violate global opti-
mality of x̄ . Hence, x̄ is the unique global minimum. ��
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