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Abstract This paper first presents a tool of uncertain partial differential equation,
which is a type of partial differential equations driven by Liu processes. As an appli-
cation of uncertain partial differential equation, uncertain heat equation whose noise
of heat source is described by Liu process is investigated. Moreover, the analytic solu-
tion of uncertain heat equation is derived and the inverse uncertainty distribution of
solution is explored. This paper also presents a paradox of stochastic heat equation.

Keywords Uncertainty theory · Uncertain process · Partial differential equation ·
Heat equation

1 Introduction

Partial differential equation plays an important role in mathematics. As an old subject
of partial differential equation, heat equation describes the variation of temperature in
a given region over time. The study of heat equation was pioneered by Fourier (1878)
in his famous book The Analysis Theory of Heat. This work makes heat equation hold
an exciting and special position in the theory of partial differential equation.
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However, heat source is often affected by the interference of noise in practice. For
this reason, Walsh (1986) initiated stochastic heat equation driven by Wiener process.
Following that, stochastic heat equation was studied by many researchers such as
Chow (1989), Peter (1992), and Peszat and Zabczyk (1997). But, is it reasonable to
describe real heat conduction process via stochastic heat equation? Section 8will show
that it is unreasonable for stochastic heat equation to model real heat conduction. This
fact motives us to present an uncertain heat equation driven by Liu process.

Liu process was designed by Liu (2009) as a counterpart of Wiener process to deal
with white noise. It is a Lipschitz continuous uncertain process with stationary and
independent normal increments. Uncertain differential equation, a type of differential
equations driven by Liu processes, was first studied in 2008 by Liu (2008). After that,
Chen andLiu (2010) proved the existence anduniqueness theorem for the solution of an
uncertain differential equation under linear growth condition and Lipschitz continuous
condition. More importantly, Yao and Chen (2013) proved that the solution of an
uncertain differential equation canbe represented by a spectrumof ordinary differential
equations. Nowadays, uncertain differential equation has been widely applied in many
fields such as uncertain finance (Liu 2013), uncertain optimal control (Zhu 2010), and
uncertain differential game (Yang and Gao 2013, 2015).

This paper will present the tool of uncertain partial differential equation driven by
Liu process and investigate uncertain heat equation. For an uncertain heat equation,
the solution and inverse uncertainty distribution of solution will be derived. The rest of
the paper is arranged as follows. Section 2 reviews some basic concepts and theorems
in uncertainty theory. Section 3 defines uncertain partial differential equation. Sec-
tion 4 derives the Cauchy problem for the uncertain heat equation. Section 5 obtains
the analytic solution of Cauchy problem for the uncertain heat equation. Section 6
presents the inverse uncertainty distribution of solution of Cauchy problem for the
uncertain heat equation. Section 7 introduces some special uncertain partial differen-
tial equations. Section 8 introduces a paradox of stochastic heat equation that shows
it is unreasonable for the real heat conduction to follow any stochastic heat equation.
At last, a brief summary is given in Sect. 9.

2 Uncertainty theory

Uncertainty theory is a new mathematics theory based on normality, duality, subad-
ditivity and product axioms. It was established by Liu (2007) and perfected by Liu
(2009) to model human belief degree. In this section, we introduce some fundamental
concepts and properties in uncertainty theory including uncertain variable, uncertain
process and uncertain field.

Definition 1 (Liu 2007) Let L be a σ -algebra on a nonempty set Γ . A set function
M : L → [0, 1] is called an uncertain measure if it satisfies the following axioms:

Axiom 1. (Normality Axiom) M{Γ } = 1 for the universal set Γ ;
Axiom 2. (Duality Axiom) M{Λ} + M{Λc} = 1 for any event Λ;
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Axiom 3. (Subadditivity Axiom) For every countable sequence of events
Λ1,Λ2,. . ., we have

M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M{Λi }.

Besides, in order to provide the operational law, Liu (2009) defined the product
uncertain measure on the product σ -algebre L as follows.
Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . . .
The product uncertain measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.
An uncertain variable ξ is a measurable function from an uncertainty space

(Γ,L,M) to the set of real numbers. In order to describe uncertain variable in prac-
tice, uncertainty distribution Φ : � → [0, 1] of an uncertain variable ξ is defined as
Φ(x) = M {ξ ≤ x}. An uncertainty distribution Φ(x) is said to be regular if it is a
continuous and strictly increasing function with respect to x at which 0 < Φ(x) < 1,
and

lim
x→−∞ Φ(x) = 0, lim

x→+∞ Φ(x) = 1.

If ξ is an uncertain variable with regular uncertainty distribution Φ(x), then we call
the inverse function Φ−1(α) the inverse uncertainty distribution of ξ . The uncertain
variables ξ1, ξ2, . . . , ξm are said to be independent if

M

{
m⋂
i=1

(ξi ∈ Bi )

}
=

m∧
i=1

M {ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bm of real numbers.
An uncertain process is essentially a sequence of uncertain variables indexed by

time for modeling the evolution of uncertain phenomena.

Definition 2 (Liu 2008) Let T be a totally ordered set and let (Γ,L,M) be an uncer-
tainty space. An uncertain process is a function Xt (γ ) from T × (Γ,L,M) to the set
of real numbers such that {Xt ∈ B} is an event for any Borel set B of real numbers at
each time t .

An uncertain process Xt is said to have independent increments if Xt0 , Xt1 −
Xt0 , Xt2 − Xt1 , . . . , Xtk − Xtk−1 are independent uncertain variables where t0 is the
initial time and t1, t2, . . ., tk are any times with t0 < t1 < . . . < tk . An uncertain
process Xt is said to have stationary increments if, for any given t > 0, the increments
Xs+t − Xs are identically distributed uncertain variables for all s > 0.
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Definition 3 (Liu 2009) An uncertain process Ct is said to be a canonical Liu process
if

(i) C0 = 0 and almost all sample paths are Lipschitz continuous;
(ii) Ct has stationary and independent increments;
(iii) every increment Cs+t − Cs is a normal uncertain variable with an uncertainty

distribution

Φ(x) =
(
1 + exp

(−πx√
3t

))−1

, x ∈ �.

Theorem 1 (Liu 2015) Let Ct be a canonical Liu process. Then for each time t > 0,
the ratio Ct/t is a normal uncertain variable with expected value 0 and variance 1.
That is,

Ct

t
∼ N (0, 1)

for any t > 0.

In order to deal with the integration and differentiation with respect to a canonical
Liu process, the Liu integral was defined as follows.

Definition 4 (Liu 2009) Let Xt be an uncertain process and let Ct be a canonical Liu
process. For any partition of closed interval [a, b]with a = t1 < t2 < . . . < tk+1 = b,
the mesh is written as

Δ = max
1≤i≤k

|ti+1 − ti |.

Then the Liu integral of Xt with respect to Ct is defined as

∫ b

a
XtdCt = lim

Δ→0

k∑
i=1

Xti · (Cti+1 − Cti )

provided that the limit exists almost surely and is finite. In this case, the uncertain
process Xt is said to be Liu integrable.

Definition 5 (Chen and Ralescu 2013) Let Ct be a canonical Liu process and let Zt

be an uncertain process. If there exist two uncertain processes μt and σt such that

Zt = Z0 +
∫ t

0
μsds +

∫ t

0
σsdCs

for any t ≥ 0, then Zt is called aLiuprocesswith driftμt anddiffusionσt . Furthermore,
Zt has an uncertain differential

dZt = μtdt + σtdCt .
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Theorem 2 (Liu 2009) Let h(t, c) be a continuously differentiable function. Then
Zt = h(t,Ct ) is a Liu process and has an uncertain differential

dZt = ∂h

∂t
(t,Ct )dt + ∂h

∂c
(t,Ct )dCt .

Uncertain field is a generalization of uncertain process when the index set T
becomes a partially ordered set (e.g. time× space, or surface). A formal definition
is given below.

Definition 6 (Liu 2014) Let T be a partially ordered set and let (Γ,L,M) be an
uncertainty space. An uncertain field is a function Xt (γ ) from T × (Γ,L,M) to the
set of real numbers such that {Xt ∈ B} is an event for any Borel set B of real numbers
at each t .

In order to describe uncertain field, Gao and Chen (2016) proposed the concepts of
uncertainty distribution and inverse uncertainty distribution.

Definition 7 (Gao and Chen 2016) An uncertain field Xt is said to have an uncertainty
distributionΦt (x) if for each t , the uncertain variable Xt has an uncertainty distribution
Φt (x).

An uncertainty distribution Φt (x) of uncertain field Xt is said to be regular if for
any t , it is a continuous and strictly increasing function with respect to x such that
0 < Φt (x) < 1, and

lim
x→−∞ Φt (x) = 0, lim

x→+∞ Φt (x) = 1.

If Xt is an uncertain field with regular uncertainty distribution Φt (x), we call the
inverse function Φ−1

t (α) the inverse uncertainty distribution of ξ .

3 Uncertain partial differential equation

In this section, we propose the tool of uncertain partial differential equation, and give
some examples.

Definition 8 Suppose Ct is a canonical Liu process, and F is a function. Then

F

(
t, x1, . . . , xn, u,

∂u

∂t
,

∂u

∂x1
, . . . ,

∂u

∂xn
,
∂2u

∂x21
, . . . ,

∂2u

∂x1∂xn
, . . . , Ċt

)
= 0 (1)

is called an uncertain partial differential equation, where

Ċt := dCt

dt
.

A solution is an uncertain field u(t, x1, x2, . . . , xn) that satisfies the Eq. (1) identically.
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The order of the highest derivatives of Eq. (1) is called the order of uncertain partial
differential equation.

Example 1 The partial differential equation

∂u

∂t
= t + x + Ċt

is a first-order uncertain partial differential equation. And it has a solution

u(t, x) = 1

2
t2 + t x + Ct + f (x)

where f (x) is an arbitrary function.

Example 2 The partial differential equation

∂u

∂t
+ ∂u

∂x
= x + t + Ċt

is a first-order uncertain partial differential equation. And it has a solution

u(t, x) = xt + Ct + u(0, 0).

Example 3 The partial differential equation

∂u

∂t
− ∂2u

∂x2
= −6x + Ċt

is a second-order uncertain partial differential equation. And it has a solution

u(t, x) = x3 + Ct + u(0, 0).

Example 4 The partial differential equation

∂2u

∂t2
− ∂2u

∂x2
= −2 + exp(Ct )Ċt

is a second-order uncertain partial differential equation. And it has a solution

u(t, x) = x2 +
∫ t

0
exp(Cs)ds + u(0, 0).

Example 5 The partial differential equation

∂2u

∂x2
= Ċt
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is a second-order uncertain partial differential equation. And it has a solution

u(t, x) = 1

2
x2Ċt + u(0, 0).

4 Uncertain heat equation

In this section, we investigate the heat conduction over an infinitesimally-thin wire of
infinite length. Let u(t, x) denote the temperature of the wire at point x ∈ � and at
time t > 0. There is a fluctuating heat source q̃(t, x, Ċt ) with a disturbance (or white
noise) that is denoted by Ċt .

By Fourier’s law, the rate of flow of heat energy per unit length is proportional to
the negative temperature gradient,

−k
∂u

∂x
(t, x)

where k is the thermal conductivity. So the change in internal energy in the interval
[x − Δx, x + Δx] during the period [t − Δt, t + Δt] is

k
∫ t+Δt

t−Δt

(
∂u

∂x
(s, x + Δx) − ∂u

∂x
(s, x − Δx)

)
ds = k

∫ t+Δt

t−Δt

∫ x+Δx

x−Δx

∂2u

∂y2
(s, y)dyds.

The total heat from uncertain fluctuating heat source in the interval [x −Δx, x +Δx]
during the period [t − Δt, t + Δt] is

∫ t+Δt

t−Δt

∫ x+Δx

x−Δx
q̃
(
s, y, Ċt

)
dyds.

Note that the change of energy is proportional to the change in temperature, i.e.,
ΔQ = cρρΔu, where cρ is the specific heat capacity, ρ is the mass density of the
material. The change of energy in the interval [x −Δx, x +Δx] of the material during
the period [t − Δt, t + Δt] is

cρρ

∫ x+Δx

x−Δx
u(t + Δt, y) − u(t − Δt, y)dy = cρρ

∫ x+Δx

x−Δx

∫ t+Δt

t−Δt

∂u

∂s
(s, y)dsdy.

By conservation of energy,

k
∫ t+Δt

t−Δt

∫ x+Δx

x−Δx

∂2u

∂y2
(s, y)dyds +

∫ t+Δt

t−Δt

∫ x+Δx

x−Δx
q̃
(
s, y, Ċt

)
dyds

= cρρ

∫ x+Δx

x−Δx

∫ t+Δt

t−Δt

∂u

∂s
(s, y)dsdy.
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Then we have

∂u

∂t
(t, x) = k

cρρ

∂2u

∂x2
(t, x) + 1

cρρ
q̃
(
t, x, Ċt

)
.

Let

a2 = k

cρρ
, q(t, x, Ċt ) = 1

cρρ
q̃(t, x, Ċt ).

Then the uncertain heat equation can be expressed by an uncertain partial differential
equation ⎧⎨

⎩
∂u

∂t
= a2

∂2u

∂x2
+ q(t, x, Ċt ), t > 0, x ∈ �,

u(0, x) = ϕ(x), x ∈ �
(2)

where ϕ(x) is a given initial temperature at the initial time t = 0. This problem is
called a Cauchy problem for uncertain heat equation.

For each γ ∈ Γ , the uncertain heat Eq. (2) degenerates to a normal heat equation

⎧⎨
⎩

∂u

∂t
(t, x, γ ) = a2

∂2u

∂x2
(t, x, γ ) + q

(
t, x, Ċt (γ )

)
, t > 0, x ∈ �,

u(0, x, γ ) = ϕ(x), x ∈ �, γ ∈ Γ

(3)

whose solution is

u(t, x, γ ) =
∫ +∞

−∞
K (t, x−y)ϕ(y)dy+

∫ t

0

∫ +∞

−∞
K (t−s, x−y)q(s, y, Ċs(γ ))dyds

where

K (t, x) = 1

2a
√

π t
exp

(
− x2

4a2t

)
.

Example 6 Assume the heat source is Ċt . Then the partial differential equation

⎧⎨
⎩

∂u

∂t
= ∂2u

∂x2
+ Ċt , t > 0, x ∈ �,

u(0, x) = 0, x ∈ �
(4)

is an uncertain heat equation.

Example 7 Assume the heat source is sin x · e−t + Ċt . Then the partial differential
equation ⎧⎨

⎩
∂u

∂t
= ∂2u

∂x2
+ sin x · e−t + Ċt , t > 0, x ∈ �,

u(0, x) = sin x, x ∈ �
(5)

is an uncertain heat equation.
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Example 8 Assume the heat source is −e−t Ċt . Then the partial differential equation

⎧⎨
⎩

∂u

∂t
= ∂2u

∂x2
− e−t Ċt , t > 0, x ∈ �,

u(0, x) = 0, x ∈ �
(6)

is an uncertain heat equation.

Example 9 Assume the heat source is (sin x + 1)Ċt . Then the partial differential
equation ⎧⎨

⎩
∂u

∂t
= ∂2u

∂x2
+ (sin x + 1)Ċt , t > 0, x ∈ �,

u(0, x) = 0, x ∈ �
(7)

is an uncertain heat equation.

5 Solution of uncertain heat equation

In this section, we give the solution of Cauchy problem for uncertain heat Eq. (2).
Write

Cb(�) = { f : � → �| f is a continuous and bounded function,}
C1,2,1
b (�+ × � × �)

=
{
f (t, x, c) : �+ × � × � → �

∣∣∣ f, ∂ f

∂t
,
∂ f

∂x
,
∂2 f

∂x2
,
∂ f

∂c
∈ Cb(�+ ×�× �)

}
.

Theorem 3 If ϕ(x) ∈ Cb(�) and q(t, x, c) ∈ C1,2,1
b (�+×�×�), then the uncertain

field

u(t, x) =
∫ +∞

−∞
K (t, x− y)ϕ(y)dy+

∫ t

0

∫ +∞

−∞
K (t−s, x− y)q(s, y, Ċs)dyds (8)

is a solution of uncertain heat Eq. (2).

Proof Wefirst prove that u(t, x) satisfies the initial condition. Since ϕ(x) is a bounded
function on �, there exists a positive constant N such that |ϕ(x)| ≤ N . Then, we get

∣∣∣∣
∫ +∞

−∞
K (t, x − y)ϕ(y)dy

∣∣∣∣
≤ N

∫ +∞

−∞
K (t, x − y)dy

≤ N
∫ +∞

−∞
1

2a
√

π t
exp

(
− (x − y)2

4a2t

)
dy

= N ,
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that is, the integral ∫ +∞

−∞
K (t, x − y)ϕ(y)dy

is uniformly convergent with respect to x and t . Therefore,

lim
t→0+ u(t, x) = lim

t→0+

∫ +∞

−∞
K (t, x − y)ϕ(y)dy

= lim
t→0+

∫ +∞

−∞
1

2a
√

π t
exp

(
− (x − y)2

4a2t

)
ϕ(y)dy

= lim
t→0+

∫ +∞

−∞
1√
π
exp

(
−z2

)
ϕ(x + 2a

√
t z)dz

=
∫ +∞

−∞
lim
t→0+

[
1√
π
exp

(
−z2

)
ϕ(x + 2a

√
t z)

]
dz

=
∫ +∞

−∞
1√
π
exp

(
−z2

)
ϕ(x)dz

= ϕ(x).

Next we prove that u(t, x) satisfies Eq. (2). Since the function K (t, x) is infinitely
differentiable with uniformly bounded derivatives of all orders on � × [δ,+∞) for
each δ > 0, we see that u(t, x, γ ) ∈ C1,2(�+ × �) for any γ ∈ Γ by Lebesgue
dominated convergence theorem. Rewrite u(t, x) in following form

u(t, x) =
∫ +∞

−∞
K (t, x − y)ϕ(y)dy +

∫ t

0

∫ +∞

−∞
K (s, y)q(t − s, x − y, Ċt−s)dyds.

Furthermore, Ċt−s(γ ) is a function of t − s for any γ ∈ Γ , and we write

q(t − s, x − y, Ċt−s(γ )) = Qγ (t − s, x − y).

For any γ ∈ Γ , we can get

∂u

∂t
(t, x, γ ) =

∫ +∞

−∞
∂K

∂t
(t, x − y)ϕ(y)dy +

∫ +∞

−∞
K (t, y)Qγ (0, x − y)dy

+
∫ t

0

∫ +∞

−∞
K (s, y)

∂Qγ

∂t
(t − s, x − y)dyds,

∂2u

∂x2
(t, x, γ ) =

∫ +∞

−∞
∂2K

∂x2
(t, x − y)ϕ(y)dy

+
∫ t

0

∫ +∞

−∞
K (s, y)

∂2Qγ

∂x2
(t − s, x − y)dyds.
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It is easy to check that the following equation holds

∂K

∂t
(t, x) − a2

∂2K

∂x2
(t, x) = 0.

Thus,

∂u

∂t
(t, x, γ ) − a2

∂2u

∂x2
(t, x, γ )

=
∫ t

0

∫ +∞

−∞
K (s, y)

[
∂Qγ

∂t
(t − s, x − y) − a2

∂2Qγ

∂x2
(t − s, x − y)

]
dyds

+
∫ +∞

−∞
K (t, y)Qγ (0, x − y)dy

=
∫ ε

0

∫ +∞

−∞
K (s, y)

[
∂Qγ

∂t
(t − s, x − y) − a2

∂2Qγ

∂x2
(t − s, x − y)

]
dyds

+
∫ t

ε

∫ +∞

−∞
K (s, y)

[
∂Qγ

∂t
(t − s, x − y) − a2

∂2Qγ

∂x2
(t − s, x − y)

]
dyds

+
∫ +∞

−∞
K (t, y)Qγ (0, x − y)dy

(9)
where 0 < ε < t , and

∣∣∣∣∣
∫ ε

0

∫ +∞

−∞
K (s, y)

[
∂Qγ

∂t
(t − s, x − y) − a2

∂2Qγ

∂x2
(t − s, x − y)

]
dyds

∣∣∣∣∣
≤
(∣∣∣∣∂Qγ

∂t

∣∣∣∣+
∣∣∣∣∣∂

2Qγ

∂x2

∣∣∣∣∣
) ∫ ε

0

∫ +∞

−∞
K (s, y)dyds

= ε

(∣∣∣∣∂Qγ

∂t

∣∣∣∣+
∣∣∣∣∣∂

2Qγ

∂x2

∣∣∣∣∣
)

.

(10)

Using integration by parts, we also have

∫ t

ε

∫ +∞

−∞
K (s, y)

[
∂Qγ

∂t
(t − s, x − y) − a2

∂2Qγ

∂x2
(t − s, x − y)

]
dyds

=
∫ t

ε

∫ +∞

−∞
K (s, y)

[
−∂Qγ

∂s
(t − s, x − y) − a2

∂2Qγ

∂y2
(t − s, x − y)

]
dyds

=
∫ t

ε

∫ +∞

−∞

[
∂K

∂s
(s, y) − a2

∂2K

∂y2
(s, y)

]
Qγ (t − s, x − y)dyds

123



390 X. Yang, K. Yao

+
∫ +∞

−∞
K (ε, y)Qγ (t − ε, x − y)dy −

∫ +∞

−∞
K (t, y)Qγ (0, x − y)dy

=
∫ +∞

−∞
K (ε, y)Qγ (t − ε, x − y)dy −

∫ +∞

−∞
K (t, y)Qγ (0, x − y)dy.

(11)

By Eqs. (9)–(11), we obtain

∣∣∣∣∂u∂t (t, x, γ ) − a2
∂2u

∂x2
(t, x, γ ) −

∫ +∞

−∞
K (ε, y)Qγ (t − ε, x − y)dy

∣∣∣∣
≤ ε

(∣∣∣∣∂Qγ

∂t

∣∣∣∣+
∣∣∣∣∣∂

2Qγ

∂x2

∣∣∣∣∣
)

, ε ∈ (0, t).

Setting ε → 0+, we have

∂u

∂t
(t, x, γ ) − a2

∂2u

∂x2
(t, x, γ ) = lim

ε→0+

∫ +∞

−∞
K (ε, y)Qγ (t − ε, x − y)dy

= Qγ (t, x) = q(t, x, Ċt (γ )), ∀γ ∈ Γ.

The theorem is proved. ��

Example 10 Consider the uncertain heat equation in Example 6,

⎧⎨
⎩

∂u

∂t
= ∂2u

∂x2
+ Ċt , t > 0, x ∈ �,

u(0, x) = 0, x ∈ �.

It follows from Theorem 3 that the solution is

u(t, x) =
∫ t

0

∫ +∞

−∞
K (t − s, x − y)Ċsdyds

=
∫ t

0

∫ +∞

−∞
K (t − s, x − y)dydCs

=
∫ t

0

∫ +∞

−∞
1

2
√

π(t − s)
exp

(
− (x − y)2

4(t − s)

)
dydCs

=
∫ t

0

∫ +∞

−∞
1√
π
exp

(
−z2

)
dzdCs

=
∫ t

0
dCs = Ct .
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Example 11 Consider the uncertain heat equation in Example 7,

⎧⎨
⎩

∂u

∂t
= ∂2u

∂x2
+ sin x · e−t + Ċt , t > 0, x ∈ �,

u(0, x) = sin x, x ∈ �.

It follows from Theorem 3 that the solution is

u(t, x) =
∫ +∞

−∞
K (t, x − y) sin ydy

+
∫ t

0

∫ +∞

−∞
K (t − s, x − y)

(
sin y · e−s + Ċs

)
dyds

=
∫ +∞

−∞
K (t, x − y) sin ydy

+
∫ t

0

∫ +∞

−∞
K (t − s, x − y) sin y · e−sdyds + Ct

= e−t sin x + te−t sin x + Ct

= (t + 1)e−t sin x + Ct .

Example 12 Consider the uncertain heat equation in Example 8,

⎧⎨
⎩

∂u

∂t
= ∂2u

∂x2
− e−t Ċt , t > 0, x ∈ �,

u(0, x) = 0, x ∈ �.

It follows from Theorem 3 that the solution is

u(t, x) = −
∫ t

0

∫ +∞

−∞
K (t − s, x − y)e−sĊsdyds

= −
∫ t

0
e−s

∫ +∞

−∞
K (t − s, x − y)dydCs

= −
∫ t

0
e−sdCs .

Example 13 Consider the uncertain heat equation in Example 9,

⎧⎨
⎩

∂u

∂t
= ∂2u

∂x2
+ (sin x + 1)Ċt , t > 0, x ∈ �,

u(0, x) = 0, x ∈ �.
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It follows from Theorem 3 that the solution is

u(t, x) =
∫ t

0

∫ +∞

−∞
K (t − s, x − y)(sin(y) + 1)Ċsdyds

=
∫ t

0

∫ +∞

−∞
K (t − s, x − y)(sin(y) + 1)dydCs

= e−t sin x
∫ t

0
esdCs + Ct .

Corollary 1 If ϕ(x) ∈ Cb(�) and f (t, x), σ (t, x) ∈ C1,2
b (�+ × �), then the uncer-

tain heat equation

⎧⎨
⎩

∂u

∂t
= a2

∂2u

∂x2
+ f (t, x) + σ(t, x)Ċt , t > 0, x ∈ �,

u(0, x) = ϕ(x), x ∈ �
(12)

has a solution

u(t, x) =
∫ +∞

−∞
K (t, x − y)ϕ(y)dy +

∫ t

0

∫ +∞

−∞
K (t − s, x − y) f (s, y)dyds

+
∫ t

0

∫ +∞

−∞
K (t − s, x − y)σ (s, y)dydCs .

(13)

Proof Let q(t, x, c) = f (t, x) + σ(t, x)c ∈ C1,2,1
b (�+ × � × �). It follows from

Theorem 3 that the uncertain heat Eq. (12) has a solution

u(t, x) =
∫ +∞

−∞
K (t, x − y)ϕ(y)dy

+
∫ t

0

∫ +∞

−∞
K (t − s, x − y)

(
f (s, y) + σ(s, y)Ċs

)
dyds

=
∫ +∞

−∞
K (t, x − y)ϕ(y)dy +

∫ t

0

∫ +∞

−∞
K (t − s, x − y) f (s, y)dyds

+
∫ t

0

∫ +∞

−∞
K (t − s, x − y)σ (s, y)Ċsdyds

=
∫ +∞

−∞
K (t, x − y)ϕ(y)dy +

∫ t

0

∫ +∞

−∞
K (t − s, x − y) f (s, y)dyds

+
∫ t

0

∫ +∞

−∞
K (t − s, x − y)σ (s, y)dydCs .

Thus, the corollary is proved. ��
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6 Inverse uncertainty distribution of solution

In this section, we give the inverse uncertainty distribution of solution of Cauchy
problem for uncertain heat equation.

Theorem 4 Let u(t, x) be the solution of the Cauchy problem for uncertain heat
equation ⎧⎨

⎩
∂u

∂t
= a2

∂2u

∂x2
+ q(t, x, Ċt ), t > 0, x ∈ �,

u(0, x) = ϕ(x), x ∈ �.

If q(t, x, c) is a strictly increasing function with respect to c, then the solution u(t, x)
has an inverse uncertainty distribution

Ψ −1
t,x (α) =

∫ +∞

−∞
K (t, x−y)ϕ(y)dy+

∫ t

0

∫ +∞

−∞
K (t−s, x−y)q(s, y, Φ−1(α))dyds

where

Φ−1(α) =
√
3

π
ln

α

1 − α

is the inverse uncertainty distribution of standard normal uncertain variable.

Proof On the one hand, we have

M
{
u(t, x) ≤ Ψ −1

t,x (α),∀t,∀x
}

= M

{∫ t

0

∫ +∞

−∞
K (t − s, x − y)q(s, y, Ċs)dyds

≤
∫ t

0

∫ +∞

−∞
K (t − s, x − y)q(s, y, Φ−1(α))dyds,∀t,∀x

}

≥ M
{
q(s, y, Ċs) ≤ q(s, y, Φ−1(α)),∀s,∀y

}
= M

{
Ċs ≤ Φ−1(α)

}
= α.

On the other hand, we have

M
{
u(t, x) > Ψ −1

t,x (α),∀t,∀x
}

= M

{∫ t

0

∫ +∞

−∞
K (t − s, x − y)q(s, y, Ċs)dyds

>

∫ t

0

∫ +∞

−∞
K (t − s, x − y)q(s, y, Φ−1(α))dyds,∀t,∀x

}

≥ M
{
q(s, y, Ċs) > q(s, y, Φ−1(α)),∀s,∀y

}
= M

{
Ċs > Φ−1(α)

}
= 1 − α.
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Note that
{
u(t, x) ≤ Ψ −1

t,x (α),∀t,∀x
}
and

{
u(t, x) � Ψ −1

t,x (α),∀t,∀x
}
are opposite

with each other. By using the duality axiom, we get

M
{
u(t, x) ≤ Ψ −1

t,x (α),∀t,∀x
}

+ M
{
u(t, x) � Ψ −1

t,x (α),∀t,∀x
}
= 1.

It follows from

{
u(t, x) > Ψ −1

t,x (α),∀t,∀x
}

⊂
{
u(t, x) � Ψ −1

t,x (α),∀t,∀x
}

and the monotonicity theorem that

M
{
u(t, x) ≤ Ψ −1

t,x (α),∀t,∀x
}

+ M
{
u(t, x) > Ψ −1

t,x (α),∀t,∀x
}

≤ 1.

Thus, we obtain
M
{
u(t, x) ≤ Ψ −1

t,x (α)
}

= α.

The theorem is proved. ��

Theorem 5 Let u(t, x) be the solution of the Cauchy problem for uncertain heat
equation ⎧⎨

⎩
∂u

∂t
= a2

∂2u

∂x2
+ q(t, x, Ċt ), t > 0, x ∈ �,

u(0, x) = ϕ(x), x ∈ �.

If q(t, x, c) is a strictly decreasing function with respect to c, then the solution u(t, x)
has an inverse uncertainty distribution

Ψ −1
t,x (α) =

∫ +∞

−∞
K (t, x − y)ϕ(y)dy

+
∫ t

0

∫ +∞

−∞
K (t − s, x − y)q(s, y, Φ−1(1 − α))dyds

where

Φ−1(α) =
√
3

π
ln

α

1 − α

is the inverse uncertainty distribution of standard normal uncertain variable.
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Proof On the one hand, we have

M
{
u(t, x) ≤ Ψ −1

t,x (α),∀t,∀x
}

= M

{∫ t

0

∫ +∞

−∞
K (t − s, x − y)q(s, y, Ċs)dyds

≤
∫ t

0

∫ +∞

−∞
K (t − s, x − y)q(s, y, Φ−1(1 − α))dyds,∀t,∀x

}

≥ M
{
q(s, y, Ċs) ≤ q(s, y, Φ−1(1 − α)),∀s,∀y

}
= M

{
Ċs ≥ Φ−1(1 − α)

}
= 1 − (1 − α) = α.

On the other hand, we have

M
{
u(t, x) > Ψ −1

t,x (α),∀t,∀x
}

= M

{∫ t

0

∫ +∞

−∞
K (t − s, x − y)q(s, y, Ċs)dyds

>

∫ t

0

∫ +∞

−∞
K (t − s, x − y)q(s, y, Φ−1(1 − α))dyds,∀t,∀x

}

≥ M
{
q(s, y, Ċs) > q(s, y, Φ−1(1 − α)),∀s,∀y

}
= M

{
Ċs < Φ−1(1 − α)

}
= 1 − α.

Note that
{
u(t, x) ≤ Ψ −1

t,x (α),∀t,∀x
}
and

{
u(t, x) � Ψ −1

t,x (α),∀t,∀x
}
are opposite

with each other. By using the duality axiom, we get

M
{
u(t, x) ≤ Ψ −1

t,x (α),∀t,∀x
}

+ M
{
u(t, x) � Ψ −1

t,x (α),∀t,∀x
}

= 1.

It follows from{
u(t, x) > Ψ −1

t,x (α),∀t,∀x
}

⊂
{
u(t, x) � Ψ −1

t,x (α),∀t,∀x
}

and the monotonicity theorem that

M
{
u(t, x) ≤ Ψ −1

t,x (α),∀t,∀x
}

+ M
{
u(t, x) > Ψ −1

t,x (α),∀t,∀x
}

≤ 1.

Thus, we obtain
M
{
u(t, x) ≤ Ψ −1

t,x (α)
}

= α.

The theorem is proved. ��
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Fig. 1 Inverse uncertainty distribution in Example 14

Example 14 Consider the uncertain heat equation in Example 6,⎧⎨
⎩

∂u

∂t
= ∂2u

∂x2
+ Ċt , t > 0, x ∈ �,

u(0, x) = 0, x ∈ �.

It follows from Theorem 4 that the inverse uncertainty distribution of solution is

Φ−1
t,x (α) =

√
3t

π
ln

α

1 − α

that is just the inverse uncertainty distribution of Ct , which is shown in Fig. 1.

Example 15 Consider the uncertain heat equation in Example 7,⎧⎨
⎩

∂u

∂t
= ∂2u

∂x2
+ sin x · e−t + Ċt , t > 0, x ∈ �,

u(0, x) = sin x, x ∈ �.

It follows from Theorem 4 that the inverse uncertainty distribution of solution is

Φ−1
t,x (α) = (t + 1)e−t sin x +

√
3t

π
ln

α

1 − α

that is just the inverse uncertainty distribution of (t +1)e−t sin x+Ct , which is shown
in Fig. 2.

Example 16 Consider the uncertain heat equation in Example 8,⎧⎨
⎩

∂u

∂t
= ∂2u

∂x2
− e−t Ċt , t > 0, x ∈ �,

u(0, x) = 0, x ∈ �.
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Fig. 2 Inverse uncertainty distribution in Example 15

It follows from Theorem 5 that the inverse uncertainty distribution of solution is

Φ−1
t,x (α) =

√
3

π

(
1 − e−t) ln α

1 − α

that is just the inverse uncertainty distribution of

−
∫ t

0
e−sdCs,

which is shown in Fig. 3.

Example 17 Consider the uncertain heat equation in Example 9,

⎧⎨
⎩

∂u

∂t
= ∂2u

∂x2
+ (sin x + 1)Ċt , t > 0, x ∈ �,

u(0, x) = 0, x ∈ �.

It follows from Theorem 4 that the inverse uncertainty distribution of solution is

Φ−1
t,x (α) =

√
3

π

(
sin x(1 − e−t ) + t

)
ln

α

1 − α

that is just the inverse uncertainty distribution of

e−t sin x
∫ t

0
esdCs + Ct ,

which is shown in Fig. 4.

Corollary 2 Assume σ(t, x) ≥ 0,∀t, x or σ(t, x) ≤ 0,∀t, x, and let u(t, x) be the
solution of the Cauchy problem for uncertain heat equation⎧⎨

⎩
∂u

∂t
= a2

∂2u

∂x2
+ f (t, x) + σ(t, x)Ċt , t > 0, x ∈ �,

u(0, x) = ϕ(x), x ∈ �.

(14)

123



398 X. Yang, K. Yao

0
1

2
3

−4
−2

0
2

4
−0.5

0

0.5

tx

Φ
t,x−1
(α
)

α=0.3

α=0.5

α=0.7

Fig. 3 Inverse uncertainty distribution in Example 16
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Fig. 4 Inverse uncertainty distribution in Example 17

Then the solution u(t, x) has an inverse uncertainty distribution

Ψ −1
t,x (α) =

∫ +∞

−∞
K (t, x − y)ϕ(y)dy +

∫ t

0

∫ +∞

−∞
K (t − s, x − y) f (s, y)dyds

+ Φ−1(α)

∫ t

0

∫ +∞

−∞
K (t − s, x − y) |σ(s, y)| dyds.

where

Φ−1(α) =
√
3

π
ln

α

1 − α

is the inverse uncertainty distribution of standard normal uncertain variable.
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Proof If σ(t, x) ≥ 0, then q(t, x, c) = f (t, x)+σ(t, x)c is a strictly increasing func-
tion with respect to c. From Theorem 4, the solution u(t, x) has an inverse uncertainty
distribution

Ψ −1
t,x (α) =

∫ +∞

−∞
K (t, x − y)ϕ(y)dy

+
∫ t

0

∫ +∞

−∞
K (t − s, x − y)

(
f (s, y) + σ(s, y)Φ−1(α)

)
dyds

=
∫ +∞

−∞
K (t, x − y)ϕ(y)dy +

∫ t

0

∫ +∞

−∞
K (t − s, x − y) f (s, y)dyds

+ Φ−1(α)

∫ t

0

∫ +∞

−∞
K (t − s, x − y)σ (s, y)dyds.

If σ(t, x) ≤ 0, then q(t, x, c) = f (t, x) + σ(t, x)c is a strictly decreasing function
with respect to c. From Theorem 5, the solution u(t, x) has an inverse uncertainty
distribution

Ψ −1
t,x (α) =

∫ +∞

−∞
K (t, x − y)ϕ(y)dy

+
∫ t

0

∫ +∞

−∞
K (t − s, x − y)

(
f (s, y) + σ(s, y)Φ−1(1 − α)

)
dyds

=
∫ +∞

−∞
K (t, x − y)ϕ(y)dy +

∫ t

0

∫ +∞

−∞
K (t − s, x − y) f (s, y)dyds

+ Φ−1(α)

∫ t

0

∫ +∞

−∞
K (t − s, x − y) |σ(s, y)| dyds.

Thus, the corollary is proved. ��

7 Some special uncertain partial differential equations

This section defines some special uncertain partial differential equations including
uncertain parabolic equation, uncertain hyperbolic equation and uncertain elliptic
equation.

Definition 9 Assume that ai j , bi , c and f are given functions, and

ai j (t, x) = a ji (t, x), (t, x) ∈ �+ × �n, i, j = 1, 2, . . . , n.

The uncertain partial differential equation

∂u

∂t
−

n∑
i, j=1

ai j (t, x)
∂2u

∂xi x j
+

n∑
i=1

bi (t, x)
∂u

∂xi
+ c(t, x)u = f (t, x, Ċt ) (15)
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is called parabolic if there exists a constant λ > 0 such that

n∑
i, j=1

ai j (t, x)yi y j ≥ λ|y|2

for all (t, x) ∈ �+ × �n and y = (y1, y2, . . . , yn) ∈ �n .

If n = 1, a11(t, x) = 1, b1(t, x) = c(t, x) = 0, then uncertain parabolic partial
differential equation becomes an uncertain heat equation

∂u

∂t
− ∂2u

∂x2
= f (t, x, Ċt ).

The function f (t, x, Ċt ) means that heat source has an uncertain disturbance. The
equation in Example 3 is an uncertain parabolic partial differential equation.

Definition 10 Assume that ai j , bi , c and f are given functions, and

ai j (t, x) = a ji (t, x), (t, x) ∈ �+ × �n, i, j = 1, 2, . . . , n.

The uncertain partial differential equation

∂2u

∂t2
−

n∑
i, j=1

ai j (t, x)
∂2u

∂xi x j
+

n∑
i=1

bi (t, x)
∂u

∂xi
+ c(t, x)u = f (t, x, Ċt ) (16)

is called hyperbolic if there exists a constant λ > 0 such that

n∑
i, j=1

ai j (t, x)yi y j ≥ λ|y|2

for all (t, x) ∈ �+ × �n and y = (y1, y2, . . . , yn) ∈ �n .

If n = 1, a11(t, x) = 1, b1(t, x) = c(t, x) = 0, then uncertain hyperbolic partial
differential equation becomes an uncertain wave equation

∂2u

∂t2
− ∂2u

∂x2
= f (t, x, Ċt ).

The function f (t, x, Ċt ) means that the force has an uncertain disturbance. The equa-
tion in Example 4 is an uncertain hyperbolic partial differential equation.

Definition 11 Assume that ai j , bi , c and f are given functions, and

ai j (x) = a ji (x), x ∈ �n, i, j = 1, 2, . . . , n.
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The uncertain partial differential equation

−
n∑

i, j=1

ai j (x)
∂2u

∂xi x j
+

n∑
i=1

bi (x)
∂u

∂xi
+ c(x)u = f (x, Ċt ) (17)

is called elliptic if there exists a constant λ > 0 such that

n∑
i, j=1

ai j (x)yi y j ≥ λ|y|2

for all x ∈ �n and y = (y1, y2, . . . , yn) ∈ �n .

If n = 1, a11(x) = 1, b1(x) = c(x) = 0, then uncertain elliptic partial differential
equation becomes an uncertain Poisson’s equation

−∂2u

∂x2
= f (x, Ċt ).

The function f (x, Ċt ) means that it has an uncertain disturbance. The equation in
Example 5 is an uncertain elliptic partial differential equation.

8 Paradox of stochastic heat equation

Let us consider a one-dimensional stochastic heat equation over infinitesimally-thin
wire with infinite length

∂u

∂t
= a2

∂2u

∂x2
+ q(t, x, Ẇt ) (18)

where a2 is the constant thermal diffusivity, u(t, x) is the temperature at point x ∈ �
and time t > 0, q(t, x, Ẇt ) is a stochastic heat source, Ẇt = dWt/dt is a white noise,
and Wt is a standard Wiener process.

Although the stochastic heat Eq. (18) has been widely accepted, is such an equation
really reasonable? Note that

Ẇt ∼ N
(
0,

1

dt

)

is a normal random variable whose expected value is zero and variance is 1/dt . Con-
sider a special case, q(t, x, Ẇt ) = f (t, x) + σ(t, x)Ẇt , where f and σ are bounded
real-valued functions. Then, we can get

∂u

∂t
= a2

∂2u

∂x2
+ f (t, x) + σ(t, x)Ẇt (19)
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and

∂u

∂t
− a2

∂2u

∂x2
∼ N

(
f, σ 2 1

dt

)
.

Thus,

Pr

{∣∣∣∣∂u∂t − a2
∂2u

∂x2

∣∣∣∣ ≥ N

}

= Pr

{(
∂u

∂t
− a2

∂2u

∂x2
≥ N

)⋃(
∂u

∂t
− a2

∂2u

∂x2
≤ −N

)}

= Pr

{
∂u

∂t
− a2

∂2u

∂x2
≥ N

}
+ Pr

{
∂u

∂t
− a2

∂2u

∂x2
≤ −N

}

= Pr

⎧⎨
⎩

∂u
∂t − a2 ∂2u

∂x2
− f

σ/
√
dt

≥ N − f

σ

√
dt

⎫⎬
⎭

+ Pr

⎧⎨
⎩

∂u
∂t − a2 ∂2u

∂x2
− f

σ/
√
dt

≤ −N + f

σ

√
dt

⎫⎬
⎭

= 1 − Φ

(
N − f

σ

√
dt

)
+ Φ

(
−N + f

σ

√
dt

)
→ 1 (dt → 0)

where N is any given large constant, and Φ(·) is the standard normal distribution
function. This means,

Pr

{∣∣∣∣∂u∂t − a2
∂2u

∂x2

∣∣∣∣ ≥ N

}
= 1,

that is, at least one term is∞ at any point x and any time t among ∂u/∂t and ∂2u/∂x2.
However, from the physics point of view, those terms ∂u/∂t (heat transmission speed)
and ∂2u/∂x2 (change rate of ∂u/∂x with respect to x) are bounded at every point
x and every time t for any material in real life. Therefore, it is unreasonable that
the temperature u(t, x) follows the stochastic heat equation like (18) from the above
paradox.

As a summary, Eq. (18) can just be used to describe the heat conduct phenomenon
with an infinite heat transmission speed or an infinite change rate of ∂u/∂x with respect
to x . However, this heat conduct process does not exist at all because all the objects in
nature have finite heat transmission speed and finite change rate of ∂u/∂x with respect
to x . This means it is unreasonable to model the heat conduction process via stochastic
heat equations.

9 Conclusion

At first, this paper proposed the uncertain partial differential equation driven by Liu
process and investigated uncertain heat equation. And then, the solution of the Cauchy
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problem for uncertain heat equation was obtained and the inverse uncertainty distri-
bution of solution was also derived. This paper also defined three kinds of uncertain
partial differential equations. In addition, a paradox of stochastic heat equation was
introduced.
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